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ABSTRACT  

In this paper, we apply the Adomian decomposition method (ADM) for solving Fractional Differential Equations 

(FDEs) with some modifications to the traditional method. The aim of this paper is to make ADM more efficient, 

rapid in convergence, and easy to use, so we will discuss two modifications. We use the reliable modification to 

simplify calculations. For difficulties in symbolic integration, we use a numerical implementation method. All these 

modifications were applied to the integer-order case, so we would apply it to FDEs. Some numerical results are 

given from solving these cases and comparing the solution with the ADM method.  

 

Keywords: Fractional differential equations; Adomian decomposition Method; reliable modification; numerical 

implementation.     

1. Introduction 

Fractional Differential equations (FDEs) have many applications in engineering and science such as electrical 

networks, fluid flow, control theory, fractals theory, electromagnetic theory, viscoelasticity, potential theory, 

chemistry, biology, optical and neural network systems [1]-[16]. In this paper, the Adomian decomposition method 

(ADM) [17]-[26] is used to solve some fractional differential equations which have difficulties in solving them. This 

method has many advantages; it is efficiently works with different types of linear and nonlinear equations in 

deterministic or stochastic fields and gives an analytic solution for all these types of equations without linearization 

or discretization.  

This paper is organized as follows: In section two, ADM was applied to the problems with the Reliable modification 

technique [28] under consideration. In section three, some examples are introduced with this modification. In section 

four, we discussed the nnumerical Implementation of ADM [29,30]. Finally, the numerical results of this technique 

are obtained using the MATHEMATICA package.  

 

2. Description of Reliable Modification Technique  

 

The general form of the fractional differential equation takes the following form: 

 𝐷𝛼𝑦(𝑡) + 𝑅𝑦(𝑡) + 𝑁𝑦(𝑡) = 𝑔(𝑡), (1) 

Subject to the initial conditions,  

 
𝑦(𝑗)(0) = 𝑐𝑗,  𝑗 = 0,1,2, … , 𝑛. (2) 
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Where 𝛼 is the highest order derivative, R is a linear differential operator of order less than 𝛼, 𝑁𝑦 represents 

the nonlinear term, and g is the source term. Applying 𝐼𝛼 to both sides of equation (1) with the definition of 

Caputo fractional derivative , and using the given conditions, we obtain  

𝑦(𝑡) =  𝑓 − 𝐼𝛼(𝑅𝑦(𝑡)) − 𝐼𝛼 (𝑁𝑦(𝑡)),             (3) 

 

where the function ƒ represents the terms arising from integrating the source term g and using the given 

conditions. 

 By using the standard ADM we obtain, 

𝑦0(𝑡) = 𝑓 

𝑦𝐾+1(𝑡) = −𝐼𝛼(𝑅𝑦(𝑡)) − 𝐼𝛼  (𝐴𝑘), 𝑘 ≥ 0.   (4) 

 

To achieve our modification, we assume that the function ƒ can be divided into two parts, namely 𝑓1 and 𝑓2. 

Under this assumption, we set 

𝑓 = 𝑓1 + 𝑓2.                         (5) 

          Based on this, we make  a minor change to only on the components 𝑦0 and 𝑦1. The variation we make is that 

only the part 𝑓1 will be the first term 𝑦0, whereas the remaining part 𝑓2 be combined with the second term 𝑦1. In 

view of these remarks, we formulate the modified recursive algorithm as follows, 

𝑦0(𝑡) = 𝑓1,  

 𝑦1(𝑡) = 𝑓2 − 𝐼𝛼(𝑅𝑦0(𝑡)) − 𝐼𝛼 (𝐴0)           (6) 

𝑦𝑘+1(𝑡) = −𝐼𝛼(𝑅𝑦𝑘(𝑡)) − 𝐼𝛼 (𝐴𝑘), 𝑘 ≥ 1. 

The success of this method depends mainly on the proper choice of the parts 𝑓1 and 𝑓2 and unfortunately, 

until now there has been no way of choosing 𝑓1 and 𝑓2, the trials are the only criteria that can be applied. 

3. Application of Using Reliable Modification Technique  
 

Example 1: Consider the following linear FDE of Bagley - Torvik 

𝑑2𝑦(𝑡)

𝑑𝑡2 +
𝑑3/2𝑦(𝑡)

𝑑𝑡3/2 + 𝑦(𝑡) = 𝑡 + 1,             (7) 

                                                              Subject to 𝑦(0) = 1, 𝑦′(0) = 1. 

 

Operating with 𝐼2 on both sides of equation (7) and then using   the formula (8) 

𝐷−𝜇𝐷𝛼𝑓(𝑡) = 𝐷𝛼−𝜇𝑓(𝑡) − ∑ 𝑓(𝑘)0+

𝑙−1

𝑘=0

𝑡𝑘+𝜇−𝛼

Г(𝜇 − 𝛼 + 𝑘 + 1)
     (8) 
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we get: 

𝑦(𝑡) = (1 + 𝑡) − [𝐼
1
2𝑦(𝑡) −

𝑡
1
2

Г (
3
2

)
−

𝑡
3
2

Г (
5
2

)
] − 𝐼2𝑦(𝑡) + 𝐼2(𝑡 + 1).  (9) 

 

Applying the Reliable modification we obtain: 

𝑦0(𝑡) = 1 + 𝑡,  

𝑦1(𝑡) =
𝑡1/2

Г (
3
2

)
+

𝑡3/2

Г (
5
2

)
+ 𝐼2(𝑡 + 1) − 𝐼2𝑦0(𝑡) − 𝐼1/2𝑦0(𝑡)  

=
𝑡1/2

Г (
3
2

)
+

𝑡3/2

Г (
5
2

)
+ 𝐼2(𝑡 + 1) − 𝐼2(𝑡 + 1) − 𝐼

1
2(𝑡 + 1) = 0             (10) 

 

We see that the solution of the this problem is 𝑦(𝑡) =         ∑ 𝑦𝑛(𝑡) =∞
𝑛=0 𝑦0(𝑡) = 1 + 𝑡, which is the exact 

solution. 

Example 2: Consider the following linear FDE of Basset problem 

𝐷𝑢(𝑡) + 2𝐷1/2𝑢(𝑡) +
1

2
𝑢(𝑡) = 0,     𝑢(0) = 1 (11) 

Applying the reliable modification we obtain: 

𝑢0(𝑡) = 1,  

𝑢1(𝑡) =
2 𝑡1/2

Г (
3
2

)
− 2𝐼1/2[𝑢0(𝑡)] −

1

2
𝐼1[𝑢0(𝑡)] 

𝑢𝑘+1(𝑡) = −2𝐼
1
2[𝑢𝑘(𝑡)] −

1

2
𝐼1[𝑢𝑘(𝑡)], 𝑛 ≥ 2.                              (12) 

 

From these relations, (8) 𝑎𝑛𝑑 (11), the first terms of the series solution by using the reliable modification and the 

classical method will be: 

The modification terms:                     

𝑢0(𝑡) = 1  

𝑢1(𝑡) = −
𝑡

2
 

𝑢2(𝑡) =
4 𝑡3/2

3√𝜋
+

 𝑡2

8
 

𝑢3(𝑡) = −𝑡2 −
8𝑡5/2 

15√𝜋
−

 𝑡3

48
 

… … 
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  The classical ADM terms: 

𝑢0(𝑡) = 1 +
4 √𝑡

√𝜋
  

𝑢1(𝑡) = −√𝑡(27√𝜋√𝑡 + 8(3 + 𝑡))/6√𝜋 

𝑢2(𝑡) =
1

120√𝜋
(𝑡 (32√𝑡(50 + 𝑡)) + 15√𝜋(32 + 17𝑡)) 

𝑢3(𝑡) = −
(𝑡

3
2(35√𝜋√𝑡(528 + 25𝑡) + 64(280 + 189𝑡 + 𝑡2))) 

1680√𝜋
 

… … 

 

From the above, we see that the terms resulting from our modification are simpler than the others obtained by 

the classical method. Moreover, we reach the exact solution more rapidly than in the classical manner; that is clear 

in figures [1,2,3,4] 

 

Fig. 1,2,3,4.  

4. Description of Numerical Implementation of ADM  
 

Consider the nonlinear FDE, 

𝐷𝑡
𝛼𝑦(𝑡) + 𝑓(𝑦) = 𝑔(𝑡),    𝑚 − 1 < 𝛼 ≤ 𝑚,   𝛼 ≥ 1   (13)0  

𝑦(𝑘)(0) = 𝑐𝑘 ,  𝑘 = 0,1,2, … , 𝑚 − 1. 

  Operating with 𝐼𝛼 on both sides of the equation (10) , hence we obtain 

         𝑦(𝑡) = ∑ 𝑐𝑘

𝑚−1

𝑘=0

𝑡𝑘

𝑘!
+ 𝐼𝛼[𝑔(𝑡)] − 𝐼𝛼[𝑓(𝑦)]              (14) 

Applying the classical ADM to the equation we get, 

𝑦0(𝑡) = ℎ(𝑡)                                                    (15) 

𝑦𝑛+1(𝑡) = −𝐼𝛼[𝑓(𝑦)],                                               (16)     
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Where ℎ(𝑡) = ∑ 𝑐𝑘
𝑚−1
𝑘=0

𝑡𝑘

𝑘!
+ 𝐼𝛼[𝑔(𝑡)]. 

Now, we will use the numerical method; which is given in [31-33], to approximate the integral term in the 

equation. We choose a regular mesh in t, thus setting 𝑡 = 𝑡𝑖 = 𝑖ℎ  where h =  
1

𝑛
 is the fixed step length. Therefore, 

the integral can be approximated as 

∫ (𝑡𝑖 − 𝑥)𝛼−1𝑓(𝑦𝑛(𝑥))𝑑𝑥 ≃ ℎ
𝑡𝑖

0

∑ 𝑤𝑖𝑗(𝑡𝑖 − 𝑥𝑗)
𝛼−1

𝑓 (𝑦𝑛(𝑥𝑗))

𝑖

𝑗=0

    (17)  

where 𝑡𝑖 = 𝑥𝑖 , 𝑖 = 0,1,2, … 𝑛. This leads to the following set of nonlinear equations, 

𝑦𝑛+1(𝑡𝑖) ≃
ℎ

Г(𝛼)
∑ 𝑤𝑖𝑗(𝑡𝑖 − 𝑡𝑗)

𝛼−1
𝑓 (𝑦𝑛(𝑡𝑗)) ,   𝑖, 𝑛 = 0,1,2, …  

𝑖

𝑗=0

   (18) 

For choosing suitable weights 𝑤𝑖𝑗, we note that for each i , the set 𝑤𝑖𝑗,  j = 0, 1,..i represents the weights for an (i 

+ 1)-points quadrature rule of Newton Cotes type for the interval [0, ih] . We implement the above idea in the 

following examples with n = 20 or h = 
1

20
 

 

5. Application Using Numerical Implementation of ADM 

 

Example 3: Consider the following nonlinear FDE  

𝐷3/2𝑦(𝑡) = 𝑡 + tan−1 𝑦 ,    0 < 𝑡 < 1,     (19) 

𝑦(0) = 0, 𝑦′(0) = 0. 

In this example, the integration of the nonlinear term (tan−1 𝑦) is difficult, so we will solve it by using the 

Numerical implementation technique. From the standard ADM, we have the following recursive relations, 

𝑦0(𝑡) =
𝑡5/2

Г (
7
2

)
,  

𝑦𝑛+1 =
1

Г (
3
2

)
∫ (𝑡 − 𝑥)1/2 tan−1 𝑦𝑛 (𝑥)𝑑𝑥

𝑡

0

.    (20) 

Using our modification we get, 

𝑦0(𝑡𝑖) =
𝑡𝑖

5/2

Г (
7
2

)
,  

𝑦𝑛+1(𝑡𝑖) =
ℎ

Г (
3
2

)
∑ 𝑤𝑖𝑗(𝑡𝑖 − 𝑡𝑗)

1
2 tan−1 𝑦𝑛 (𝑡𝑗),   𝑖, 𝑛 = 0,1,2, … ,20.  

𝑖

𝑗=0

                    (21) 

The solution by using this modification is given in Figure 5 
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Example 4: Consider the following nonlinear FDE  

𝐷7/2𝑦(𝑡) = 𝑡2 + 𝑒𝑦2
,    0 < 𝑡 < 1,    (22) 

𝑦(0) = 0, 𝑦′(0) = 0,   𝑦′′(0) = 0,   𝑦′′′(0) = 0. 

In this example, the integration of the nonlinear term (𝑒𝑦2
) is difficult, so we will solve it by using the 

Nnumerical implementation technique. From the standard ADM, we have the following recursive relations, 

𝑦0(𝑡) =
2𝑡11/2

Г (
13
2

)
,  

𝑦𝑛+1 =
1

Г(
7

2
)

∫ (𝑡 − 𝑥)
5

2exp (𝑦𝑛
2(𝑥))𝑑𝑥

𝑡

0
.               (23) 

Using our modification we get, 

𝑦0(𝑡𝑖) =
2𝑡𝑖

11/2

Г (
13
2

)
,  

𝑦𝑛+1(𝑡𝑖) =
ℎ

Г (
7
2

)
∑ 𝑤𝑖𝑗(𝑡𝑖 − 𝑡𝑗)

5
2 exp (𝑦𝑛

2(𝑡𝑗)) ,   𝑖, 𝑛 = 0,1,2, … ,20.  

𝑖

𝑗=0

                        (24) 

The solution by using this modification is given in Figure 6 

 

 

 

 

Fig. 6  

Fig. 5 
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Conclusion 

In this paper, we use the ADM method to solve several problems of equations with fractional orders. Two 

modifications to ADM have been introduced. The first one is the Rreliable modification, which find that the series 

solution compared with the classical ADM was accelerated. Although this technique needs only a slight variation 

from the classical ADM, the size of the calculations is minimized. The second technique is the Nnumerical 

iimplementation of ADM, used due to the difficult calculations of the integration, also difficult or impossible to 

analyze. 
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