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DISCRETE ADOMIAN DECOMPOSITION METHOD FOR

SOLVING A CLASS OF NONLINEAR FREDHOLM VOLTERRA

INTEGRAL EQUATION IN TWO DIMENSIONS

I. L. EL-KALLA, R. A. ABD-ELMONEM, A. M. GOMAA

Abstract. Discrete Adomian decomposition method (DADM) arises when
the quadrature rules are used to approximate the integrals which can not be
computed analytically using the traditional Adomian decomposition method

(ADM). In this paper, DADM is used to solve a class of nonlinear Fredholm
Volterra integral equation with degenerate or non-degenerate kernels. The
main advantage of DADM is that the computation of the solution need not
to solve nonlinear algebraic system of equations like Nystrom method or pro-

jection methods. Another advantage is that the coefficient matrices are not
changed during the computation of all components. Finally, convergence of
the technique is discussed and the error is estimated.

1. Introduction

Many problems of mathematical physics are reduced to the solution of two-
dimensional integral equations in the nonlinear case. These type of integral equa-
tions have rarely been studied to solve numerically and primary works in this area
have been done in the last two decades (see [1] -[5]). Papers ([1] -[5]) reduce the
solution of the nonlinear integral equation to the solution of a nonlinear system of
algebraic equations. The iteration methods, for example Newton’s method, for solv-
ing such cumbersome nonlinear system is usually sensitive to the selection of initial
guess. DADM can overcome this obstacle and solve nonlinear integral equation, see
section 2.

The topic of ADM, introduced by Adomian ([6] ,[7]), has been rapidly growing
in recent years. ADM possesses a great potential in solving different kinds of
functional equations. Application of ADM to different types of integral equations
was discussed by many authors for example (see [8] -[12]). In this paper we consider
the two dimensional nonlinear Fredholm-Volterra integral equation

u (x, t) = f (x, t)+λ1

∫ t

0

k1 (t, τ) f1 (u (x, τ)) dτ+λ2

∫ b

a

k2 (x, s) f2 (u (s, t)) ds. (1)
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Equation (1) is called Fredholm integral equation with respect to the position and
Volterra with respect to the time. This type of equation appears in many prob-
lems of mathematical physics, theory of elasticity, contact problems, and mixed
problems of mechanics of continuous media (see [13] -[15]). Several numerical
methods for obtaining the approximate solution of equation (1) with continuous
kernel are known ( [2], [16] - [19] ). The interested reader should consult the
fine expositions by Linz [20], Goldberg [21], Atkinson [22, 23], Delves and Mo-
hammed [24] for numerical methods and consult the book by Tricomi [25] for in-
formation concerning analytical solution methods. In this work we assume f (x, t)
is bounded ∀x ∈ [a, b], t ∈ [0, T ], the kernel of Volterra term is bounded such
that |k1 (t, τ)| ≤ M1, ∀ 0 ≤ τ ≤ t ≤ T < ∞ and the kernel of the Fredholm
term is bounded such that |k2 (x, s)| ≤ M2, ∀ a ≤ x and s ≤ b. The nonlin-
ear terms f1 (u) and f2 (u) are Lipschitzian with |f1 (u)− f1 (z)| ≤ L1 |u− z|,
|f2 (u)− f2 (w)| ≤ L2 |u− w| and have Adomian polynomials representations

f1 (u) =
∞∑

n=0

An (u0, u1, u2, · · · , un) , f2 (u) =
∞∑

n=0

Bn (u0, u1, u2, · · · , un) . (2)

The author in [26, 27] deduced a new formula to the Adomian’s polynomials An

and Bn which can be written in the form

An = f1 (Sn)−
n−1∑
i=0

Ai, (3)

Bn = f2 (Sn)−
n−1∑
i=0

Bi,

where the partial sum Sn =
∑n

i=0 ui, A0 = f1 (u0) and B0 = f2 (u0). Formula (3) is
called an accelerated Adomian polynomials and it was used successfully in [11] for
solving a class of nonlinear fractional differential equations and in [28] for solving
a class of nonlinear partial differential equations. Formula (3) has the advantage
of absence of any derivative terms in the recursion, thereby allowing for ease of
computation. Applying ADM to (1) yields

u (x, t) =
∞∑
i=0

ui (x, t) , (4)

where the components ui(x, t), i ≥ 0 are computed using the following recursive
relations

u0 (x, t) = f (x, t) , (5)

um+1 (x, t) = λ1

∫ t

0

k1 (t, τ)Am (x, τ) dτ + λ2

∫ b

a

k2 (x, s)Bm (s, t) ds, m ≥ 0. (6)

The computation of each component ui(x, t), i ≥ 1 requires the computation of
integrals in equation (6). If the evaluation of these integrals analytically are pos-
sible, ADM can be applied in a simple manner. In case where the evaluation of
any integral in (6) is analytically impossible, DADM can be directly applied, please
see the details in section 2. In section 3, convergence analysis will be introduced
including the sufficient condition that guarantees a unique solution to problem (1)
(see Theorem 1), convergence of ADM will be discussed (see Theorem 2), the maxi-
mum absolute truncation error of the Adomian’s series solution (4) will be estimated
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(see Theorem 3) and equivalence between DADM and ADM will be introduced (see
Theorem 4). Finally, to verify the theoretical results, some numerical examples are
presented in section 4.

2. Discrete Adomian Decomposition Method

DADM is a numerical version of ADM. In paper [29], DADM is used to solve lin-
ear and nonlinear Fredholm integral equation. DADM arises when the quadrature
rules are used to approximate the integrals which can not be computed analytically.
Consider any numerical integration scheme to approximate definite integral by the
following formula ([30] -[31])

∫ b

a

g(s)ds ≈
n∑

j=0

wn,j g(sn,j), (7)

where g(s) is continuous function on [a, b], sn,j = a + jh are the nodes of the
quadrature rule, h = (b− a)/n and wn,j , j = 0, 1, 2, ..., n are the weight functions.
The idea is to discretize the independent variables x and t just before applying the
quadrature rule. This gives an opportunity to evaluate the integrals in equation (6)
numerically but, of course, at the discretization points of the independent variables.
Thus, the discrete version of equations (5) and (6) take the form

∼
u0(sn,i, sn,j) = f(sn,i, sn,j), and (8)

∼
um+1(sn,i, sn,j) = λ1

j∑
r=0

wn,r k1(sn,j , sn,r) Am(sn,i, sn,r)

+ λ2

n∑
r=0

wn,rk2(sn,i, sn,r)Bm(sn,r, sn,j), (9)

m ≥ 0, sn,i = a + ih, i = 0, 1, ..., n, sn,j = j T
n , j = 0, 1, ..., n and wn,j are the

weight functions of any numerical integration scheme. The approximate solution of
equation (1) using DADM can be computed as

∼
u(sn,i, sn,j) =

∞∑
m=0

∼
um(sn,i, sn,j). (10)

Rewriting equations (8), (9) and (10) in matrix form

U0 = F, (11)

Um+1 = C Gm +D Hm , m ≥ 0, and (12)

U =
∞∑

m=0

Um (13)
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where U0, Um, U, F, C, D, Gm and Hm are all matrices with dimension (n+ 1)×
(n+ 1) such that

Um =
[
∼
um(sn,i, sn,j)

]
, i = 0, 1, ..., n, j = 0, 1, ..., n, m ≥ 0,

F = [f(sn,i, sn,j)] , i = 0, 1, ..., n, j = 0, 1, ..., n,

U =
[
∼
u(sn,i, sn,j)

]
, i = 0, 1, ..., n, j = 0, 1, ..., n,

Gm = [Am(sn,i, sn,r)] , i = 0, 1, ..., n, r = 0, 1, ..., n,

Hm = [Bm(sn,r, sn,j)] , r = 0, 1, ..., n, j = 0, 1, ..., n,

C = [cr,j ] , r = 0, 1, ..., n, j = 0, 1, ..., n,

cr,j = {.λ1wn,r k1(sn,j , sn,r), j ≥ 1 and r ≤ j0 , j = 0 or r > j,

D = [λ2wn,rk2(sn,i, sn,r)] , i = 0, 1, ..., n, r = 0, 1, ..., n.

The main advantage of DADM is that the computation of the solution need not to
solve nonlinear algebraic system of equations like Nystrom method and projection
methods. Another advantage of DADM is that the matrices C andD are unchanged
during the computation of components Um, m ≥ 1 in equation (12). Also, DADM
can be used for solving equation (1) with degenerate or non-degenerate kernels
k1 (t, τ) and k2 (x, s).

3. Convergence Analysis

Convergence of the Adomian series solution was studied for different problems
and by many authors. In ([32] -[33]), convergence was investigated when the method
applied to a general functional equations and to specific type of equations in ([34]
-[35]). In convergence analysis, Adomian polynomials play a very important role
however, these polynomials cannot utilize all the information concerning the ob-
tained successive terms of the series solution, which could affect directly the accu-
racy as well as the convergence region and the convergence rate.

3.1. Uniqueness Theorem. Problem (1) has a unique solution whenever 0 <
α < 1, α = α1 + α2, α1 = |λ1|L1M1T, α2 = |λ2|L2M2(b− a).

Proof. see [36]. �

3.2. Convergence Theorem. The series solution (4) of problem (1) using ADM
converges if: 0 < α < 1 and f(x, t) bounded on the interval J.

Proof. see [36]. �

3.3. Error Estimate. The maximum absolute truncation error of the series so-
lution (4) to problem (1) is estimated to be: max

∀x,t∈J
|u (x, t)−

∑m
i=0 ui (x, t)| ≤

αm

1−α

(
ϕ1α1

L1
+ ϕ2α2

L2

)
where ϕ1 = max

∀x,t∈J
|f1 (u0)| and ϕ2 = max

∀x,t∈J
|f2 (u0)| .

Proof. see [36]. �
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3.4. Equivalence between DADM and ADM. Let D = [a, b] and D∗ = [0, T ]
are closed bounded sets in R2, J = D ×D∗. Define operators κ and κ∗ such that

κ∗f1 (u) =

∫ t

0

k1 (t, τ) f1 (u (x, τ)) dτ, t ∈ D∗, x ∈ D, u ∈ C (J) , (14a)

κf2 (u) =

∫
D

k2 (x, s) f2 (u (s, t)) ds, t ∈ D∗, x ∈ D, u ∈ C (J) , (14b)

where κ and κ∗ are compact bounded operators on C (J) to C (J) since

∥κ∗f1 (u)∥ ≤ ∥κ∗∥ · ∥f1 (u)∥ and ∥κ∗∥ = max
t∈D∗

∫ t

0

|k1 (t, τ)| dτ,

∥κf2 (u)∥ ≤ ∥κ∥ · ∥f2 (u)∥ and ∥κ∥ = max
x∈D

∫
D

|k2 (x, s)| ds.

Now, equation (1) can be written as

u = f + λ1κ
∗f1 (u) + λ2κf2 (u) ,

let u be the solution obtained by using ADM, where u =
∑∞

m=0 um and u0 = f.
Define numerical integral operators κn and κ∗

n as

κ∗
n f1

(
∼
u (x, t)

)
=

j∑
r=0

wn,r k1 (t, sn,r) f1

(
∼
u (x, sn,r)

)
, (15a)

κn f2

(
∼
u (x, t)

)
=

n∑
r=0

wn,r k2 (x, sn,r) f2

(
∼
u (sn,r, t)

)
, (15b)

where κn and κ∗
n are linear finite rank bounded operator on C (J) to C (J) since

∥κ∗
n∥ = max

t∈D∗

j∑
r=0

|wn,r k1 (t, sn,r)| and ∥κn∥ = max
x∈D

n∑
j=0

|wn,r k2 (x, sn,r)|

With the operators κn and κ∗
n , equation (1) can be written as

∼
u = f + λ1κ

∗
nf1

(
∼
u
)
+ λ2κnf2

(
∼
u
)
,

where
∼
u here is the solution obtained by using DADM, and

∼
u =

∑∞
m=0

∼
um and

∼
u0 = f.

Since ∥κn g − κg∥ → 0 and ∥κ∗
n g − κ∗g∥ → 0 as n → ∞ where g ∈ C (J) [23].

Then, the solution of equation (1), using DADM converges to the solution of the
same equation when using ADM, i.e.

∼
u → u as n → ∞,

Proof. Since u =
∑∞

m=0 um, u0 = f ,
∼
u =

∑∞
m=0

∼
um, and

∼
u0 = f . Starting with∥∥∥∼u − u

∥∥∥ =

∥∥∥∥∥
∞∑

m=0

(
∼
um − um

)∥∥∥∥∥ ≤
∞∑

m=0

∥∥∥∼um − um

∥∥∥ . (16)

Since
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∥∥∥∼u0 − u0

∥∥∥ = ∥f − f∥ = 0, and (17)∥∥∥∼um − um

∥∥∥ = ∥(λ1κ
∗
nAm−1 + λ2κnBm−1)− (λ1κ

∗Am−1 + λ2κBm−1)∥

≤ λ1 ∥κ∗
nAm−1 − κ∗Am−1∥+ λ2 ∥κnBm−1 − κBm−1∥ (18)

thus
∥∥∥∼um − um

∥∥∥ → 0 as n → ∞. Then, by induction and substituting from

equation (17) and equation (18) into inequality (16), this completes the proof. �

4. Numerical Experiment

Example (1) Consider the following nonlinear Fredholm Volterra integral equa-
tion

u (x, t) = f (x, t)+
1

10

∫ t

0

exp
(
t2 + τ3

)
u2 (x, τ) dτ+

1

10

∫ 1

0

exp
(
x2 + s4

)
u3 (s, t) ds,

f (x, t) = xt + 1
30x

2 exp
(
t2
)
[1 − exp

(
t3
)
] + 1

40 t
3 exp

(
x2

)
[1− exp (1)] with exact

solution u (x, t) = xt.In this example the ADM can not be applied because the

integral
∫ 1

0
exp

(
s4
)
ds has no analytical solution. Here, DADM is the suitable

method to obtain solution using equations (8) and (9). Table (1) shows the absolute

error |enm (x, t)| =
∣∣∣u (x, t)− ∼

u(x, t)
∣∣∣ at nodes of the quadrature rule, n+1 is number

of nodes and m is number of components computed form equation (9).

Table (1) the absolute error of example (1)
t x

∣∣e47 (x, t)∣∣ t x
∣∣e47 (x, t)∣∣

0.25 0.25 8.6521e− 9 0.75 0.25 5.1963e− 8
0.50 2.0034e− 8 0.50 9.8064e− 8
0.75 6.0231e− 8 0.75 1.9803e− 7
1.00 2.6562e− 7 1.00 8.6432e− 7

0.50 0.25 3.2846e− 8 1.00 0.25 9.7771e− 8
0.50 5.6684e− 8 0.50 2.6187e− 7
0.75 9.1503e− 8 0.75 6.3509e− 7
1.00 4.3159e− 7 1.00 1.2695e− 6

Example (2) consider the following nonlinear Fredholm Volterra integral equa-
tion

u (x, t) = f (x, t) +
1

10

∫ t

0

tτu2 (x, τ) dτ +
1

10

∫ 1

0

cos (exp (s) + x) exp (u (s, t)) ds,

f (x, t) = x+ t2 + 1
10 exp

(
t2
)
[sin (1 + x)− sin (exp (1) + x)] + 1

20 t
[
x3 −

(
x+ t2

)3]
whose exact solution is u (x, t) = x+t2. In this example the ADM can not be applied

because the integral
∫ 1

0
cos[exp (s) + s] exp [sin (s)] ds has no analytical solution.

Here, DADM is the suitable method to obtain solution using equations (8) and
(9). Table (2) shows the absolute error at nodes of the quadrature rule.
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Table (2) the absolute error of example (2)
t x

∣∣e48 (x, t)∣∣ t x
∣∣e48 (x, t)∣∣

0.25 0.25 7.4738e− 8 0.75 0.25 4.0951e− 7
0.50 1.8469e− 7 0.50 8.2409e− 7
0.75 5.7642e− 7 0.75 2.1163e− 6
1.00 1.6942e− 6 1.00 9.6853e− 6

0.50 0.25 1.5231e− 7 1.00 0.25 8.8996e− 7
0.50 4.3761e− 7 0.50 2.3301e− 6
0.75 8.9357e− 7 0.75 7.6582e− 6
1.00 5.6554e− 6 1.00 2.3214e− 5

Example (3) Consider the following nonlinear Fredholm Volterra integral equa-
tion

u (x, t) = f (x, t) +
1

10

∫ t

0

(t− τ)u2 (x, τ) dτ +
1

2

∫ 1

0

(
x2 − s

)
u2 (s, t) ds,

f (x, t) = t
120 [t

(
1− 2x2

)
+120x (1− x)−t3x2 (1− x)

2
] with exact solution u (x, t) =

xt (1− x).In this example the ADM can be applied. Also, DADM can be used to
obtain solution using equations (8) and (9). Table (3) shows the absolute error at
nodesof the quadrature rule.

Table (3) the absolute error of example (3)
t x

∣∣e47 (x, t)∣∣ t x
∣∣e47 (x, t)∣∣

0.25 0.25 9.3245e− 8 0.75 0.25 6.5621e− 7
0.50 1.9654e− 7 0.50 9.2604e− 7
0.75 2.8536e− 7 0.75 2.4397e− 6
1.00 5.6472e− 7 1.00 6.5371e− 6

0.50 0.25 2.6210e− 7 1.00 0.25 9.9768e− 7
0.50 4.0821e− 7 0.50 3.1943e− 6
0.75 8.6458e− 7 0.75 6.3905e− 6
1.00 1.9301e− 6 1.00 1.7654e− 5

5. Conclusion

DADM is cricullay when the integrals through the classical ADM can not per-
formed analytically. The main advantage of DADM is that the computation of the
solution need not to solve nonlinear algebraic system of equations like Nystrom
method or projection methods. Another advantage of DADM is that the matrices
C and D are unchanged during the computation of components Um, m ≥ 1 in
equation (12). Also, DADM can be used for solving equation (1) with degenerate
or non-degenerate kernels k1 (t, τ) and k2 (x, s). Convergence of the technique is
discussed and the error is estimated.
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