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Abstract. This parer introduces the use of fractional differential transform

method to obtain the transient response in circuit applications. The existance

and uniqueness of the solution and continuous dependence on initial condi-
tions are studied. The mathematical model is solved by fractional differential

transform method and the numerical results are compared with the results

obtained by the circuit state eqyations.

1. Introduction

In recent years fractional differential equations have gained a considerable amount
of interest due to their many applications in several fields: signal processing, fluid
mechanics, viscoelasticity, mathematical biology, and bioengineering [1, 2, 3, 4, 5].
Accurate modeling of engineering and scientific systems have become imperative
these days due to their extensive usage in safety-critical domains, such as, medicine
and transportation. This fact has led to the widespread usage of fractional calculus.
The influences of fractional-order modeling are discussed in many established fields
and generate new concepts such as the fractional-order circuit theories [6, 7, 8],
electromagnetic and Smith chart [9, 10], chaotic systems [11], stability analysis
[12, 13, 14]. In control engineering, the concept of fractional operations is mostly
used in fractional system identification [15], biomimetic control [16],PIλDµ con-
trollers [17], fractional PIα [18], PDλ controller [19], in signal processing, fractional
operators are used in the design of fractional order differentiators and integrators
[20] and for modeling the speech signals [21].
The electric system may be modeled more accurately by fractional differential equa-
tion. For instance, in integer model, the current flow in ideal capacitor was mod-

eled by the relation ic(t) = C dvc(t)
dt where ic(t) is the capacitor current, C is the

capacitance of the capacitor. It has been shown that for 0<β<1, the relationship
ic(t) = CDβvc(t) where Dβ is the Caputo derivative of order β , provides more
accurate representations of real capacitor [22, 23, 24].
In general, the differential transform method is applied to solve the electric circuit
problems [25]. This method is an iterative procedure for obtaining analytic Taylor
series solution of ordinary or partial differential equations.
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Recently, the application of differential transform method is successfully extended
to obtain analytical approximate solutions to linear and nonlinear ordinary differen-
tial equations of fractional order [26]. Consequently, Erturk and Momani developed
a new application of this method to provide approximate solutions for the system
of fractional differential equations [27].
In this paper, some definitions are introduced in section 2. The basic fractional-
order differential equations for a circuit with active elements is discussed in section
3.the circuit state equation is illustrated in section 4.The existence and uniqueness
of the solution and continuous dependence on initial conditions are studied in sec-
tion 5 and 6. The mathematical model is solved by fractional differential transform
method in section 7. Numerical example is studied in section 8.

2. Preliminaries and notation

In this section, some definitions and properties of the fractional calculus [29] and
differential transform method [25, 26, 27, 28], are introduced.

2.1. Fractional calculus. Let L1 = L1[a, b], 0≤a, b<∞ be a class of Lebesgue
integralable functions on [a, b].

Definition 1. The Riemann-Liouville integral operator Jα of order α≥0 for a
function f(t) ∈ L1, is defined by

Jαf(t) =

∫ t

0

(t− s)α−1f(s)

Γ(α)
ds (1)

J0f(t) = f(t) (2)

where Γ(α) is the gamma function, α>0.
Definition 2. The Riemann-Liouville fractional derivative of f(t) of order α,

m− 1<α<m , is defined by

R
aD

α
t f(t) =

dm

dtm
Jm−αa f(t) (3)

Where the subscripts a and t denote the two limits related to the operation of
fractional differentiation.
The Caputo representation for fractional order derivative satisfies these require-
ments. In the Caputo case, the derivative of a constant is zero, therefore we can
define, properly, the initial conditions for the fractional differential equations which
can be handled by using an analogy with the classical integer case. As a result, in
this manuscript we use the Caputo fractional derivative for a function of time, f(t)
defined as

c
aD

α
t f(t) = Jn−αa

dn

dtn
f(t) =

∫ t

a

(t− τ)n−α−1

Γ(n− α)
f (n)(τ)dτ (4)

Where Γ(.) is the Euler Gamma function, a is the integration initial condition,
n = 1, 2, 3, ...∈N and n− 1<α≤n.

2.2. The fractional differential transform method (FDTM). .
In this section, the fractional differential transform method is used to obtain

approximate analytical solutions for the system of fractional differential equations
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[25, 26, 27, 28].
Firstly, expand the analytical function in terms of a fractional power series

f(t) =

∞∑
k=0

F (k)(t− t0)
k
θ (5)

Where θ is the order of the fraction to be selected such that αθ is a positive integer,
α is the order of the fractional differential equation (FDE) being considered and
F (k) is the fractional differential transform of f(t).

The transformation of the initial conditions is defined as follows

F (k) =

{
1

(k/θ)! [
dk/θf(t)
dtk/θ

]
t=t0

for k
θ ∈ Z

+

0, for k
θ /∈ Z

+
(6)

where k = 0, 1, 2, ..., (αθ − 1).
The basic properties of the differential transformation

(1) If f(t) = g(t)± h(t), then F (k) = G(k)±H(k).

(2) If f(t) = g(t)h(t), then F (k) =
∑k
l=0G(l)H(k − l).

(3) If f(t) = (t− t0)p, then F (k) = δ(k − θp)

where, δ(k) =

{
1, if k = 0,

0, if k 6= 0.

(4) If f(t) = Dα[g(t)], then F (k) =
Γ(α+1+ k

θ )

Γ(1+ k
θ )

G(k + αθ).

where θ is the order of the fraction to be selected and α is the order of the fractional
derivative.

3. Fractional order circuit example

. Figure 1 shows a circuit example which consists of three linear resistors and
two fractional order capacitors [14].

Figure 1. Fractional-order circuit example

This circuit can be described by the following system of fractional order differ-
ential equations

c
0D

α
t v1(t) = −k1v1(t) + k2vout(t) + k3vin(t)

c
0D

β
t vout(t) = −k4v1(t)

(7)
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Subject to the initial conditions

vc1(0) = v1(0) = c1, vc2(0) = vout(0) = c2 (8)

where k1 = ( 1
R1C1

+ 1
R2C1

+ 1
R3C1

), k2 = ( 1
R2C1

, k3 = 1
R1C1

and k4 = 1
R3C2

4. The circuit state equation

. The state equation of the circuit is described by the form:[
c
0D

α
t x1(t)

c
0D

β
t x2(t)

]
=

[
−k1 k2

−k4 0

] [
x1(t)
x2(t)

]
+

[
k3

0

] [
vin(t)

]
(9)

where x1(t) = v1(t) and x2(t) = vout(t),
Assuming the same fractional order i.e. α = β = q, one obtain

c
0D

q
tX(t) = AX(t) +Be(t) 0 < q < 1. (10)

With initial condition given by

X(0) = X0 (11)

where

A =

[
−k1 k2

−k4 0

]
, B =

[
k3

0

]
, X(t) =

[
x1(t)
x2(t)

]
, X0 =

[
x10

x20

]
and e(t) =

[
vin(t)

]
The solution of equation (10)is given by:

x(t) = Φ0(t)x0 +

∫ ∞
0

Φ(t− s)Bvin(s)ds, x(0) = x0 (12)

where

Φ0(t) = Eq(At
q) =

∞∑
m=0

Amtmq

Γ(mq + 1)
(13)

Φ(t) =

∞∑
m=0

Amt(m+1)q−1

Γ((m+ 1)q)
(14)

and Eq(At
q) denotes the Mittag-Leffler matrix function [30].

5. Existence and uniqueness of the solution

. Let C∗[0, T ] be a class of continuous column vector X(t) and x1, x2∈C[0, T ],
the class of continuous functions on the interval [0, T ] . The norm of X∈C∗[0, T ]
is given by [31]

‖X‖ =
∑
i,j

sup
t∈(0,t]

|xij(t)|

The solution of (10) and (11) is given by:

X = X0 + Jq(AX +Be(t)) (15)

Let F (X) = X, then

F (X)− F (Y ) = Jq(AX)− Jq(AY ) =

1

Γ(q)

∫ t

0

(t− τ)q−1AXdτ − 1

Γ(q)

∫ t

0

(t− τ)q−1AY dτ
(16)
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|F (X)− F (Y )| ≤ 1

Γ(q)

∫ t

0

(t− τ)q−1 |AX −AY | dτ ≤ T q

qΓ(q)
|AX −AY | (17)

After some calculations, we get the following inequality

‖F (X)− F (Y )‖ ≤ T q

qΓ(q)
max{(|k1|+ |k4|), (|k2|)} ‖X − Y ‖ (18)

Therefore the mapping F is contraction if the following condition is satisfied

T q

qΓ(q)
max{(|k1|+ |k4|), (|k2|)} < 1 (19)

Theorem 1.The sufficient condition for existence and uniqueness of the solution
of system (7) with initial conditions (8) and t ∈ (0, T ] is:

T q

qΓ(q)
max{(|k1|+ |k4|), (|k2|)} < 1

6. Continuous dependence on initial conditions

Assume that there are two sets of initial conditions to system (7), X0 and Y0 ,
which satisfy

‖X0 − Y0‖ ≤ δ (20)

And assume that the condition in theorem (1) is satisfied. Then

X = X0 + Jq(AX +Be(t)) (21)

Y = Y0 + Jq(AY +Be(t)) (22)

We get the following inequality

‖X − Y ‖ ≤ ‖X0 − Y0‖+ g ‖X − Y ‖ (23)

where

g =
T q

qΓ(q)
max{(|k1|+ |k4|), (|k2|)}, g < 1

then

(1− g) ‖X − Y ‖ ≤ ‖X0 − Y0‖

‖X − Y ‖ ≤ δ

(1− g)
(24)

Let ε = δ
(1−g) then the following relation hold

‖X − Y ‖ ≤ ε (25)

Theorem 2. For system (7) satisfying the condition of Theorem (1). Then,
∀ε > 0,∃δ(ε) = (1 − g)ε > 0 such that ‖X0 − Y0‖ ≤ δ ⇒ ‖X − Y ‖ ≤ ε i.e. the
solution has continuous dependence on initial conditions
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7. The solution of the system by using differential transform method

System (7) is transformed by using properties (1) and (4) as follows:

V1(k + αθ) =
Γ(1 + k

θ )

Γ(α+ 1 + k
θ )

[−k1V1(k) + k2Vout(k) + k3Vin(k)]

Vout(k + βθ) =
Γ(1 + k

θ )

Γ(β + 1 + k
θ )

[−k4V1(k)]

(26)

where θ is selected such that αθ and βθ are positive integer, respectively.
The conditions in equation (8) can be transformed by using equation (6) as follows:{

V1(0) = c1, V1(k) = 0 for k = 1, 2, 3, ..., αθ − 1.

Vout(0) = c2, Vout(k) = 0 for k = 1, 2, 3, ..., βθ − 1.
(27)

Using equations (26) and (27), V1(k) for k = αθ, αθ + 1, ..., n and Vout(k) for
k = βθ, βθ + 1, ..., n are calculated and using the inverse transformation rule (5),
Vout(k) is calculated for different values of α and β.

8. Numerical example

In this example, assume the following data [32]: R1 = 200KΩ, R2 = 40KΩ, R3 =
50KΩ, C1 = 25nF,C2 = 10nF, vin(t) = 6.25 cos(6280t)u(t) and v1(0) = vout(0) = 0
By substituting the above data in the recurrence relations (26),(27), then, applying
the inverse transformation in equation (5) to get the solution

Figure (2), (3) and (4) shows the output voltage at different cases when (α, β) is
equal to {(0.95, 1.0), (0.90, 1.0), (0.85, 1.0), (1.0, 0.98), (1.0, 0.95), (1.0, 0.90), (0.98, 0.98),
(0.95, 0.95), (0.92, 0.92), (0.90, 0.90)}

Figure 2. the output voltage for different α and fixed β = 1

Table (1) shows the absolute errors between the results obtained by FDTM and
the exact solution in equation (12), when α = β = q for different values of q.
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Figure 3. the output voltage for different β and fixed α = 1

Figure 4. the output voltage by FDTM for α = β at different values

Table (1) Absolute error of the output voltage for α = β at different values

t α = β = 0.9 α = β = 0.92 α = β = 0.95 α = β = 0.96 α = β = 1

0.0005 6.52256∗10−16 1.38778∗10−17 7.63278∗10−16 1.94289∗10−16 2.77556∗10−17

0.001 1.54876∗10−14 6.05072∗10−15 2.36478∗10−14 1.72085∗10−15 5.55112∗10−16

0.0015 9.41164∗10−13 3.1336 ∗ 10−13 2.99011∗10−13 2.55754∗10−13 7.16094∗10−15

0.002 1.85043∗10−11 7.93148∗10−11 1.01961∗10−11 5.34392∗10−13 2.13607∗10−13

0.0025 5.30888∗10−10 3.9708 ∗ 10−8 6.91724∗10−10 3.2284 ∗ 10−12 7.56319∗10−13

0.003 3.90383 ∗ 10−8 7.5677 ∗ 10−6 1.62107 ∗ 10−7 1.18532 ∗ 10−7 1.90664∗10−10
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9. Conclusion

This paper demonstrates generalized concepts from the very narrow integer-order
scope systems to fractional-order systems. The fractional modeling introduces new
parameters which provide more accurate representations of real capacitor. Frac-
tional differential transform method is suitable for solving many circuits in the
fractional-order domain.
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