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A NEW CLASS OF HARMONIC FUNCTIONS OF COMPLEX
ORDER DEFINED BY DUAL CONVOLUTION

R. M. EL-ASHWAH, M. K. AOUF AND F. M. ABDULKAREM

ABSTRACT. In this paper, we investigate several properties of the harmonic
classes Sy (®, ¥; 8,b,t,0) and Sz(®, ¥; B, b,t). We obtain distortion theorem,
extreme points, convolution condition, convex combinations and closure prop-
erty under integral operator for functions in these two classes.

1. INTRODUCTION

A continuous complex valued functions f = u + ‘v which is defined in a simply
connected complex domain D is said to be harmonic in D if both u and v are real
harmonic in D. In any simply connected domain we can write

f(2) = h(z) +9(2), (1.1)
where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f. A necessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |k (z)] > |¢ ()| in D (see [6]).

Denote by Sp, the class of functions f of the form (1.1) that are harmonic
univalent and sense preserving in the unit disc U = {z : |z| < 1} for which f(0) =

J.(0)—1=0.

For f = h+7g € Sy, we may express the analytic functions h and g are of the form:
h(z)=z+ Zakzk, g(z) = Zbkzk, |b1] < 1. (1.2)
k=2 k=1

Also let S7 denote the subclass of Sy consisting of functions f = h 4 g such that
the functions h and g are of the form

h(z) =2 la| ¥, g(z) = |bel 2%, |ba] < 1. (1.3)
k=2 k=1
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In 1984 Clunie and Sheil-Small [6] investigated the class Sy as well as its geometric
subclasses and its properties. Since then, there have been several studies related
to the class Sy and its subclasses. Following Clunie and Sheil-Small [6], Frasin
[12], Frasin and Murugusundaramoorthy [13], Jahangiri [14, 15], Silverman [23],
Silverman and Silvia [24], Dixit and porwal [8] and others have investigated various
subclasses of Sy and its properties.

The Hadamard product (or convolution) of two power series

D(2) =2+ Z Aez® (A >0) and ¥(z) = z + Z,ukzk (e > 0), (1.4)
k=2 k=2
be defined by
(@ % 0) ( fz+2)\kukz (1.5)

and the integral convolution is defined by

(®OW) ( i kb . (1.6)
note that by (1.5) and (1.6), we have :
(@OW) () =3 L;Ij)(t)dt . (1.7)

Motivated by the work of Dixit et al. [9], and Frasin and Murugusundaramoorthy
[13].

We consider the class Sy (®,V; 5,b,t,0) consisting of functions f = h + g, where h
and g of the form (1.2) and satisfying the condition

h(z) * D(2) —og(2) * U(z) ]
he(2)0P(2) + 09:(2)0W (2)

Where 0< B <1, beC*=C\{0}, |o] =1, he(2) = (1 —t)z + th(z), g:(z) =
tg(z), 0<t <1, @( ) and ¥(z )areg1venby(14)

1
3 < B, (1.8)

Further, let for o = 1,S7(®, ¥; 8,b,t) be the subclass of Sy(®,V;,b,t,0) con-
sisting of functions of the form (1.3).

Specializing the functions ®(z) and ¥(z) and the parameters 5, b, t and o we
obtain the following subclasses studied by various authors:

(i) S5(®,9;1,1 —v,t) = G5(®,¥;7,t) (0 <y <1, 0<t<1) (see Magesh and
Porwal [20, with § = 0]);

(ii) Sz (@, ¥;1,1 -, 1) = HS(®, ¥, ) (0 < a < 1) (see Dixit et al. [9]);

(iii) Sz <(1 mpar il et 1,b, 1) Su(b,1,5) (see Aouf et al. [4, with p = 1]);
. z 2 . .

(iv) S ((1 T A=) 1,1, 1) T}, (see Silverman [23]);

(v) Sy <(1_ZZ)2, (1_22)2;1,1—04,1,1) = Si(a) (0 < a < 1) (see Jahangiri
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(vi) Sy ((1 ol ;6,0,1, 1) =HS*(b,8) (see Janteng [17]).

Also we note that:

() Su(z+ > k™H12k 2+ 30 K2R 8.6, 1, (~1)) = Sy(n; B, b)

k=2 k=2

_ { Fesn: |t lD"“h(z) - (—1>n+1<Dn+1g<z>>]

b Drh(z) + (=1)"D"g(z)
N={1,2, })} , where D™ is the modefied Salagean operator (see [16], [22] and

< B (ne€Ny=NuU{0};

<pB(ne No)} , where I™ is the

[25]);
(ii) Splz+ X0 k"% 2+ 30 k772" 8,0, 1, (=1)"*) = Ep(n; 8,0)

k=2 k=2
liesy |t L h(z) = (=1)"(I"g(2))

b {17 h() + (-0 TG )

modefied Salagean integral operator (see [7], with p = 1, also see [22]);
(1il) Su(z+ S k1 + Ak —=D]" 2% 24+ S k[L+A(k—1)]" 2% 8,b,1, (—

k=2 k=2

n I 1\ (D ) )
— SulniBb,A) = { 1 lz(%h(z)) (-1)"=(D39(2)) ] <8 (A3 0imeNo) }
bl DRh(2)+ (=1)"D3g(2)

where DY is the modefied Al-Oboudi operator (see [1, 26], also see [2], with p = 1);
(iv) Sz + Y k[T+A(k—1)]"2F 2+ Z L+ X(k—1)]""2%8,b,1,(-1)")

k=2

7 7
:LH(n;B,,b,)\):{l dURh(2) — (= ) 2URg(2))' <B(A20;neN0)}where
b I3h(z ) (—1)"IRg(2)
I? is modefied integral operator see ( ], with p = 1, also see [11], with £ = 0);
L+ 4+ Mk k L+0+ M-\ Cm

(V)Sy(z—kg_:zlc( T ) Zk<1+€ 2 8,,0,1,(-1)

<B(A>0;

= Sy(m, t; B,b,\) = {b

<Jm A Oh(2)) = (— 1>mz<Jm<A,e>g<z>>']
T\, O)h <> (—1)mTm (X, D)g(z)

(> —-1;meZ={+£l1, })}, where J™ (A, £) is the modefied Prajapat operator

(see [21, 10], with p = 1);
(vi) Sy (®,¥; 8, (1 — a)e P cos A\, t,1) = Sy (P, U, a; 8, A, t)

:{fGSH ‘ hz) * @(z) = 9() * ¥(z)

) _
hi(2)0®(2) + g:(2) 0¥ (2)

1| <p(l-a)cosA (A< F;0<a< 1)}

In this paper, we have obtained the coefficient bounds for the classes Sy (P, U; 3,b,t, 0)
and S (®,V; 3,b,t). Further distortion bounds, extreme points, convolution and
convex combination properties, closure property under integral operator for func-
tions in the class S;(®, ¥; §,b,t) are also obtained.
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2. COEFFICIENT BOUNDS

Unless otherwise mentioned, we assume throughout this paper that 0 < § <
1, b e C ol =1, he(2) = (1 = t)z + th(z), g(z) = tg(z), 0 < ¢ < 1 and
®(z), U(z) are given by (1.4). We begin with a sufficient condition for functions in
Sy (P, : 8,b,t,0).

Theorem 1. Let f = h+ g be given by (1.1). Furthermore, let

A
R (k= (L= 1)) lan] 720 55 G+ (L= BN Dbl < Bl (21)
where,

k2316l < Au(k — (1= B1b])t) and k*B[b] < pur(k + (1 = B[bl)t) for k > 2. (2.2)

Then f(z) is sense-preserving, harmonic univalent in U and f(z) € Sy (®,V; 5,b,t,0).
Proof. If z; # 2o, then by using (2.2), we have

fe=fen) 5 _[sllml) |, B
h(z2) — h(z1)| h(z2) — h(z1) (22 — 21) +32, ax, (2 — 2F)
zol& (Mﬂ“ﬂﬂ) bk |
_ kbl o TR B1bl i
T N vy R (e 1)) mlzo’
k=2 k ﬁ|b‘ k

which proves the univalence. Also f is sense-preserving in U since

/

W (2)] 132, klagl 217" > 1 -5, & |ax|

A E—(1-p8|b

Y

Y

= kg 510 o

oo k— !
Rk (bl 1277 = g (2)].

%

Now we show that f(z) € Sy (®,¥;3,b,t,0). We only need to show that if (2.1)
holds then the condition (1.7) is satisfied, then we want to prove that

Re{h(z)*fb(z)—og(Z)*‘P(Z) —(1—ﬁ|b|)} :RGM > 0. (2.3)
he(2)0®(2) + 09:(2)0¥(2)

B(z)

Using the fact that Re {w} > 0 if and only if |1 + w| > |1 — w|, it suffices to show
that

|A(2) + B(2)| = |A(z) — B(2)| = 0, (2.4)
where A(z) = [A() * ®(2) — 09(z) * ¥(z) — (1 = B} (he(2)0% (=) + 09 (:)OU(2))]
and B(z) = {ht(z)Oq)(z) + 0g:(2)0¥(2)| . Substituting for A(z) and B(z) in the
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left side of (2.4) we obtain

Y

Y

>

A() + B - JAG) - B)
sz, (14 58 vt -op, (1= B8 juder

|-z (1- @800 ) Marstroizy (14 @ 810 1 ) mbioT
(gl s (14 2 ) el 2 (1 - w'b')u|b|z|

— (= B el 22 (1= 2= 81 ) Auanl o <5 (1+ 2 810D ) ol

2{ 311 ~3a 2 (k= (L= 8100 ax] ~30 2 (h+ (L= BleD o) o}

k

0, this by using (2.1).

The harmonic univalent functions

f(2) = 2472

kb . k50
= =B n " T e (= B leD

yezk,  (2.5)

where 22, |zk| 52, |yx] = 1, shows that the coeflicient bound given by (2.1) is
sharp. This completes the proof of Theorem 1.

In the following theorem, it is shown that the condition (2.1) is also necessary
for function f = h + g, where h and g are of the form (1.3) and belongs to the
class Sz (®,¥; 3,0, ).

Theorem 2. Let f = h + g, where h and g are given by (1.3). Then f(z) €
S7(®,¥; 3,b,1), if and only if the coefficient bound (2.1) holds.

Proof. Since Sz (®,V¥; 3,b,t) C Sy (P, ¥; 3,b,t,0), we only need to prove the “only
if” part of the theorem. For functions f = h + g, where h and g are given by (1.3),
the inequality (2.2) is equivalent to

Z =2y Ak Jar] 2" =2, Mk |bi.| 2F

t/\k A —
z =005 — lag| 2F +52, k: |bx| 2%

Re 1-2319.

Upon choosing the values of z on the positive real axis, where 0 < z =r < 1, we

must have
E
11—, 2k o lax|r k=1 00 k’“ by | rE—1
where
A X _
E =B~y 55 (k= (1= Bb))t) |ax| 57 =32y 25 (k + (1 — B [b]) £) [be| 757

k k

If the inequality (2.1) does not hold, then E is negative for r sufficiently close to 1.
Thus there exists zg = 79 in (0, 1) for which the quotient in (2.6) is negative. But
this is a contradiction, then the proof of Theorem 2 is completed.
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3. DISTORTION BOUNDS AND EXTREME POINTS
Theorem 3. Let f = h + g, where h and ¢ are given by (1.3) be in the class
Sz (®,¥;8,b,t) and Ay < %(kj— (1-=5)t), Br < % (k+(1—=p1b])t) for
k> 2, C = min{As, Bs}. Then for |z| =r < 1, we have

1= (e - | FE - B
and b 1 1 b
FI< e | F5 - EEEEEE 2
The bounds in (3.1) and (3.2) are attained for the functions f given by
1) = nlyz | BE - B2y 2 (33
and b 1 1 b
1) = (1= e - | 51 - B R ] 2 (3.4
8l
oS g
Proof. Let f(z) € Sz(®,¥;3,b,t), then we have
PN 2 @ b= > ol + et
k=2
> -ty = 20 (S5) o+ o
> o 2 \am
> (1= - 22
S (B G- = B0 anl + 55 - (= 5 ] )
k=2
BII[, [+( -5
> (1—|by|)r — . {1— &l |b1|} r2
SR, T LT

which proves the asserion (3.1) of Theorem 3. The proof of the assertion (3.2) is

similar, thus, we omit it.

The following covering result follows from the left hand inequality of Theorem 3.

Corollary 1. Let f = h+ g, where h and g are given by (1.3) be in the class
C—p1b A

S5(® % 5,b,), where ] < g (15_| |5 gy A A < 2K (= (1= B1ol) D),

By < % (k+ (1— Bb)¢t) for k > 2, C' = min{As, Bo}. Then for |z| = r < 1, we

have

{U) . |w| < C_CB“)‘ _ ¢ - [1+(C:;_/B|b|)t] |b1|} c f(U)

Now we determine the extreme points of the closed convex hull of the class
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S7(®,¥; 3,b,t) denoted by clco S3(®,V; 3,b,1).

Theorem 4. Let f = h + g, where h and g are given by (1.3), Then f(z) €
clco S5(®,¥; 3,b,t) if and only if

[(z) =321 [Xihi(2) + Yigr(2)], (3.5)
where
hi(z) = =z,
he(2) = z— = (1k—5,(|3b||b|)t] Akzk (k=2,3,...),3.6 (1)
and
kG 1o F(k=1,2,..), (3.7)

o) =2 T B A

where 2 | (X, +Y%) =1, Xi > 0 and Yj, > 0. In particular, the extreme points of
the class S;;(®, ¥; 38,b,t) are {hy} and {gx}, respectively.
Proof. For a function f(z) of the form (3.5), we have

f(z) = 221 [Xihi(2) + Yigr(2)]
. L KB, . BB,
- k‘l{Xk( = (L— Bl )*Yk( T =B )]
L kA b) e k3 b) o
S TR AN TR R A BN
But
o (= (- BN kA b
h=2 < kB |b] k—(1—Bb|)1 AkX")
o (k= BB kA b
Fh= ( kB |b] k+ (1 —B1b))t] s Y’“)

= X+t Vi=1-X; <1
Thus f(z) € clco Sz (®,V; 3,b,t).

Conversely, assume that f(z) € clco Sz(®, ¥; 3,b,1). set

[k —(=plb) _
Xk TU)'Ak\akJ (k—2,3,)7
[+ (1 —-plb)t] _

Then by using (2.1), we have 0 < Xj, <1 (k =2,3,...) and 0 < Y, <1 (k =
2,3,...). Define X1 = 122 , X, —32 , Y% Thus we obtain f(z) =32, [Xrhi(2) + Yigr(2)] .
This completes the proof of Theorem 4.

4. CONVOLUTION AND CONVEX COMBINATION

Let the functions f,,(z) define by

fm(z) :Z_Zlak7m|zk+2|bk7m|zk (m: 172)7 (41)
k=2 k=1
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are in the class Sz (®,V;3,b,t), the convolution of f1(z) and fa(2) is defined as
follows

(fr* f2)(2) =2 =Y lagallarl 25+ b [br 2] 2, (4.2)
k=2 k=1

while the integral convolution is defined by

(F10f2)(2 Z|ak1||ak2| k+Z|bk1||bk2| - (4.3)

Theorem 5. For 0 < § < 8 < 1, let the functions f; € Szp(®,V¥;3,b,t) and
f2 € S7(®,¥;6,b,t). Then
(fixf2)(z) € Sx(®,¥;B,b1) C Sg(P,¥;6,b,1),4.4 (2)
(f1<>f2)(2) € Sﬁ(¢7 \Ij; 57 b7 t) C Sﬁ(q)7 \IJ; 67 b7 t)45 (3)
Proof. Let f,,(z) (m = 1,2) are given by (4.1), where fi(z) be in the class
Sz (®,¥;5,b,t) and fo(z) be in the class Sz (®,¥;6,b,t). We wish to show that
the coefficients of (f1 * f2)(z) satisfy the required condition given in (2.1). For

J2 € S7(®,¥;4,b,t), we note that |ax 2| < 1 and [b 2| < 1. Now for the convolu-
tion functlons (f1 = fg)( ), we obtain

o A — b)) oo Mk (K (1-0[b))¢
zgf (=t 5|b| PN foa ol 2 2 (AEC ) s
k—(1—5|b|) (k4 (1—5b|)t
< oo oo 2 b
= =277 ( 5|b| ) |ak,1|+k_1 Lk < 6|b‘ | k71|
. — Blo))t o e (ko (LBl
< AT I S bl Vit LA (R S il el VA
= e ( gp ) o)
< 1

since0 < 0 < B < land f1 € S3(®,¥; 3,b,t). Thus (f1*f2)(2) € Sz(®,V;8,b,t) C
S7(®,¥;6,b,t). The proof of the assertion (4.5) is similar, thus, we omit it. This
completes the proof of Theorem 5.

Next we show that Sz (®, ¥; 3,b,t) is closed under convex combinations of its mem-
bers.

Theorem 6. The class S (®,V; 3,b,t) is closed under convex combination.
Proof. Fori=1,2,..., let f; € S7(®,V;3,b,t), where

o0 oo
2)=z— Z |ag.i| 2% + Z |br.i| 2", (4.6)
k=2 k=1
o0
then from (2.1), for > ¢; =1, 0 < ¢; < 1, the convex combination of f; can be
i=1

written as

dotifilz)=2-) (Z tilak,
i=1 k=2 \i=1

) P + (Z t; |bk7z|> z". (47)
k=1 \i=1
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Then by (2.1), we have

Zi,j( (1-Bp)e (Zt|am>+z°1’“,‘j<k+1—ﬁ|b| (Zubkz)

k=2
> > k - 223
= Y [Zk — (1= B 1) |ak] + Z? (k+(1-8 b|)t)bk,i|]
=1 =2 k=1
< Bl

This completes the proof of Theorem 6.

5. INTEGRAL OPERATOR

Now, we examine a closure property of the class Sz (®, ¥; 3,b,t) under the gener-
alized Bernardi-Libera-Livingston integral operator (see [5, 18, 19]) L.(f) which is
defined by

L) = S e e (o> 1), (5.1)

Theorem 7. Let f(z) € S;(®, ¥; 5,b,t). Then L.(f(2)) € Sz(®,¥;8,b,1).
Proof. From the representation of L.(f(z)), it follows that

L) = S5 [hie) + 900

— ﬂ lzkauMZwkuk]

_ Z—ZZ ] k+zc+1|bk|zk52 )
k=2
Therefore

o M (C+1) o Mk (c+1)

k:2k( (1—-p3lb))t ( )|k\+k 1?(k’+(1_ﬁ|b|)t)(C+k)ﬂk|bk|
A

k2 kk( —(1—=p1b]) )|ak|+20:1%(k+(1—5|b|)t) |br|

< Blol

Since f(z) € Sz(®,V; B,b,t), by using Theorem 2, then L.(f(z)) € Sz (®, ¥; 3,0,1).
This completes the proof of Theorem 7.

Remarks. (i) Putting  =0=1, b=1—+ (0 <~ < 1) in the above results, we
obtain some analogous results obtaind by Magesh and Porwal [20, with 8 = 0];
(ii) Putting 8 =t =0 =1and b=1—a (0 < a < 1) in the above results, we
obtain some analogous obtaind by Dixit et al. [9];

(iii) Putting ®(z) = ¥(z) = (1_%)2 and t = 0 = 1 in the above results, we obtain

some analogous results obtaind by Aouf et al. [4, with p = 1];

(iv) Putting ®(z) = ¥(z) = ﬁ and t = 0 = 1 in the above results, we
—z

improve the results obtained by Janteng [17];
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(v) Putting@(z)z\ll(z):ﬁ, =t=c=landb=1-a (0<a<l)in
the above results, we obtain some analogous results btaind by Jahangiri [15];

(vi) Putting ®(z) = ¥(z) = ﬁ, B =b=1t=11n the above results, we obtain
some analogous results obtaind by Silverman [23].

(vii) Putting ¢ = ¢ = z + § kntlzk t =1, n € Ny and o = (—1)" in the above

k=2
results, we obtain new results for the class Sy (n; 8,b);

(o]

(iix) Putting g =9 =2+ Y. k™"zF t =1, n € Ng and ¢ = (—1)"*! in the above
k=2

results, we obtain new results for the class Ey(n; 3,b);

(ix) Putting ¢ = ¢ = 2+ > k[1+A(k—1)]"2*,t =1, A >0,n € Ny and o = (—1)"
k=2

z
z

in the above results, we obtain new results for the class Su(n; 8,0, \);
(x) Putting o = ¢ = 2+ > k[1+A(k—1)]7"2*,t =1, >0,n € Nyand 0 = (—1)"
k=2

in the above results, we obtain new results for the class Ly (n; B,b, A);

o 14+44+ME-=D\™
(xi) Putting o = ¢ = 2+ ) k(W) 2k t=1,0,12>0,m e Nyand
k=2

o = (—1)™ in the above regul_ts, we obtain new results for the class Sy (m, ¢; 8,b, \);
(xii) Putting b = (1 — a)e ™ cosA(]A| < %, 0 < @ < 1) and o = 1 in the above
results, we obtain new results for the class Sy (P, U, a; 8, A, t).
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