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ABSTRACT  

 

In previous research (El-Gendy et al., 2013), the authors presented a modified hyperbolic load-

settlement model for bored piles, which depends on the ultimate loads predicted by relevant international codes 

(ECP202, 2005; DIN4014, 1990; AASHTO, 2005; French Code, 1993). This research presents a mixed 

numerical method to analyze vertically-loaded piled-rafts comprising large-diameter bored piles. To determine 

the stiffness matrix of piled-raft, the pile-self settlement is simulated by using any of the four indicated codes 

or by the modified load-settlement model. Interactions among the different components of the piled-raft system 

are found using the elasticity theory. Analysis is performed iteratively until compatibility among raft, pile, and 

soil is ensured at all interfaces. The validity of the proposed method is established by comparing the predicted 

settlements and pile load ratios to field measurements for nine published case histories. The results showed 

that DIN4014 mostly gives the closest match to field measurements. 

 

Keywords: Piled-raft; Bored-piles; Pile load-settlement model; Settlement; Pile load ratio. 

 

1. Introduction 

 

Many authors studied the nonlinear response of pile-soil system using theoretical relations between 

the load and settlement (Mandolini & Viggiani., 1997; Viggiani, 1998; Russo, 1998). Many others investigated 

the settlement behavior and load-carrying capacity of piled raft systems for various soil conditions using 

different types of numerical methods (Huang et al., 2017; Nguyen et al., 2021), among others. Besides, most 

international codes, such as Egyptian, German, American, and French codes (ECP202, 2005; DIN4014, 1990; 

AASHTO, 2005; French Code, 1993), present empirical load-settlement relationships for single piles. Based 

on the ultimate pile load predicted by the code, the authors (El-Gendy et al., 2013) proposed a simplified 

hyperbolic load-settlement model for large-diameter bored-piles. Moreover, the second author with others 

presented a mixed method for the analysis of piled-raft systems based on both empirical and mathematical 

models (El-Gendy et al., 2006). They modeled the pile itself settlement using the empirical load-settlement 

model given by German code (DIN4014, 1990), whereas the settlements due to pile-pile, pile-raft, and raft-soil 

interactions were determined using flexibility coefficients based on Mindlin’s solution (Mindlin, 1936). The 

compatibility between the settlements of piles, raft, and soil should be fully ensured for all pile-raft-soil 

interfaces. The main objective of this research is to validate the indicated mixed piled raft analysis when using 

Egyptian, American, and French codes (ECP202, 2005; AASHTO, 2005; French Code, 1993), instead of using 

German code (DIN4014, 1990). The hyperbolic load-settlement model proposed previously by the authors (El-

Gendy et al., 2013) is also validated for the analysis of piled-raft using the indicated mixed method (El Gendy 

et al., 2006). Nine piled-raft case histories, for which the building behavior has been monitored using 

instruments, are re-analyzed herein. Both the numerically predicted and measured settlements as well as the 

pile load-sharing ratios for every case history are compared for validation. 

At first, the authors’ proposed load-settlement model of large-diameter bored-piles is presented. Then, the basic 

formulation of piled-raft analysis is given. The main steps of the iterative method and the flow chart of the 
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analysis method are then illustrated. Numerical applications on nine case histories of piled-raft systems are 

presented and the comparisons between predictions and measured results are discussed. 

 

2. Numerical modeling 

 

2.1. Pile itself settlement. 

In the present analysis of a piled-raft system, it is assumed that the settlement along the entire length 

of the pile is the same as the pile tip settlement. It is essential to adopt an appropriate model to simulate the 

nonlinear relationship between the pile load and the corresponding settlement. The empirical load-settlement 

relationship given by any of the four codes indicated above may be used. Alternatively, one may use the 

following load-settlement hyperbolic model (El-Gendy et al., 2013): 

 

11  = 
 

u

u

QQ
S C
S

+
                                                                      (1) 

where: 

Qu  Ultimate pile load predicted by the code, [kN], 

Su  Ultimate settlement recommended by the code, [cm], 

Q Pile load corresponding to any settlement S, [kN], and 

C  Coefficient equals 8.66 for ECP 202 and French codes and equals 11 for DIN4014 and AASHTO 

codes. 

Figure 1 shows samples of the proposed hyperbolic; and empirical multi-linear load-settlement curves. The 

pile self-load and self-settlement are related to each other by:  

k  Sp= Qp ii i
tan

 
      (2) 

where: 

Qpi  Load on pile i, [kN], 

Spi  Self-settlement of pile i, [m], and  

tan ki  Ratio between the pile load and pile settlement, [kN/m]. 

For a pile group consists of n-piles, Equation (2) is written in a matrix form as:  

    Sp Kp = Qp
   

(3) 

where: 

{Qp} vector of pile loads, 

[Kp] n×n diagonal matrix represents the soil stiffness resulting from pile self-settlements, and 

{Sp} vector of self-settlements for piles. 

 

In order to start the computations in any nonlinear analysis of a pile group or a piled-raft, an initial value 

should be assigned to the pile stiffness Ki. This value may be taken as the slope of the secant Ki
(o) of the load-

settlement curve at point 1 as shown in Figure 1, where Sp=Srg. Therefore, Ki
(o) = Qt / Srg. Equation (3) may 

be written in another form as:  

    Qp Cp = Sp
 

(4) 

where [Cp] is an np×np diagonal matrix, which represents the soil flexibility due to pile self-settlements, and 

equals the inverse of the stiffness matrix [Kp].  
 

 

2.2. Pile-pile interaction    

The total pile resistance is the sum of the tip resistance acting at its base, and friction resistance 

distributed along its shaft. For a pile j, both resistance components may produce the following settlement 

components in another pile i: 

a) Settlement along the pile shaft Sbsi, j [m] due to a tip force Qbj [kN],  

b) Settlement at the pile base Sbbi, j [m] due to a tip force Qbj [kN], 

c) Settlement along the pile shaft Sssi, j [m] due to a skin friction force Qsj [kN], and 

d) Settlement at the pile base Ssbi, j [m] due to a skin friction force Qsj [kN]. 

All settlement components are computed by Mindlin's solution (Mindlin, 1936). Referring to Figure 2 which 

gives the settlement Sk, j at a point k at a depth z from the ground surface; due to a vertical force Qj acting at a 

point j. In this case 

Q f = S jj k,j k,
 

(5) 

     

where fk, j is given by Mindlin’s solution (Mindlin, 1936) as: 
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where: 

( ) ( ) and c +z  + r = R ,c -z  + r = R
22

2

22
1  

c  Depth of the point load Qj from the ground surface, [m], 

z  Depth of the studied point k from the ground surface, [m], 

r  Radial distance between points k and j, [m], 

z-c  Vertical distance between points k and j, [m], 

z+c  Vertical distance between points k and w, [m], 

fk, j  Flexibility coefficient of point k due to a unit load at point j, [m/kN], 

Gs Shear modulus of the soil, Gs = 0.5 Es / (1+ νs), [kN/m2], 

Es Elasticity modulus of the soil, [kN/m2], 

νs Poisson’s ratio of the soil, [-]. 

Referring to Figure 3, the shaft settlement Sbsi, j along a pile i due to the force Qbj acting at the tip of a pile j 

can be expressed as:  

 dz Sbs 
l

1
 = Sbs

z

z
j k,

i

j i, 
2

1
                                                          (7) 

where the total length li [m] of pile i is subdivided into m elements of constant length Δl [m]. It is better to carry 

out the integration in Equation (7) numerically to deal equally with homogeneous as well as with multi-layered 

soil. Equation (7) can be written as: 

Qb F = Sbs jj i,j i,
 

(8) 

where Fi, j [m/kN] is the shaft flexibility coefficient of a pile i due to a force Qbj acting at the base of a pile j.  

 

The tip settlement Sbbi, j at the base of a pile i due to a force Qbj at the base of pile j can be expressed as:  

Qb F = Sbb jj b,j i,
 

(9) 

where Fb, j [m/kN] is the base flexibility coefficient of a pile i due to a tip force Qbj acting at the base of pile j. 
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(a) Proposed load-settlement model (b) DIN 4014 load-settlement curve 

Fig. (1): Relation between the self-settlement in the pile and its load for a single bored-pile 
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Fig. (2): Geometry of Mindlin's problem 

 

 
Fig. (3): Settlement Sbsk, j in an element k of pile i due to a tip force Qbj at the base of pile j 
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Assuming that the settlement is uniform along the entire pile shaft, the base settlement can be taken the same as 

the settlement along the shaft. The settlement Sbi, j of a pile i due to the tip force Qbj acting at the base of pile j, 

can be approximated as the average of the shaft and the base settlements computed separately from Equations (8) 

and (9). Therefore 

Qb Fb = Sb jj i,j i,
                                                     (10) 

where Fbi, j= 0.5 (Fi, j+Fb, j), is the flexibility coefficient of a pile i due to a tip force Qbj acting at the base of pile 

j, [m/kN]. 

For a pile group consists of n piles, the pile-pile interaction settlement can be written in a matrix form as: 

    Qb Fb = Sb
 

(11) 

where: 

{Sb} n vector of settlements in piles due to forces acting on the pile bases. 

{Qb} n vector of forces acting on the pile bases. 

[Fb] n×n matrix of pile flexibility coefficients due to unit tip forces on piles, Fbi, i = 0. 

Figure 4 shows a system consists of two piles, in which a shaft element k of a pile i is influenced by a skin friction 

τsj [kN/m2] acting on the shaft perimeter of a pile j; with a diameter dj [m] and a length lj [m]. The skin friction 

along the shaft perimeter of pile j is represented by a total skin friction force Qsj [kN] = π dj lj τsj. To avoid 

extensive computations when applying Mindlin’s solution (Mindlin, 1936) to determine the flexibility coefficients 

due to shaft stress along the pile shaft, the shaft stress τsj is replaced by an equivalent line load T [kN/m] = Qsj / lj 

acting on the axis of the pile. The settlement Sssk, j in a point k at a depth z from the surface due to a total skin 

force Qsj on a pile j is expressed as: 

Qs I = Sss jj k,j k,
 

(12) 

where Ik, j [m/kN] is the flexibility coefficient of a point k due to the total skin friction force Qsj on pile j. This 

flexibility coefficient is determined from Eq. (6) by integrating the coefficient of a point load [dQsj = T dc] over 

the length of pile j. The flexibility coefficient Ik, j of a point k due to a unit skin force on pile j can be obtained 

from: 

 dc f 
l

1
 = I

c

c j k,

j

j k, 
2

1
                                                             (13) 

 

 
Fig. (4):   Settlement Sssk, j in an element k of pile i due to a skin force Qsj =Tj lj on pile j 
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where: 

c1  Starting depth of the line load T from the surface, [m], 

c2  End depth of the line load T from the surface, [m], 

lj  Length of the line load T, [m], and 

r  Radial distance between points k and j [m]. 

The uniform settlement Sssi, j along the shaft of a pile i due to a skin force Qsj on pile j can be obtained by using 

the same approach used for determining the uniform settlement due to a tip force on the base. Similar to Equation 

(5), Sssi, j can be expressed as: 

Qs L = Sss jj i,j i,
 

(20) 

where Li, j [m/kN] is the shaft flexibility coefficient of a pile i due to a skin force Qsj on pile j. The shaft flexibility 

coefficient Li, j is given by: 

 

( ) I + ... + I + I + I + I  
l

l
 = L j m,j 4,j 3,j 2,j 1,

i

j i,
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      (21) 
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The settlement Ssbi, j at the base of a pile i due to a skin force Qsj on pile j is expressed by: 

Qs L = Ssb jj b,j i,
 

(22) 

where Lb, j [m/kN] is the base flexibility coefficient of a pile i due to a skin force Qsj on pile j. The base flexibility 

coefficient is determined from Eq. (12) by taking z = z2. 

Similar to Equation (10), the settlement in the pile is obtained from: 

Qs Is = Ss jj i,j i,
 

(23) 

where Isi, j= 0.5 (Li, j+Lb, j), is the flexibility coefficient of a pile i due to a skin force Qsj acting on pile j, [m/kN]. 

Similar to Equation (11), the settlement Ssi for a group consists of n piles is given in a matrix form by: 

    Qs Is = Ss
 

(24) 

where: 

{Ss} n vector of settlements in the piles due to skin forces of the piles, 

[Is] n×n matrix of pile flexibility coefficients due to unit skin forces acting on the piles, Isi, i = 0. 

{Qs} n vector of skin forces acting on the piles. 

 

2.3. Pile-raft interaction 

In the same manner, the settlement Sri, j [m] in a pile i due to a contact force Qrj [kN] acting at a node j 

located at the contact surface between the raft and soil is given by: 

Qr Jr = Sr jj i,j i,
 

(25) 

where Jri, j is the flexibility coefficient of a pile i due to a contact force Qrj acting at node j on the raft, [m/kN]. 

For a group consists of n piles, settlements in piles due to contact forces acting on the raft are expressed as: 

    Qr Jr = Sr
 

(26) 

where: 

{Sr} np vector of settlements in piles due to contact forces on the raft, 

[Jr] np×nr matrix of pile flexibility coefficients due to unit contact forces, and 

{Qr} nr vector of contact forces on the raft. 

The total settlement in a pile i due to all forces in the piled-raft system is given by: 

         Sr Ss+ Sb+Sp  = St +
 

(27) 

where: 

{St} np vector of total settlements in piles due to all forces in the piled-raft system. Substituting from Equations 

(4), (11), (24) and (26) into Equation (27), it can be found that: 

             Qr Jr Qs Is+Qb Fb Qp Cp   = St ++
                    (28) 

 

2.4. Raft-pile interaction 

In the same manner, the settlement at any node i on the raft due to both pile base and shaft forces can be 

determined. The settlement Wbi, j [m] at a node i on the raft due to a tip force Qbj acting at the base of pile j is 

given by: 

Qb Cb = Wb jj i,j i,
 

(29) 

Where Cbi, j [m/kN] is the flexibility coefficient of node i due to a tip force Qbj acting at the base of pile j. 

Similarly, the settlement Wbi, j [m] in a node i on the raft due to a skin force Qsj on pile j is given by: 

Qs Cs = Ws jj i,j i,
 

(30) 

where Csi, j [m/kN] is the flexibility coefficient of node i due to a skin force Qsj on pile j. The flexibility 

coefficients Cbi, j and Csi, j are obtained directly from Equations (6) and (14), respectively. 

For a raft consists of nr nodes, Equation (29) can be written in a matrix form as: 

    Qb Cb = Wb
 

(31) 

      

where: 

{Wb} nr vector of settlements at the nodes of the raft due to pile base forces, and 

[Cb] nr×np matrix of raft flexibility coefficients due to unit tip forces on piles. 

 

Similarly, for a raft consists of nr nodes, Equation (30) is written as: 

    Qs Cs = Ws
 

(32) 

where: 

{Ws} nr vector of settlements at the nodes of the raft due to skin forces, and 

[Cs] nr×np matrix of raft flexibility coefficients due to unit skin forces on piles. 
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2.5. Raft-soil interaction 

Settlements at the raft nodes due to contact forces on the raft can also be determined from Mindlin’s 

solution (Mindlin, 1936). The flexibility coefficients for a contact force on the raft are obtained from Equation 

(6). This is applicable for all nodes except for the loaded node. The reason is that, at the loaded node c = z. 

Consequently, the first term in Equation (6) becomes singular. In this case, Equation (6) can be used after replacing 

the first term that might yields to zero. In this case, the point load is substituted by an equivalent uniform load, 

which is then integrated over the replaced loaded area. Assuming a replacement rectangular uniformly loaded 

area, the required term in Equation (6) can be found by integration as follows(z = c ≠ 0): 

( )
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where: 

a, b Sides of the loaded rectangular area, [m], b + am = 22 and  

 

Therefore, the settlement Wri, j [m] at a node i on the raft due to a contact force Qrj acting at another node j is 

given by: 

Qr Cr = Wr jj i,j i,
 

(34) 

where:  

Cri, j   Flexibility coefficient of node i due to a contact force Qrj on node j, [m/kN], 

 Cri, j = fi, j  for i  ≠  j 

 Cri, j = Ci, i  for i = j and z = c = 0 

 Cri, j = fi, j  with modified term C1 for i = j and z = c  ≠  0 

For a raft of nr nodes, the settlement form can be expressed in matrix as: 

    Qr Cr = Wr
 

(35) 

where: 

{Wr} nr vector of settlements of raft nodes due to contact forces on the raft, 

[Cr] nr×nr matrix of raft flexibility coefficients due to unit contact forces on the raft, and  

{Qr} nr vector of contact forces acting on the raft. 

The total settlement in the raft due to all forces in the piled-raft system is given by: 

       Wr Ws+ Wb = Wt +
 

(36) 

Substituting from Equations (31), (32) and (35) into Equation (36), it can be found that: 

          Qr CrQs Cs + Qb Cb = Wt +
 

(37) 

where: 

{Wt} nr vector of total settlements in the raft due to all forces in the piled-raft system. 

 
2.6. Formulation of soil equations 

Assume that the vector {S} represents the total settlements in the raft mesh due to all forces in the piled-

raft system. This vector should have a size of n=np+nr to include the settlements of the raft nodes and the piles all 

together. The vector of total settlements can be obtained from: 

 
 

 

St
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S  = 

 
 
 
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   

(38) 

Substituting from Equations (28) and (37) into Equation (38), it can be found that: 

 

 
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Equation (40) can be simplified to: 

      Pr + Q C = S
 

(41) 

where {Pr} is given by: 

 
        

     











Qs Cs + Qb Cb 

Qr Jr + Qs Is + Qb Fb 
 = Pr

 

(42) 

and the term [C] {Q} is given by: 

 
 

 

 Cp   0   Qp
C  Q  =  

 Qr  0   Cr

      
                         
             

(43) 

where: 

{Q} n vector of pile loads and contact forces, and 

[C] n×n matrix of flexibility coefficients of the piles and the raft. 

 

From Equation (40) and using matrix inversion, it can be found that: 

       Pr Ks - S Ks = Q
 

(44) 

where [Ks] = [C]-1 is the soil stiffness matrix of the piles and the raft, which can be given by: 

 
  

  











Kr  0  

 0  Kp 
 = Ks

 

(45) 

where: 

[Kp] = [Cp]-1 is a np×np diagonal matrix that represents the soil stiffness due to pile self-settlements, and 

[Kr] = [Cr]-1 is the raft stiffness matrix due to raft-soil interaction. 

 

2.6. Analysis of rigid piled-raft 

Figure 5 shows a rigid piled-raft for which the settlement can be defined by the rigid body translation wo at the 

center of the raft, in addition to two rotations θx and θy about the x and y axes, respectively. Realizing that the 

raft exposes a rigid body movement, the settlement Si at any node on the raft, with coordinates (xi, yi) from the 

center of area of the raft, is given by:  

 xiyioi   y +   x + w = S tantan
 

(46) 

For the entire piled-raft system, Equation (46) can be rewritten in a matrix form as: 

      X = S
T

 
(47) 

where: 

{Δ} 3×1 displacement vector, and  

[X]T n×3 cartizian coordinates matrix. 

For equilibrium the following conditions must be satisfied: 

- The resultant of the external vertical forces acting on the raft is equal to the sum of contact forces and 

pile loads.  

- The moment of resultant of the external vertical forces about either x-axis or y-axis is equal to the sum 

of moments induced by the contact forces and pile loads about either axis. 

Assuming that Qi represents either the pile load Qp or the contact force Qr at any node i on the mesh, then: 












y . Q + ... + y . Q + y . Q + y . Q = e . N

x . Q + ... + x . Q + x . Q + x . Q = e . N

Q + ... + Q + Q + Q = N

nn332211y

nn332211x

n321

 (48) 

where: 

N  Resultant of the applied loads acting on the raft, [kN], 

N ex  Moment due to resultant N about x-axis, Mx = N ex, [kN.m], 

N ey Moment due to resultant N about y-axis, My = N ey, [kN.m], 

ex, ey  Eccentricities of the resultant about x- and y-axes, [m], and 

xi, yi  Coordinates of the load Qi, [m]. 
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Fig. (5): Modeling of rigid piled-raft 

 

For the entire piled-raft foundation, Equation (48) can be rewritten in a matrix form as: 

    Q X = N
 

(49) 

where {N} is the vector of resultant force and moments. 

 

Substituting from Equations (44) and (47) into Equation (49), the following linear system of equations is 

obtained: 

     
T

N  = X Ks  X   - Ks  Pr  
 

               
 



 

(50) 

            (50) 

From Equations (49) and (50), one gets 
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     
T

Q  = Ks  X   - Ks  Pr     
     


 

(51) 

The system given in Equation (50) should be solved to get the displacements wo, tan θx, and tan θy. The 

displacement values wo, tan θx and tan θy are substituted into Equations (47) and (51) to find n pile settlements, 

and the n pile loads and contact forces, 

 

2.7. Analysis of a rigid pile group or a flexible raft on a rigid pile group 

Analysis of a rigid pile group is easier; if compared to either a flexible or a rigid piled-raft. In this case, the 

contact forces {Qr} and settlements at raft nodes {Wt} are omitted from above formulation. Therefore, 

Equations (42) and (43) can be simply rewritten as: 

        Qs Is + Qb Fb  = Pr
 (52) 

            
     Qp Cp = Q C

 
(53) 

For a flexible pile raft, in which the 

group of piles is subjected to a 

known system of loads {Qp} and 

{Qr}, Equation (40) may be used 

directly to evaluate the settlement 

of each pile in the group. 

 

2.7. Iteration method 

The developed linear equation 

system is solved iteratively by 

computing the pile stiffness due to 

its self-settlement. This may be 

achieved by using either the 

modified or any empirical load-

settlement relationship. This pile 

stiffness is simply added to the raft 

stiffness. Then, the piled-raft is 

solved iteratively until the 

compatibility among the 

settlements of raft, piles and soil is 

fulfilled. The above mentioned 

formulation was implemented into 

the software ELPLA (Kany, M. et 

al., 2007), in order to perform the 

analysis of piled raft using the 

considered international codes. As 

shown in Figure 6, the iterative 

process is carried out as follow: 

1. Generate the flexibility 

matrices due to pile-pile, pile-

raft and raft-soil interactions, 

[Fb], [Is], [Cb], [Cs], [Jr] and 

[Cr].  

2. Find the soil stiffness matrix of 

the raft due to raft-soil 

interaction, [Kr] = [Cr]-1. 

3. Using loads acting on the raft, 

assume an average stress for 

raft nodes and piles, then find 

the initial loads for the piles 

{Qp} and the initial forces for 

other raft nodes {Qr}.  

Assume initial loads on piles { Qp } o 

and initial loads on raft nodes { Qr } o 

Start 

i =0 

 i = Iteration cycle No. 

Find the soil stiffness matrix 
[ Kr ] =[ Cr ] -1   

Generate the flexibility matrices due 
to pile-pile, pile-raft and raft-raft 

interactions 
[ Fb ], [ Is ], [ Cb ], [ Cs ], [ Jr ] and [ Cr ] 

 From code and due to { Qp },  
find: Pile stiffnesses matrix [ Kp ], 

tip forces { Qb }and skin forces { Qs } 

Solve the system of linear equations:  
{ Q } =[ Ks ]{ S }-{ Pe } 

Then, find the pile settlement { Sp } 
and contact forces { Qr }  

End 

No 

Yes 

Convergence 
satisfied 

{ ε }= | { S } i -{ S } i-1 | 

i = i +1 

Find the vector { Pr }, Eq. (42), due to 
contact forces { Qr }, tip forces { Qb } 

and skin forces { Qs }. Then, determine  
{ Pe }= [ Ks ]{ Pr } 

Generate the entire stiffness  
matrix [ Ks ], Eq. (45), by adding 
 the pile stiffness [ Kp ] to the raft 

stiffness [ Kr ]     From code,  
determine the new 
pile load { Qp } due  

to computed  
settlement { Sp } 

 
Fig. (6): Flowchart of the iterative procedure. 
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4. From the modified or the empirical load-settlement curves, find the coefficients of pile stiffness matrix 

[Kp]. 

5. Generate the entire stiffness matrix [Ks] for the pile-raft system by adding the pile stiffness matrix [Kp] 

to the raft stiffness [Kr]. 

6. Determine the vector {Pr} in Equation (42) due to the contact forces and the total force acting on each 

pile. 

7. Perform the analysis of piled-raft system to get the pile settlements {Sp} and contact forces {Qr}. 

8. Compare the settlement from cycle i with that of cycle i+1 to find the accuracy of the solution. 

9. If the accuracy from step 8 is less than a specified tolerance ε, determine the new pile loads {Qp} 

corresponding to the computed settlements {Sp}. This may be achieved by using either the modified or 

the empirical load-settlement curves.  

Steps 4 to 9 are repeated until reaching an acceptable accuracy, which ensures the compatibility among the 

settlements of piles, raft and soil at all interfaces. 

 

 

3. Numerical results and validation 

 

To confirm the validity and efficiency of the proposed analysis, nine case histories of piled-raft systems 

around the world, are re-analyzed herein. The buildings are 43 [m] to 256 [m] in height above the ground surface 

and were completed in 1983-2009. For all cases, field measurements have been performed to monitor the 

foundation settlements and the load sharing among the rafts and the piles. Figure 7 shows a general description of 

each of the nine case histories under consideration. Besides the wide range of building heights, a wide variety of 

raft geometric shapes and pile distributions, are covered as shown in the figure. Table 1 presents the main 

characteristics and field measurements of each case. 

The pile self-settlement in the present mixed analysis of piled raft is modeled empirically using any of the 

following international codes: ECP202, 2005; DIN4014, 1990; AASHTO, 2005; and French Code, 1993. Besides, 

the hyperbolic modified load-settlement curves (El-Gendy et al., 2013) are also investigated. Regarding the four 

mentioned codes, the authors previously showed that the load-settlement relationship of AASHTO is the least 

conservative, while that of the Egyptian and French codes were relatively conservative, (El-Gendy et al., 2013). 

To facilitate the presentation of results, the following labels are used in the following sections to distinguish the 

results for different methods: 

 

MLSC1 = modified load-settlement curve for a single pile based on AASHTO, 

MLSC2 = modified load-settlement curve for a single pile based on ECP 202, 

NPRE = analysis using pile self-settlement curve of the Egyptian code ECP 202, 

NPRD = analysis using pile self-settlement curve of the German code DIN 4014, 

NPRA = analysis using pile self-settlement curve of AASHTO, 

NPRF = analysis using pile self-settlement curve of the French Code, 

NPRM1 = analysis using the modified hyperbolic pile load-settlement curves, following the ultimate 

loads and settlements of AASHTO, and 

NPRM2 = analysis using the modified hyperbolic pile load-settlement curves, following the ultimate 

loads and settlements of ECP 202. 

It should be noticed that the three fixed starting letters in each of the above abbreviations refer to the Nonlinear 

analysis of Piled-Raft. Detailed numerical results are given hereafter for the following three case histories: 

a) Messeturm building (Frankfurt), 

b) Westend one tower, and 

c) Forty-seven-story residential tower (Japan). 

For each of the three-case histories, the general description of the building is given, followed by the properties of 

the foundation and underlain soil. Then, the empirical- and proposed load-settlement curves for the different piles 

used in each case, are shown. Finally, the numerical results are presented and discussed. For the other 6-case 

histories, final results are summarized and compared to the measured values in separate tables, due to space 

limitation. 

 

3.1 Piled-raft foundation of Messeturm building. 

 Messeturm was the tallest high-rise building in Europe until 1997. The building lies in Frankfurt city in 

Germany. It is 256 [m] in high and standing on a piled-raft foundation. Using instruments installed inside this 

foundation, an extensive measuring program was established to monitor the behavior of the building. These 

instruments record raft settlements, raft contact pressures, and loads on pile heads and along the pile shafts. The 

behavior of Messeturm had been studied by many authors, such as (Sommer & Katzenbach, 1990; Katzenbach et 
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al., 2000; Reul & R&olph, 2003; Chow & Small 2005; Sales et al., 2010; Eslami et al., 2011). Figure 8 shows the 

Messeturm piled-raft as given by Chow & Small 2005. The building has a basement with two underground floors 

and 60 stories with a total estimated load of 1880 [MN]. The foundation is a square piled-raft of 58.8 [m] side 

founded on Frankfurt clay at a depth 14 [m] below the ground surface. Raft thickness varies from 6 [m] at the 

middle to 3 [m] at the edges. A total of 64 bored piles with equal diameters of 1.3 [m] are arranged under the raft 

in 3 rings. Pile lengths vary from 26.9 [m] for the 28 piles in the outer ring, to 30.9 [m] for the 20 piles in the 

middle ring, and to 34.9 [m] for the 16 piles in the inner ring. The underlain soil consists of gravel and sand down 

to 8 [m] below the ground surface, followed by layers of Frankfurt clay extending to a great depth of more than 

100 [m] below the ground surface. The groundwater level lies at 4.75 [m] under the ground surface. The 

construction of Messeturm started in 1988 and finished in 1991. The recorded settlement at the center of the raft 

in March 1990 was 8.5 [cm] (Katzenbach et al., 2000), while the recorded settlement in 2001 was 14.4 [cm], 

(Sales et al., 2010, and Eslami et al., 2011). The expected final settlement, in this case, would be between 15 [cm] 

and 20 [cm], (Sommer & Katzenbach, 1990). 

 

3.1.1 Soil properties for Messeturm building (Frankfurt) 

According to (Reul & Randolph, 2003), Young’s modulus of the sand with gravel layer under the raft is E = 75000 

[kN/m2]. Young’s modulus for reloading is taken as W = 3 E. Based on a back analysis after (Amann et al., 1975), 

the distribution of the modulus of compressibility for loading of Frankfurt clay with depth is defined by the 

following empirical formula: 

            
( )z  E = E sos 0.35 + 1

 
(54) 

While that for reloading is: 

            
 mMN/ 2 70 = W s  

(55) 

where: 

Fig. (7): Geometrical descriptions of piled-raft case histories under consideration 

 

 



Delta University Scientific Journal Vol.06 - Iss.01 (2023) 62-84 

 

Page | 75 

Table 1 Main characteristics and field measurements of considered case histories 

No. Case study 
Site 

location 
P 

H 
[m] 

T 
[MN] 

Piled-raft description 
Measured values 

Reference 
Foundation Piles 

L 

[m] 

W 

[m] 
Th [m] 

D 

[m] 
N 

Di 

[m] 

L 

[m] 
S [cm] 

B 

[%] 

1 Messeturm Frankfurt 1988:1991 257 1880 59 59 
3.00-

6.00 
14 64 1.3 

26.9-

34.9 
14.4 40 

(Sales et al., 

2010) 

2 
Westend 

Tower 
Frankfurt 1990:1993 208 895 62 47 4.65 15 40 1.3 30 12 50 

(Reul & 
Randolph 

,2003) 

3 

forty-

seven-story 
residential 

tower 

Japan 2005:2009 162 969 45 29 2 4.3 

6 1.9 

50 2.9 82 
(Yamashita 
et al., 2011) 

10 1.8 

16 1.6 

4 1.5 

4 Skyper Frankfurt 2002:2004 154 818 47 47 3.5 12 46 1.5 6.27 3.1 - 
(Sales et al., 

2010) 

5 Torhaus Frankfurt 1983:1986 130 400 25 18 2.5 3 42 0.9 20 12 64 
(Eslami et 

al., 2011) 

6 

Taunustor 
Japan 

Centre 

office 

Frankfurt 1994:1996 115 1050 53 37 1.0-3.0 16 25 1.3 22 5 - 
(Katzenbach 

et al., 2000) 

7 Dashwood London 1973:1976 61 274 43 32 0.9 1 462 0.5 15 3.1 93-100 
(Hong et al. 

1999) 

8 
Eleven 
story 

building 

Japan 2004:2005 61 692 80 44 0.8 3 40 1.4 27.5 1 54 
(Yamashita 

et al., 2011) 

9 
Stonebridge 

Tower. 
London 1973:1975 43 156 43 19 0.9  351 0.5 13 1.8 93-100 

(Hemsley, 
2000) 

P (Construction period), 

H (Maximum height), 
T (Total load ), 

L (Length), 

W (Width), 
Th (Raft  thickness), 

D (Depth), 

N (Number), 
Di (Diameter), 

S (Settlement), 
B (Bearing factor) 

 

Es    Modulus of compressibility for loading, [MN/m2], 

Eso   Initial modulus of compressibility, Eso=7 [MN/m2], 

Z     Depth measured from the clay surface, [m], and 

Ws   Modulus of compressibility for reloading, [MN/m2]. 

 

According to (Sommer & Katzenbach, 1990), the undrained cohesion cu of Frankfurt clay increases with depth 

from cu=100 [kN/m2] to cu=400 [kN/m2] in 70 [m] depth under the clay surface. Poisson’s ratio of the soil is taken 

as νs = 0.25 [-]. 

 

3.1.2 Raft and pile material 

The raft has the following material parameters: 

Young's modulus  Eb  = 3.4 x 107 [kN/m2], 

Poisson's ratio  b       = 0.2 [-], and 

Unit weight   γb          = 25 [kN/m3]. 

 

While piles have the following material parameters: 

Young's modulus Eb  = 2.35 x 107 [kN/m2], and 

Unit weight   γb          = 25 [kN/m3]. 

3.1.3 Analysis of the piled-raft 

Measured settlements and pile load ratios given by (Sales et al., 2010), are compared to those predicted by the 

proposed numerical methods. By realizing that the piled-raft system under consideration is completely symmetric, 

the numerical model was built for one-quarter only of the piled-raft. The raft is divided into elements with a 

maximum side length of 2.5 [m] as shown in Figure 9. Similarly, the piles are divided into elements of 2.0 [m] 

length; as a maximum.  
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Fig. (8):  Messeturm piled-raft details, after (Chow & Small, 2005) 

 
Fig. (9):  FE Mesh of Messeturm piled-raft 

 

 

Fig. (10): Single pile load-settlement curves for Messeturm building. 
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Table 2 Comparison between predicted and 

measured results 

Type of 

analysis 

Settlement Bearing factor 

[cm] [%] [%] [%%] 

Measure

d 
14.40 - 40 - 

NPRE 17.29 +20 32 -20 

NPRD 15.37 +7 40 0 

NPRA 10.83 -25 59 +48 

NPRF 15.92 +11 38 -5 

NPRM1 12.07 -16 54 +35 

NPRM2 16.01 +11 37 -7 

 

 

 
Fig. (11): Comparison among the measured and 

predicted pile loads 

 

3.1.4 Comparison between numerical predictions and field measurements 

For each of the three types of piles used in Messeturm building, Figure 10 shows a comparison among the load-

settlement curves given by each of the four considered codes under consideration, in addition to the proposed 

hyperbolic models. Effect of variation of pile length among the three types of piles is evident as shown in the figure. 

The numerical results of central settlement and bearing factor of piled-raft are listed in Error! Reference source n

ot found.Table 2. The results are given for the four codes and the couple of modified load-settlement curves 

(NPRE, NPRD, NPRA, NPRF, NPRM1, and NPRM2). Moreover, Figure 11 shows a comparison among the 

measured and predicted pile loads at different locations in the building. As clear from Table 2, the percentage 

difference of the predicted central settlement using the rigid method, is (-25% to +20%) of the measured settlement. 

The percentage difference of the predicted pile load-bearing ratio is (-20% to +48%) of the measured value. Table 

2 reveals also that the predictions showed an acceptable match with the measured values many times. 

 

3.2 Piled-raft of Westend One Tower 

 Many authors had studied Westend tower behavior such as (Reul & Randolph, 2003; and Poulos, 2011). 

Westend one tower was constructed between 1990 and 1993 in Frankfurt, Germany. The 208 m-high tower and the 

60 m-high low-rise section of the building complex are founded on two separated rafts. The piled-raft of the tower 

consists of a 47 [m] by 62 [m] large raft with a thickness of 3.00 to 4.65 m and 40 bored-piles with a length of 30 

[m] and 1.3 [m] in diameter. The bottom of the raft lies 14.5 m below ground level as shown in Figure 12-a. The 

groundwater level is situated at 7 [m] below ground level. The layout of the measurement devices is shown in 

Figure 12-b. The low-rise section of the building complex is not considered in the analysis. The maximum load 

above the raft is about 895 MN applied in the core area of the raft.  

3.2.1 Properties of materials 

The bottom of the Frankfurt clay is assumed to be 68 [m] below the foundation level, which is existing at 14.5 [m] 

below the ground level. The Frankfurt clay is followed by a 32 [m] thick layer of Frankfurt limestone. Poisson’s 

ratio of the clay is taken as νs = 0.15 [-]. The distribution of Young’s modulus of the clay with depth is described 

by the following empirical formulation based on the back-analysis of boundary value problems in Frankfurt clay, 

(Reul, 2000): 

 1
15

30
tanh  0.745 








+






 −
+

z
z = E         (56) 

where E is Young’s modulus of the clay [MPa], and z is the depth from the clay layer surface [m]. All raft and pile 

material parameters are the same as those given above for the Messeturm building. However, for the reinforced 

concrete of piles, Young's modulus Eb is 2.2 x 107 [kN/m2] based on the investigations performed by (Franke & 

Lutz,1994). 

3.2.2 Comparison between numerical predictions and field measurements 
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The finite element mesh of the piled-raft is shown in Figure 13. The settlement measured at the foundation center 

reached 12.0 [cm] after thirty months after the completion of the shell of the building. The corresponding measured 

pile bearing factor was found to be about 50 [%], under the assumption that the average load of the six instrumented 

piles is equal to the average load of the whole pile group. Measured results for settlement and pile bearing ratio, 

are compared herein to the numerical predictions of the present analyses obtained using the rigid method. Figure 

14 depicts the load-settlement relationships for a single pile based on the pile parameters and soil properties given 

above. The numerical results of the present mixed numerical method are listed in Table 3. For this case history, the 

percentage difference of the predicted settlement is (-17% to +6%) of the measured settlement. The percentage 

difference of the predicted pile load-bearing ratio is (-48% to -14%) of the measured value. The predicted 

settlements for different methods are mostly satisfactory; however, the predictions of pile-load ratios are relatively 

underestimated. 

 

Fig. (12): Layout of Westend one tower. (a) Elevation. (b) Piled-raft plan, 

after (Reul & Randolph, 2003) 
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Fig. (13): FE mesh of the piled-raft for Japan residential building 

 

 
Fig. (14): Westend one tower single pile load-settlement curves 

 

3.3 Piled-raft of forty-seven story residential tower (Japan) 

 The third case history listed in Table 1 comprises a reinforced concrete 47-story residential tower lies in 

Nagoya, Aichi Prefecture in Japan. It is 162 [m] high above the ground surface and the foundation measuring 50 

[m] by 34 [m] in plan. The building foundation was instrumented to measure the displacements below the raft using 

differential settlement gauges as stated by (Yamashita et al., 2011). The average contact pressure over the raft was 

600 [kPa]. The raft is located 4.3 [m] below the ground surface and founded on medium-to-dense sand and gravel. 

A piled-raft system consisting of 2 [m] thick raft and 36 cast-in-place concrete piles was executed; to reduce the 

differential settlement. The pile length is 50 [m], and the diameter varies from 1.5 to 1.9 [m] in four different groups 

as shown in Figure 15. 

3.3.1 Properties of materials 

According to (Yamashita et al., 2011), the soil profile down to a depth of 4 [m] from the ground surface consists 

of fill and silt. Below this layer lies medium to dense sand, and gravel down to a depth of 17 [m] with an SPT range 

from 20 to 30, underlain by medium silt. Between depths of 27 to 43 [m], there lies dense sand, very dense sand 

and gravel, and medium to dense sand with an SPT range from 20 to 60 or higher. Below the depth of 43 [m] there 

lies very dense sand and gravel. The groundwater table appears about 2.5 [m] below the ground surface. Poisson’s 

ratio of the soil was taken as νs = 0.30 [-]. Figure 16 summarizes the soil layers and their properties. All raft and 

pile material parameters were taken the same as those given above for Messeturm building. 

 

 

G
r
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Fig. (15): FE mesh of the piled-raft for forty-seven story residential tower (Japan) 

3.3.2 Comparison between numerical predictions and field measurements  

According to (Yamashita et al., 2011), 

the maximum settlement measured at 

the raft center reached 2.90 [cm], 

while the piles bearing factor was 

found to be 82 [%] after 17 months of 

the building completion. The load-

settlement relationships for two of the 

four pile types used in the construction 

are shown in Figure 17. The effect of 

the variation of pile and base 

diameters on the pile ultimate load is 

evident. Comparisons of the measured 

and theoretically predicted results 

using the rigid method for the 

settlement and pile-bearing ratio are 

given in Table 4. The predicted 

settlement at the raft center for the 

different methods varies from 3.46 to 

4.44 [cm], versus 2.9 [cm] measured 

settlement. Predictions of the pile 

load-bearing ratio for all methods are 

very close to each other (about 73% of 

the measured ratio). 

 

 
Fig. (16): Boring logs 
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(a) Diameter = 190 [cm]. (b) Diameter = 180 [cm]. 

Fig. (17): Japan residential building single pile load-settlement curves 

 

Table 4 Comparison between predicted and measured results 

 

3.4 Comparison of summarized results for all case histories 

 The main characteristics and field measurements of all considered case histories are listed in Table 1. Due 

to space limitation, it could not be possible to present more details about the last six case histories. For more details 

about those case histories, the reader may refer to the references indicated in Table 1. Comparisons between the 

predictions and the available measurements for each of the nine case histories, are listed in Tables 5 and 6.  Besides 

the measured and predicted results, the two tables give the ratios of predicted to measured settlement, and pile load 

sharing (P/M). Both the best and worst predictions are given in each case. A careful study of the results given in 

Tables 5 and 6 shows that: 

a) All codes under consideration (ECP202, 2005; DIN4014, 1990; AASHTO, 2005; and French Code, 1993), 

as well as the proposed modified load-settlement models could successfully complete the analysis of piled-

raft following the presented formulation. Moreover, the present analysis could satisfactorily predict both 

the raft settlement and the pile load-sharing; for most cases. 

b) Although, the predicted results are sensitive to the adopted load-settlement model of a single pile, yet they 

are still acceptable for most models. 

c) Predicted settlements of the present analysis (NPRA) using the AASHTO code are mostly the farthest 

from the measurements, if compared to the predictions of other models. However, they are still adequately 

accurate for case histories 4 and 9. 

d) For most case histories, predictions of NPRM1 analysis are closer to the measurements, if compared to 

NPRA analysis. The same is true with respect to the NPRM2 analysis; which improves the predictions of 

the NPRE analysis in most cases. 
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For case histories 7 and 9, it can be seen from Table 6 that the pile load-sharing reaches 100%, for both measured 

and predicted results. For those cases, the foundation system works as a free-standing pile group and piles could 

attract the applied loads completely (with no raft-soil interaction). For both case histories, the pile spacing in both 

directions is about three times as large as the pile diameter. 

4. Conclusions 

Modeling the self-settlement of a bored pile as given by the Egyptian, German, American, and French codes 

(ECP202, 2005; DIN4014, 1990; AASHTO, 2005; French Code, 1993), in the context of a mixed nonlinear analysis 

of a piled-raft system, is validated. Moreover, using the hyperbolic load-settlement model proposed previously by 

the authors (El-Gendy et al., 2013), instead of the empirical code relationships is also validated. In the proposed 

numerical approach, the finite layer method is used for analyzing the layered soil, whereas the piles and the raft are 

analyzed using the finite element method. Settlements due to pile-pile, pile-raft, and raft-soil interactions are 

determined using flexibility coefficients according to the elasticity theory. The analysis is carried out iteratively, 

 

Table 5 Summary of settlement results at raft center for all case histories 

 
 

Table 6 Summary of pile load ratio results at raft center for all case histories 

 
  

and the compatibility of settlements at the raft, piles, and soil interfaces are fulfilled for each computational cycle. 

Comparisons with the published field measurements for nine-case histories proved the efficiency and validity of 

the present numerical method. Based on the analyses performed in this research, the following conclusions could 

be drawn: 

Table 5 Summary of settlement results at raft center for all 

case histories 

Case history 

Measured 

settlement 

[cm] 

Predicted settlement [cm] P / M  ratio 

NPRE NPRD NPRA NPRF NPRM1 NPRM2 best worst 

1 Messeturm 14.40 17.29 15.37 10.83 15.92 12.07 16.01 1.07 0.75 

2 Westend 1 12.00 12.71 11.38 9.96 12.13 11.22 12.07 1.01 0.83 

3 47 story res. tower 2.90 4.44 3.63 3.66 3.98 3.46 4.13 1.19 1.53 

4 Skyper tower 3.10 3.52 3.09 2.86 3.33 3.35 3.35 0.99 1.14 

5 Torhaus 12.40 11.52 11.84 7.69 9.11 8.52 10.11 0.95 0.62 

6 Japan center 5.00 4.56 4.33 3.34 4.24 3.89 4.34 0.91 0.67 

7 Dashwood house 3.30 2.84 2.95 2.44 2.75 2.74 2.76 0.89 0.74 

8 Eleven story building 1.00 1.41 1.31 1.43 1.43 1.37 1.40 1.31 1.43 

9 Stonebridge Tower. 1.80 1.66 2.10 1.72 1.92 1.87 1.93 1.04 1.17 

 

 

Case history 

Measured 

bearing 

factor [%] 

Predicted bearing factor [%]  P / M  ratio 

NPRE NPRD NPRA NPRF NPRM1 NPRM2 best worst 

1 Messeturm 40% 32% 40% 59% 38% 54% 37% 1. 00 0.82 

2 Westend 1 50% 26% 34% 43% 30% 35% 30% 0.86 0.52 

3 47 story res. tower 82% 58% 61% 61% 60% 62% 59% 0.76 0.71 

4 Skyper tower - 44% 50% 52% 46% 46% 46% - - 

5 Torhaus  64% 49% 65% 69% 62% 66% 56% 1.02 0.77 

6 Japan center - 17% 20% 32% 21% 25% 20% - - 

7 Dashwood house  100% 100% 100% 100% 100% 100% 100% 1.00 1.00 

8 Eleven story building 54% 33% 37% 33% 33% 35% 34% 0.69 0.61 

9 Stonebridge Tower. 100% 100% 100% 100% 100% 100% 100% 1.00 1.00 
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a) Analysis of piled-raft systems comprising large-diameter bored piles could successfully be completed by 

modeling the pile self-settlement using any of the four codes under consideration (ECP202, 2005; 

DIN4014, 1990; AASHTO, 2005; French Code, 1993), or by using the hyperbolic load-settlement model, 

(El-Gendy et al., 2013). 

b) Owing to its simple form, the hyperbolic load-settlement model (El-Gendy et al., 2013) could mostly 

facilitate the iterative computations of piled-raft analysis. 

c) Based on the numerical predictions obtained for the investigated nine-case histories, DIN 4014 was mostly 

the code that gave the closest match to field measurements, while the AASHTO predictions were the 

farthest. Nevertheless, the AASHTO results may be improved by using the modified load-settlement 

model MLSC1, (El-Gendy et al., 2013). Predictions of both the Egyptian and French codes (ECP202, 

2005, and French Code, 1993), were generally conservative, but they were still acceptable for most case 

studies. 
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