
Journal of Fractional Calculus and Applications

Vol. 4(3S)(5th. Symposium of Fractional Calculus and Applications group)

August 12, 2013, No. 6, pp. 1-11.

ISSN: 2090-5858.

http://www.fcaj.webs.com/

——————————————————————————————————-

A NEW CLASS OF HARMONIC FUNCTIONS OF COMPLEX

ORDER DEFINED BY DUAL CONVOLUTION

R. M. EL-ASHWAH, M. K. AOUF AND F. M. ABDULKAREM

Abstract. In this paper, we investigate several properties of the harmonic
classes SH(Φ,Ψ;β, b, t, σ) and SH(Φ,Ψ;β, b, t). We obtain distortion theorem,

extreme points, convolution condition, convex combinations and closure prop-
erty under integral operator for functions in these two classes.

1. Introduction

A continuous complex valued functions f = u+ iv which is defined in a simply
connected complex domain D is said to be harmonic in D if both u and v are real
harmonic in D. In any simply connected domain we can write

f(z) = h(z) + g(z) , (1.1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f . A necessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |h′

(z)| > |g′
(z)| in D (see [6]).

Denote by SH , the class of functions f of the form (1.1) that are harmonic
univalent and sense preserving in the unit disc U = {z : |z| < 1} for which f(0) =
fz(0)− 1 = 0.

For f = h+g ∈ SH , we may express the analytic functions h and g are of the form:

h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1.2)

Also let SH denote the subclass of SH consisting of functions f = h+ g such that
the functions h and g are of the form

h(z) = z −
∞∑
k=2

|ak| zk, g(z) =
∞∑
k=1

|bk| zk , |b1| < 1. (1.3)
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In 1984 Clunie and Sheil-Small [6] investigated the class SH as well as its geometric
subclasses and its properties. Since then, there have been several studies related
to the class SH and its subclasses. Following Clunie and Sheil-Small [6], Frasin
[12], Frasin and Murugusundaramoorthy [13], Jahangiri [14, 15], Silverman [23],
Silverman and Silvia [24], Dixit and porwal [8] and others have investigated various
subclasses of SH and its properties.

The Hadamard product (or convolution) of two power series

Φ(z) = z +
∞∑
k=2

λkz
k (λk ≥ 0) and Ψ(z) = z +

∞∑
k=2

µkz
k (µk ≥ 0), (1.4)

be defined by

(Φ ∗Ψ) (z) = z +

∞∑
k=2

λkµkz
k, (1.5)

and the integral convolution is defined by

(Φ♢Ψ) (z) = z +

∞∑
k=2

λkµk

k
zk, (1.6)

note that by (1.5) and (1.6), we have

(Φ♢Ψ) (z) =z
0

(Φ ∗Ψ) (t)

t
dt . (1.7)

Motivated by the work of Dixit et al. [9], and Frasin and Murugusundaramoorthy
[13].

We consider the class SH(Φ,Ψ;β, b, t, σ) consisting of functions f = h+ g, where h
and g of the form (1.2) and satisfying the condition∣∣∣∣∣1b

[
h(z) ∗ Φ(z)− σg(z) ∗Ψ(z)

ht(z)♢Φ(z) + σgt(z)♢Ψ(z)
− 1

]∣∣∣∣∣ < β, (1.8)

where 0 < β ≤ 1, b ∈ C∗ = C\{0}, |σ| = 1, ht(z) = (1 − t)z + th(z), gt(z) =
tg(z), 0 ≤ t ≤ 1, Φ(z) and Ψ(z) are given by (1.4).

Further, let for σ = 1,SH(Φ,Ψ;β, b, t) be the subclass of SH(Φ,Ψ;β, b, t, σ) con-
sisting of functions of the form (1.3).

Specializing the functions Φ(z) and Ψ(z) and the parameters β, b , t and σ we
obtain the following subclasses studied by various authors:
(i) SH(Φ,Ψ; 1, 1 − γ, t) = GH(Φ,Ψ; γ, t) (0 ≤ γ < 1, 0 ≤ t ≤ 1) (see Magesh and
Porwal [20, with β = 0]);
(ii) SH(Φ,Ψ; 1, 1− α, 1) = HS(Φ,Ψ, α) (0 ≤ α < 1) (see Dixit et al. [9]);

(iii) SH

(
z

(1− z)2
,

z

(1− z)2
; 1, b, 1

)
= SH(b, 1, β) (see Aouf et al. [4, with p = 1]);

(iv) SH

(
z

(1− z)2
,

z

(1− z)2
; 1, 1, 1

)
= T ∗

H (see Silverman [23]);

(v) SH

(
z

(1− z)2
,

z

(1− z)2
; 1, 1− α, 1, 1

)
= S∗

H(α) (0 ≤ α < 1) (see Jahangiri

[15]);
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(vi) SH

(
z

(1− z)2
,

z

(1− z)2
;β, b, 1, 1

)
= HS∗(b, β) (see Janteng [17]).

Also we note that:

(i) SH(z +
∞∑
k=2

kn+1zk, z +
∞∑
k=2

kn+1zk;β, b, 1, (−1)n) = SH(n;β, b)

=

{
f ∈ SH :

∣∣∣∣∣1b
[
Dn+1h(z)− (−1)n+1(Dn+1g(z))

Dnh(z) + (−1)nDng(z)

]∣∣∣∣∣ < β (n ∈ N0 = N ∪ {0};

N = {1, 2, ...})

}
, where Dn is the modefied Salagean operator (see [16], [22] and

[25]);

(ii) SH(z +
∞∑
k=2

k−nzk, z +
∞∑
k=2

k−nzk;β, b, 1, (−1)n+1) = EH(n;β, b)

=

{
f ∈ SH :

∣∣∣∣∣1b
[

Inh(z)− (−1)n(Ing(z))

In+1h(z) + (−1)n+1In+1g(z)

]∣∣∣∣∣ < β (n ∈ N0)

}
, where In is the

modefied Salagean integral operator (see [7], with p = 1, also see [22]);

(iii) SH(z +
∞∑
k=2

k [1 + λ (k − 1)]
n
zk, z +

∞∑
k=2

k [1 + λ (k − 1)]
n
zk;β, b, 1, (−1)n)

= SH(n;β, , b, λ) =

{∣∣∣∣∣1b
[
z(Dn

λh(z))
′ − (−1)nz(Dn

λg(z))
′

Dn
λh(z) + (−1)nDn

λg(z)

]∣∣∣∣∣ < β (λ ≥ 0;n ∈ N0)

}
,

where Dn
λ is the modefied Al-Oboudi operator (see [1, 26], also see [2], with p = 1);

(iv) SH(z +
∞∑
k=2

k [1 + λ (k − 1)]
−n

zk, z +
∞∑
k=2

k [1 + λ (k − 1)]
−n

zk;β, b, 1, (−1)n)

= LH(n;β, , b, λ) =

{∣∣∣∣∣1b
[
z(Inλh(z))

′ − (−1)nz(Inλ g(z))
′

Inλh(z) + (−1)nInλ g(z)

]∣∣∣∣∣ < β (λ ≥ 0;n ∈ N0)

}
where

Inλ is modefied integral operator see ([3], with p = 1, also see [11], with ℓ = 0);

(v) SH

(
z +

∞∑
k=2

k

(
1 + ℓ+ λ(k − 1)

1 + ℓ

)m

zk,
∞∑
k=2

k

(
1 + ℓ+ λ(k − 1)

1 + ℓ

)m

zk;β, , b, 1, (−1)m
)

= SH(m, ℓ;β, b, λ) =

{∣∣∣∣∣1b
[
z(Jm(λ, ℓ)h(z))′ − (−1)mz(Jm(λ, ℓ)g(z))′

Jm(λ, ℓ)h(z) + (−1)mJm(λ, ℓ)g(z)

]∣∣∣∣∣ < β (λ ≥ 0;

ℓ > −1;m ∈ Z = {±1, ...})

}
, where Jm (λ, ℓ) is the modefied Prajapat operator

(see [21, 10], with p = 1);
(vi) SH(Φ,Ψ;β, (1− α)e−iλ cosλ, t, 1) = SH(Φ,Ψ, α;β, λ, t)

=

{
f ∈ SH :

∣∣∣∣∣ h(z) ∗ Φ(z)− g(z) ∗Ψ(z)

ht(z)♢Φ(z) + gt(z)♢Ψ(z)
− 1

∣∣∣∣∣ < β(1− α) cosλ (|λ| < π
2 ; 0 ≤ α < 1)

}
.

In this paper, we have obtained the coefficient bounds for the classes SH(Φ,Ψ;β, b, t, σ)
and SH(Φ,Ψ;β, b, t). Further distortion bounds, extreme points, convolution and
convex combination properties, closure property under integral operator for func-
tions in the class SH(Φ,Ψ;β, b, t) are also obtained.
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2. Coefficient bounds

Unless otherwise mentioned, we assume throughout this paper that 0 < β ≤
1, b ∈ C∗, |σ| = 1, ht(z) = (1 − t)z + th(z), gt(z) = tg(z), 0 ≤ t ≤ 1 and
Φ(z), Ψ(z) are given by (1.4). We begin with a sufficient condition for functions in
SH(Φ,Ψ;β, b, t, σ).

Theorem 1. Let f = h+ g be given by (1.1). Furthermore, let

∞
k=2

λk
k

(k − (1− β |b|) t) |ak|+∞
k=1

µk

k
(k + (1− β |b|) t)k |bk| ≤ β |b| , (2.1)

where,

k2β |b| ≤ λk(k − (1− β |b|) t) and k2β |b| ≤ µk(k + (1− β |b|) t) for k ≥ 2. (2.2)

Then f(z) is sense-preserving, harmonic univalent in U and f(z) ∈ SH(Φ,Ψ;β, b, t, σ).
Proof. If z1 ̸= z2, then by using (2.2), we have∣∣∣∣f(z2)− f(z1)

h(z2)− h(z1)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z2)− g(z1)

h(z2)− h(z1)

∣∣∣∣ = 1−

∣∣∣∣∣ ∞
k=1bk

(
zk2 − zk1

)
(z2 − z1) +∞

k=2 ak
(
zk1 − zk2

) ∣∣∣∣∣
≥ 1−

∞
k=1k |bk|

1−∞
k=2 k |ak|

≥ 1−

∞
k=1

µk

k

(
(k + (1− β |b|) t

β |b|

)
k

|bk|

1−∞
k=2

λk
k

(
(k − (1− β |b|) t

β |b|

)
|ak|

≥ 0,

which proves the univalence. Also f is sense-preserving in U since

|h
′
(z)| ≥ 1−∞

k=2 k |ak| |z|
k−1

> 1−∞
k=2 k |ak|

≥ 1−∞
k=2

λk
k

(
(k − (1− β |b|) t

β |b|

)
|ak|

≥ ∞
k=1

µk

k

(
(k + (1− β |b|) t

β |b|

)
|ak|

≥ ∞
k=1k |bk| |z|

k−1 ≥ |g
′
(z)|.

Now we show that f(z) ∈ SH(Φ,Ψ;β, b, t, σ). We only need to show that if (2.1)
holds then the condition (1.7) is satisfied, then we want to prove that

Re

{
h(z) ∗ Φ(z)− σg(z) ∗Ψ(z)

ht(z)♢Φ(z) + σgt(z)♢Ψ(z)
− (1− β |b|)

}
= Re

A(z)

B(z)
> 0. (2.3)

Using the fact that Re {w} ≥ 0 if and only if |1 + w| ≥ |1− w|, it suffices to show
that

|A(z) +B(z)| − |A(z)−B(z)| ≥ 0, (2.4)

whereA(z) =
[
h(z) ∗ Φ(z)− σg(z) ∗Ψ(z)− (1− β |b|)(ht(z)♢Φ(z) + σgt(z)♢Ψ(z))

]
and B(z) =

[
ht(z)♢Φ(z) + σgt(z)♢Ψ(z)

]
. Substituting for A(z) and B(z) in the
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left side of (2.4) we obtain

|A(z) +B(z)| − |A(z)−B(z)|

=

∣∣∣∣(1 + β |b|) z+∞
k=2

(
1 +

tβ |b|
k

)
λkakz

k−σ∞
k=1

(
1− tβ |b|

k

)
µkbkzk

∣∣∣∣
−
∣∣∣∣(1− β |b|) z+∞

k=2

(
1− (2− β |b|) t

k

)
λkakz

k+σ∞
k=1

(
1 + (2− β |b|) t

k

)
µkbkzk

∣∣∣∣
≥ (1 + β |b|) |z| −∞

k=2

(
1 +

tβ |b|
k

)
λk |ak| |z|k −∞

k=1

(
1− tβ |b|

k

)
µk |bk| |z|k

− (1− β |b|) |z| −∞
k=2

(
1− (2− β |b|) t

k

)
λk |ak| |z|k −∞

k=1

(
1 + (2− β |b|) t

k

)
µk |bk| |z|k

≥ 2

{
β |b| −∞

k=2

λk
k

(k − (1− β |b|) t) |ak| −∞
k=1

µk

k
(k + (1− β |b|) t) |bk|

}
≥ 0, this by using (2.1).

The harmonic univalent functions

f(z) = z +∞
k=2

kβ |b|
[k − (1− β |b|) t]λk

xkz
k +∞

k=1

kβ |b|
[k + (1− β |b|) t]µk

ykzk, (2.5)

where ∞
k=2 |xk| +∞

k=1 |yk| = 1, shows that the coefficient bound given by (2.1) is
sharp. This completes the proof of Theorem 1.

In the following theorem, it is shown that the condition (2.1) is also necessary
for function f = h + g , where h and g are of the form (1.3) and belongs to the
class SH(Φ,Ψ;β, b, t).
Theorem 2. Let f = h + g, where h and g are given by (1.3). Then f(z) ∈
SH(Φ,Ψ;β, b, t), if and only if the coefficient bound (2.1) holds.
Proof. Since SH(Φ,Ψ;β, b, t) ⊆ SH(Φ,Ψ;β, b, t, σ), we only need to prove the “only
if” part of the theorem. For functions f = h+ g, where h and g are given by (1.3),
the inequality (2.2) is equivalent to

Re

 z −∞
k=2 λk |ak| zk −∞

k=1 µk |bk| zk

z −∞
k=2

tλk
k

|ak| zk +∞
k=1

tµk

k
|bk| zk

 > 1− β |b| .

Upon choosing the values of z on the positive real axis, where 0 ≤ z = r < 1, we
must have

E

1−∞
k=2

tλk
k

|ak| rk−1 +∞
k=1

tµk

k
|bk| rk−1

≥ 0, (2.6)

where

E = β |b| −∞
k=2

λk
k

(k − (1− β |b|) t) |ak| rk−1 −∞
k=1

µk

k
(k + (1− β |b|) t) |bk| rk−1.

If the inequality (2.1) does not hold, then E is negative for r sufficiently close to 1.
Thus there exists z0 = r0 in (0, 1) for which the quotient in (2.6) is negative. But
this is a contradiction, then the proof of Theorem 2 is completed.
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3. Distortion bounds and Extreme points

Theorem 3. Let f = h + g, where h and g are given by (1.3) be in the class

SH(Φ,Ψ;β, b, t) and Ak ≤ λk
k

(k − (1− β |b|) t) , Bk ≤ µk

k
(k + (1− β |b|) t) for

k ≥ 2, C = min{A2, B2}. Then for |z| = r < 1, we have

|f(z)| ≥ (1− |b1|)r −
[
β |b|
C

− [1 + (1− β |b|) t]
C

|b1|
]
r2, (3.1)

and

|f(z)| ≤ (1 + |b1|)r +
[
β |b|
C

− [1 + (1− β |b|) t]
C

|b1|
]
r2. (3.2)

The bounds in (3.1) and (3.2) are attained for the functions f given by

f(z) = (1 + |b1|)z +
[
β |b|
C

− [1 + (1− β |b|) t]
C

|b1|
]
z2, (3.3)

and

f(z) = (1− |b1|)z −
[
β |b|
C

− [1 + (1− β |b|) t]
C

|b1|
]
z2, (3.4)

for |b1| ≤
β |b|

[1 + (1− β |b|) t]
.

Proof. Let f(z) ∈ SH(Φ,Ψ;β, b, t), then we have

|f(z)| ≥ (1− |b1|)r −
∞∑
k=2

(|ak|+ |bk|)rk

≥ (1− |b1|)r −
β |b|
C

∞∑
k=2

(
C

β |b|

)
(|ak|+ |bk|)r2

≥ (1− |b1|)r −
β |b|
C

·

·
∞∑
k=2

(
λk
k

(k − (1− β |b|) t) |ak|+
µk

k
(k − (1− β |b|) t) |bk|

)
r2

≥ (1− |b1|)r −
β |b|
C

[
1− [1 + (1− β |b|) t]

β |b|
|b1|
]
r2

= (1− |b1|)r −
[
β |b|
C

− [1 + (1− β |b|) t]
C

|b1|
]
r2,

which proves the asserion (3.1) of Theorem 3. The proof of the assertion (3.2) is
similar, thus, we omit it.
The following covering result follows from the left hand inequality of Theorem 3.
Corollary 1. Let f = h + g, where h and g are given by (1.3) be in the class

SH(Φ,Ψ;β, b, t), where |b1| <
C − β |b|

C − [1 + (1− β |b|) t]
andAk ≤ λk

k
(k − (1− β |b|) t) ,

Bk ≤ µk

k
(k + (1− β |b|) t) for k ≥ 2, C = min{A2, B2}. Then for |z| = r < 1, we

have {
w : |w| < C − β |b|

C
− C − [1 + (1− β |b|) t]

C
|b1|
}

⊂ f(U).

Now we determine the extreme points of the closed convex hull of the class
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SH(Φ,Ψ;β, b, t) denoted by clco SH(Φ,Ψ;β, b, t).

Theorem 4. Let f = h + g, where h and g are given by (1.3), Then f(z) ∈
clco SH(Φ,Ψ;β, b, t) if and only if

f(z) =∞
k=1 [Xkhk(z) + Ykgk(z)] , (3.5)

where

h1(z) = z,

hk(z) = z − kβ |b|
[k − (1− β |b|) t]λk

zk (k = 2, 3, ...), 3.6 (1)

and

gk(z) = z +
kβ |b|

[k + (1− β |b|) t]µk
zk (k = 1, 2, ...), (3.7)

where ∞
k=1 (Xk + Yk) = 1, Xk ≥ 0 and Yk ≥ 0. In particular, the extreme points of

the class SH(Φ,Ψ;β, b, t) are {hk} and {gk} , respectively.
Proof. For a function f(z) of the form (3.5), we have

f(z) = ∞
k=1 [Xkhk(z) + Ykgk(z)]

= ∞
k=1

[
Xk

(
z − kβ |b|

[k − (1− β |b|) t]λk
zk
)
+ Yk

(
z +

kβ |b|
[k + (1− β |b|) t]µk

zk
)]

= z −∞
k=2

kβ |b|
[k − (1− β |b|) t]λk

Xkz
k +∞

k=1

kβ |b|
[k + (1− β |b|) t]µk

Ykz
k.

But

∞
k=2

(
[k − (1− β |b|) t]λk

kβ |b|
kβ |b|

[k − (1− β |b|) t]λk
Xk

)

+∞
k=1

(
[k + (1− β |b|) t]µk

kβ |b|
kβ |b|

[k + (1− β |b|) t]µk
Yk

)
= ∞

k=2Xk +∞
k=1 Yk = 1−X1 ≤ 1.

Thus f(z) ∈ clco SH(Φ,Ψ;β, b, t).

Conversely, assume that f(z) ∈ clco SH(Φ,Ψ;β, b, t). set

Xk =
[k − (1− β |b|) t]

kβ |b|
λk |ak| (k = 2, 3, ...),

Yk =
[k + (1− β |b|) t]

kβ |b|
µk |bk| (k = 1, 2, ...).

Then by using (2.1), we have 0 ≤ Xk ≤ 1 (k = 2, 3, ...) and 0 ≤ Yk ≤ 1 (k =
2, 3, ...).DefineX1 = 1−∞

k=2Xk−∞
k=1Yk. Thus we obtain f(z) =

∞
k=1 [Xkhk(z) + Ykgk(z)] .

This completes the proof of Theorem 4.

4. Convolution and convex combination

Let the functions fm(z) define by

fm(z) = z −
∞∑
k=2

|ak,m| zk +
∞∑
k=1

|bk,m| zk (m = 1, 2), (4.1)
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are in the class SH(Φ,Ψ;β, b, t), the convolution of f1(z) and f2(z) is defined as
follows

(f1 ∗ f2)(z) = z −
∞∑
k=2

|ak,1| |ak,2| zk +
∞∑
k=1

|bk,1| |bk,2| zk, (4.2)

while the integral convolution is defined by

(f1♢f2)(z) = z −
∞∑
k=2

|ak,1| |ak,2|
k

zk +
∞∑
k=1

|bk,1| |bk,2|
k

zk. (4.3)

Theorem 5. For 0 < δ ≤ β ≤ 1, let the functions f1 ∈ SH(Φ,Ψ;β, b, t) and
f2 ∈ SH(Φ,Ψ; δ, b, t). Then

(f1 ∗ f2)(z) ∈ SH(Φ,Ψ;β, b, t) ⊂ SH(Φ,Ψ; δ, b, t), 4.4 (2)

(f1♢f2)(z) ∈ SH(Φ,Ψ;β, b, t) ⊂ SH(Φ,Ψ; δ, b, t).4.5 (3)

Proof. Let fm(z) (m = 1, 2) are given by (4.1), where f1(z) be in the class
SH(Φ,Ψ;β, b, t) and f2(z) be in the class SH(Φ,Ψ; δ, b, t). We wish to show that
the coefficients of (f1 ∗ f2)(z) satisfy the required condition given in (2.1). For
f2 ∈ SH(Φ,Ψ; δ, b, t), we note that |ak,2| < 1 and |bk,2| < 1. Now for the convolu-
tion functions (f1 ∗ f2)(z), we obtain

∞
k=2

λk
k

(
k − (1− δ |b|) t

δ |b|

)
|ak,1| |ak,2|+∞

k=1

µk

k

(
k + (1− δ |b|) t

δ |b|

)
|bk,1| |bk,2|

≤ ∞
k=2

λk
k

(
k − (1− δ |b|) t

δ |b|

)
|ak,1|+∞

k=1

µk

k

(
k + (1− δ |b|) t

δ |b|

)
|bk,1|

≤ ∞
k=2

λk
k

(
k − (1− β |b|) t

β |b|

)
|ak,1|+∞

k=1

µk

k

(
k + (1− β |b|) t

β |b|

)
|bk,1|

≤ 1,

since 0 < δ ≤ β ≤ 1 and f1 ∈ SH(Φ,Ψ;β, b, t). Thus (f1∗f2)(z) ∈ SH(Φ,Ψ;β, b, t) ⊂
SH(Φ,Ψ; δ, b, t). The proof of the assertion (4.5) is similar, thus, we omit it. This
completes the proof of Theorem 5.

Next we show that SH(Φ,Ψ;β, b, t) is closed under convex combinations of its mem-
bers.

Theorem 6. The class SH(Φ,Ψ;β, b, t) is closed under convex combination.
Proof. For i = 1, 2, ..., let fi ∈ SH(Φ,Ψ;β, b, t), where

fi(z) = z −
∞∑
k=2

|ak,i| zk +

∞∑
k=1

|bk,i| zk, (4.6)

then from (2.1), for
∞∑
i=1

ti = 1, 0 ≤ ti < 1, the convex combination of fi can be

written as

∞∑
i=1

tifi(z) = z −
∞∑
k=2

( ∞∑
i=1

ti |ak,i|

)
zk +

∞∑
k=1

( ∞∑
i=1

ti |bk,i|

)
zk. (4.7)
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Then by (2.1), we have

∞∑
k=2

λk
k

(k − (1− β |b|) t)

( ∞∑
i=1

ti |ak,i|

)
+∞

k=1

µk

k
(k + (1− β |b|) t)

( ∞∑
i=1

ti |bk,i|

)

=
∞∑
i=1

ti

[ ∞∑
k=2

λk
k

(k − (1− β |b|) t) |ak,i|+
∞∑
k=1

µk

k
(k + (1− β |b|) t) |bk,i|

]
≤ β |b| .

This completes the proof of Theorem 6.

5. Integral operator

Now, we examine a closure property of the class SH(Φ,Ψ;β, b, t) under the gener-
alized Bernardi-Libera-Livingston integral operator (see [5, 18, 19]) Lc(f) which is
defined by

Lc(f) =
c+ 1

zc

z

0
tc−1f(t)dt (c > −1). (5.1)

Theorem 7. Let f(z) ∈ SH(Φ,Ψ;β, b, t). Then Lc(f(z)) ∈ SH(Φ,Ψ;β, b, t).
Proof. From the representation of Lc(f(z)), it follows that

Lc(f(z)) =
c+ 1

zc

z

0
tc−1

[
h(t) + g(t)

]
dt

=
c+ 1

zc

z

0
tc−1

[
z −

∞∑
k=2

|ak| tk +
∞∑
k=1

|bk| tk
]
dt

= z −
∞∑
k=2

c+ 1

c+ k
|ak| zk +

∞∑
k=1

c+ 1

c+ k
|bk| zk.5.2 (4)

Therefore

∞
k=2

λk
k

(k − (1− β |b|) t) (c+ 1)

(c+ k)
|ak|+∞

k=1

µk

k
(k + (1− β |b|) t) (c+ 1)

(c+ k)
µk |bk|

∞
k=2

λk
k

(k − (1− β |b|) t) |ak|+∞
k=1

µk

k
(k + (1− β |b|) t) |bk|

≤ β |b| .

Since f(z) ∈ SH(Φ,Ψ;β, b, t), by using Theorem 2, then Lc(f(z)) ∈ SH(Φ,Ψ;β, b, t).
This completes the proof of Theorem 7.

Remarks. (i) Putting β = σ = 1, b = 1− γ (0 ≤ γ < 1) in the above results, we
obtain some analogous results obtaind by Magesh and Porwal [20, with β = 0];
(ii) Putting β = t = σ = 1 and b = 1 − α (0 ≤ α < 1) in the above results, we
obtain some analogous obtaind by Dixit et al. [9];

(iii) Putting Φ(z) = Ψ(z) =
z

(1− z)2
and t = σ = 1 in the above results, we obtain

some analogous results obtaind by Aouf et al. [4, with p = 1];

(iv) Putting Φ(z) = Ψ(z) =
z

(1− z)2
and t = σ = 1 in the above results, we

improve the results obtained by Janteng [17];
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(v) Putting Φ(z) = Ψ(z) =
z

(1− z)2
, β = t = σ = 1 and b = 1− α (0 ≤ α < 1) in

the above results, we obtain some analogous results btaind by Jahangiri [15];

(vi) Putting Φ(z) = Ψ(z) =
z

(1− z)2
, β = b = t = 1 in the above results, we obtain

some analogous results obtaind by Silverman [23].

(vii) Putting φ = ψ = z +
∞∑
k=2

kn+1zk, t = 1, n ∈ N0 and σ = (−1)n in the above

results, we obtain new results for the class SH(n;β, b);

(iix) Putting φ = ψ = z +
∞∑
k=2

k−nzk, t = 1, n ∈ N0 and σ = (−1)n+1 in the above

results, we obtain new results for the class EH(n;β, b);

(ix) Putting φ = ψ = z+
∞∑
k=2

k[1+λ(k−1)]nzk, t = 1, λ ≥ 0, n ∈ N0 and σ = (−1)n

in the above results, we obtain new results for the class SH(n;β, b, λ);

(x) Putting φ = ψ = z+
∞∑
k=2

k[1+λ(k−1)]−nzk, t = 1, λ ≥ 0, n ∈ N0 and σ = (−1)n

in the above results, we obtain new results for the class LH(n;β, b, λ);

(xi) Putting φ = ψ = z+
∞∑
k=2

k

(
1 + ℓ+ λ(k − 1)

1 + ℓ

)m

zk, t = 1, ℓ, λ ≥ 0, m ∈ N0 and

σ = (−1)m in the above results, we obtain new results for the class SH(m, ℓ;β, b, λ);
(xii) Putting b = (1 − α)e−iλ cosλ(|λ| < π

2 , 0 ≤ α < 1) and σ = 1 in the above
results, we obtain new results for the class SH(Φ,Ψ, α;β, λ, t).
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