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Defining the causative source parameters is an essential tool in geophysical exploration and is 

often carried out using gravity subject datasets. Naturally stimulated metaheuristic 

optimization algorithms are primarily based totally on a few stochastic approaches, and have 

attracted greater interest over the past decade, because of their functionality to discover the 

finest answer of the version parameters from the explored area. This is done after making use 

of the distinct horizontal derivative orders at the located information, to lessen the local 

impacts. The most desirable management parameters of the particle swarm optimization rules 

were decided, using few parameters tuning research on artificial anomalies. The option for the 

optimization issues advanced with the aid of using the horizontal derivatives on the observed 

gravity data. So, the present-day inversion algorithm uses the third horizontal derivative, to 

minimize the regional anomaly and the particle swarm optimization, to estimate the different 

source model parameters. The present-day inversion algorithm was carried out on three 

different synthetic models (a two-sided dipping fault version with second and third orders 

regional, and without and with 5% and 10% random noises, a two-sided dipping fault with a -

sphere shape model, without and with 5% and 10% random noises, and a -sided dipping fault 

model, without and with 10% random noises) and an actual field data set (from the USA). 

Applications have proven that, the present-day inversion algorithm provided close results. 

However, it indicates that, applying the higher horizontal derivatives turned into greater power 

in decreasing the regional component. The acquired results declared that, the present-day 

inversion algorithm works nicely, even with inside the existence of noises. 
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1. Introduction 

   Gravity inversion methods have proven to be a powerful tool in geophysics, providing insight into the 

subsurface density structure and helping to solve various exploration problems. These methods have been widely 

used in oil and gas exploration, mineral exploration, cavity finding, archeological site exploration, geothermal 

investigation, basin configuration and structures of the subsurface. (Panisova and Pasteka, 2009; Araffa et al., 

2015; Bouhlassa et al., 2017; Uwiduhaye et al., 2018; Rezaie, 2019; Al-Farhan et al., 2019; Essa et al., 2020; 

Kumar et al., 2020; Essa and G´eraud, 2020; and Abedi, 2020) However, despite the success of these methods, 

they are not without limitations. (Tarantola, 2005) In particular, the inversion of the gravity data can be 

nonunique, making the inverse problem a poor setting. 

   The researchers worked hard to create and modify various techniques, to address these limitations and 

interpret fault-generated gravity data. These methods can be divided into two classifications: Some rely on simple 

geometrical models, and some use more complexes models. Simple geometrical models, such as graphic and 

mathematical methods, are often used to model buried structures and mainly focus on determining characteristic 

parameters of dipping faults. However, these approaches can be viewed as a limitation. Therefore, researchers 

have modified techniques, that consider more complex geometry models to overcome these limitations. 

   One such method is the method developed by Essa (2013) that based on the variance analysis. This method 

can simultaneously calculate the dip of the fault and the depth to the center of the fault upthrown plane from the 

horizontal derivatives of the residual gravity anomaly. However, this method has limitations: valid only if the 

regional gravity anomaly is represented by up to a first-order polynomial. Furthermore, the accuracy of the results 

depends on the accuracy, to which the origin of the fault is determined from the observed gravity data, and it does 

not consider the effect of the downthrown plane of the fault model. 

   Another method is the least-squares method developed by Abdelrahman and Essa (2015), which can 

successively estimate the dip value in degrees of the fault model, the depth to the upthrown plane of a thin fault 

and the amplitude coefficient, using the moving-average residual gravity anomalies. This method can overcome 

some of the limitations of the previous method, but it also has limitations. 

   Nowadays, there are many methods have been developed, based on artificial intelligence (AI). As genetic 

algorithm (Montesinos, et al., 2005; and Di Maio, et al., 2020), the (DE) differential evolution algorithm (Ekinci, 

et al., 2016; and Balkaya, et al., 2017), the gravitational search algorithm (Rashedi, et al., 2009), the dolphin 

echolocation (Kaveh and Faroudi, 2013), the ant colony optimization (ACO) algorithm (Dorigo and Stützle 

2003), the simulated annealing algorithm (SA) (Biswas, 2015), the particle swarm optimization (PSO) algorithm 

(Essa, 2021; Essa, et al., 2021b; and Essa, et al., 2022) Those algorithms are not unusualplace amongst 

researchers, due to their versatility and advanced cappotential to cope with a style of problems. 

   This paper proposes a new approach to interpret the gravity data generated by faults. It is based on using 

the third horizontal derivative, through graticule spacing and applying the Particle Swarm Optimization (PSO) 

algorithm on evaluated anomalies from horizontal derivatives. This paper aims to improve the accuracy of gravity 

inversion results, by taking into account more complex geometry models and overcoming the limitations of 
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previous methods. The paper will discuss the results of applying this new approach to real-world data and will 

provide a comparison to the results obtained, using the traditional methods. 

 

 

 

2. Methodology: 

2.1. Forward modeling 

   Figure (1) shows the two-sided (normal or reverse) fault with the parameters (zup is depth to the middle 

of the upthrown side, zdown is depth to the middle of the downthrown side of the fault, xo indicates the location of 

the fault on the surface, xi is the location of the observation points, Ɵ is the angle of the fault in degrees, M is the 

amplitude coefficient calculated using the gravitational constant G, the density contrast Δρ, and the thickness of 

the faulted side t)along the profile of gravity data, as given by the following equation (1) (Hinze et al., 2013): 

𝑔(𝑥𝑖 , 𝑥𝑜, 𝑧𝑢𝑝, 𝑧𝑑𝑜𝑤𝑛, 𝑀, 𝜃) = 𝑀 [1 +  
1

𝜋
tan−1 (

(𝑥𝑖−𝑥𝑜)

𝑧𝑢𝑝
+  cot 𝜃) −

1

𝜋
tan−1 (

(𝑥𝑖−𝑥𝑜)

𝑧𝑑𝑜𝑤𝑛
) +  cot 𝜃] … (1) 

 

Fig. 1: A sketch, showing the parameters of a two-sided dipping fault structure. 

2.2. Formulation of the inverse scheme 

   As a first step, the scheme starts by using the data generated, through the forward modeling in a synthetic 

example or by digitizing the data for the actual data set. Then, applying the third horizontal derivative technique, 

which was considered pioneering in separating the regional anomaly from the observed gravity data along the 

profile. 

  Essa and Munschy (2019) described the first horizontal derivative by the following equation: 

∆𝑔𝑥(𝑥𝑖 , 𝑠) =
𝑔(𝑥𝑖+𝑠)−𝑔(𝑥𝑖−𝑠)

2𝑠
 …… (2) 

  The third horizontal derivative of the different s values is called the graticule spacing, as the following equation 

can be used to separate the regional anomaly from the original total data (Darmawan, et al., 2019). 
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∆𝑔𝑥𝑥𝑥(𝑥𝑖 , 𝑠) =
𝑔(𝑥𝑖+3𝑠)−3𝑔(𝑥𝑖)+3𝑔(𝑥𝑖)−𝑔(𝑥𝑖−3𝑠)

8𝑠3  … (3) 

 

Fig. 2: A flowchart, illustrating the model parameters estimation of the presented method. 

 

2.3. The particle swarm optimization 

   Recent trends use evolutionary, stochastic heuristic and nature-inspired algorithms, to deal with non-linear 

problems. Nature-inspired algorithms, such as differential evolution, particle swarm optimization, cuckoo search 

and firefly algorithms are simple, flexible and efficient in solving many real-world problems. 

   In this paper, the applied algorithm is the particle swarm optimization, that established by Eberhart and 

Kennedy (1995). Inspired by the bird's search for natural food, the birds presented particles, that work in the 

search field to find the solution. Each particle has a random position and velocity vector. The location vectors are 

the parameter values. This technique has been applied to geophysical problems (Singh and Biswas, 2016; and 

Karcıo˘glu and Gürer, 2019). The random particles initiate the swarm and search for sources by describing 
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generations. During each iteration of the process, all of the particles upgrade their velocity and location, using 

the following formulas: 

𝑣𝑗
𝐿+1 = 𝑐3𝑣𝑗

𝐿 +  𝑐1𝑟𝑎𝑛𝑑 (𝑇𝑏𝑒𝑠𝑡 −  𝑥𝑗
𝐿+1) +  𝑐2𝑟𝑎𝑛𝑑(𝐽𝑏𝑒𝑠𝑡 −  𝑥𝑗

𝐿+1) 

 

𝑥𝑗
𝐿+1 =  𝑥𝑗

𝐿 + 𝑣𝑗
𝐿+1 

  

    where: 𝑥𝑗
𝐿 is the present location of the jth particles at the Lth iterations, 𝑣𝑗

𝐿 is the velocity of the jth particles 

at the Lth iterations, a random number between [0 and 1] has been used, through utilizing the rand function, the 

cognitive, the social and the inertial weight, that are the controlling parameters of the convergence of the particles, 

respectively represented by the three symbols c1, c2 and c3(Parsopoulos and Vrahatis, 2002). The parameter 𝑐1 

contributes towards the self-exploration of a particle; 𝑐2 is the social parameter, which contributes towards the 

motion of the particles in a global direction; and 𝑐3 is the inertial factor, that controls the velocity of each particle 

(Roshan and Singh, 2017). 

  Estimating the global minimum of the objective function (Жobjective) is the primary goal of using the particle 

swarm optimization (PSO) techniques, to estimate the model parameters of dipping fault, through the gravity 

data. (M, zup, zdown, xo, and ϴ). The initial parameters of the model are incrementally updated, while the iterative 

process works to achieve the best fit of the observed and predicted gravity data. 

  To estimate the best model parameters using the following objective function (Жobjective): 

Ж𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  √
1

𝑢
 ∑ [∆ 𝑔𝑗

𝑜𝑏𝑠(𝑥𝑗) − ∆ 𝑔𝑗
𝑐𝑎𝑙𝑐(𝑥𝑗)]

2𝑢

𝑖=1
 

   where: u represent the observed data point numbers, ∆ 𝑔𝑗
𝑜𝑏𝑠 represent the gravity data measurements, and 

 ∆ 𝑔𝑗
𝑐𝑎𝑙𝑐 represents the calculated gravity data at each data point 𝑥𝑗. 

  The flowchart of the procedures of estimating the model parameters represented in figure (2) following the 

incoming steps: The gravity data of the profile is read as the first step of the procedure, then applying the third 

horizontal derivatives as the second step, to reduce the effect of the regional data with different orders. Applying 

the code of the particle swarm optimization (PSO) will come, as a third step, to estimate the dipping fault 

parameter, which considers the best parameter of the fault. In contrast, the particles reach the global minimum by 

updating their velocity and location for each parameter. Using a wide range of iterations and different values of 

the population of birds or, as indicated here, as the number of particles increase, it takes much longer to estimate 

the best global solution. It keeps different answers until reaching the stable area, as the iteration number increase 

and finally applying the calculated parameters, using the forward model, to see the match between the observed 

and calculated gravity anomalies. 

 

   Figure (2). A flowchart of the procedures for estimating the two-sided fault model parameters. These four 

steps are: First, read the gravity data profile. Second, applying the third horizontal derivative with various window 

lengths (different s values), to minimize the effect of the regional background anomaly, and third using the 

horizontal derivative anomalies to estimate the best-buried fault parameters by applying the PSO algorithm. This 

updates the location and velocity of each particle, until the best global solution is reached. Following that, we 
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take the average of the best-calculated values of the parameters for each s window length. Fourth, forward 

modeling the estimated model parameters, to calculate the matching between the calculated and observed 

anomalies, to get the minimum root mean square. This indicates a better solution and parameters values, as shown 

in the objective function equation. 

2.4. Synthetic models 

2.4.1. Model no. 1: influence of a two-sided fault, with different orders of regional anomaly model 

   The examination of the accuracy of the algorithm, when it is applied to a model with interfering structures, 

a 100 km gravity data profile was generated; a two-sided fault model was generated. This profile (the amplitude 

coefficient M = 200 mGal, the depth to the middle of the upthrown plane zup = 2 km, the dip angle value θ = 34o, 

the depth to the middle of the downthrown plane zdown = 4 km and the origin of the fault x0 = 50 km) and at the 

first case, adding a second order regional, without and with 5%, and 10% random noises.  

 

 

 

 

   The third horizontal derivative was applied to the gravity anomaly, using several s-values (s = 3:1:9 km) 

(Fig 3a); then, the PSO technique was applied to estimate the fault parameters. The estimated parameters are the 

amplitude coefficient M = 199.95 ± 1.04 mGal, the depth to the middle of the upthrown plane zup = 2 ± 0 km, the 

dip angle value θ = 34.1 ± 0.65o, the depth to the middle of the downthrown plane zdown = 4.04 ± 0.05 km, the 

origin of the fault xo = 50.17 ± 0.49 km and the root mean square of the error = 0.6422 mGal, in the case of free 

Fig 3: The composite gravity anomaly of a two-sided fault 

model and a deep-seated second-order regional structure. 

The calculated anomaly, by applying the third horizontal 

derivative, is also shown. 

 

Fig.3a: The third horizontal derivative anomalies, using 

different s values of Fig (3), are shown. 
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noise model. Fig (3) shows the observed and predicted parameters of the two-sided fault, by applying the PSO to 

the third horizontal derivatives anomalies (Table 1), and the predicted parameters are the amplitude coefficient 

M = 200.84 ± 3.58 mGal, the depth to the middle of the upthrown plane zup = 2.06 ± 0.18 km, the dip angle value 

θ = 32.8 ± 2.57o, the depth to the middle of the downthrown plane zdown = 3.9 ± 0.2 km, the origin of the fault xo 

= 49.82 ± 0.84 km, and the root mean square of the error = 4.0569 mGal, in the case of adding 5% random noises, 

as shown in Fig (3b). Fig (3c) shows the third horizontal derivative anomaly with 5% random noises.  

  In the case of adding 10% random noises to the same model, Fig (3d) shows the predicted parameters are the 

amplitude coefficient M = 196.03 ± 1.22 mGal, the depth to the middle of the upthrown plane zup = 2.06 ± 0.29 

km, the dip angle value θ = 30.9 ± 0.83o, the depth to the middle of the downthrown plane zdown = 4.17 ± 0.2 km, 

the origin of the fault xo = 49.27 ± 1.04 km and the root mean square of the error = 11.1592 mGal, as shown in 

Table (1). Fig (3e) shows the horizontal derivative anomalies, after adding 10% random noises, using different s 

values. 

 

 

 

 

 

 

 

Fig. 3b: The composite gravity anomaly of a two-sided fault 

model and a deep-seated second-order regional structure, 

with 5% random noises. The calculated anomaly, by 

applying the third horizontal derivative, is also shown. 

 

Fig. 3c: The third horizontal derivative anomalies, using 

different s values of Fig (3b). are shown. 
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  Adding a higher order of the regional anomaly, to test the presented scheme and its capability to deal with the 

third order regional anomaly, in the noise-free case and (5% & 10%) random noises level cases. Table (2) shows 

the estimated parameters, using the presented scheme, as follows in the noise-free, M = 202.66 ± 0.74 mGal, zup 

= 2.07 ± 0.11 km, θ = 32.09 ± 1.21o, zdown = 4.16 ± 0.1 km, xo = 49.47 ± 0.79 km and the root mean square of the 

error = 4.0955 mGal (Fig 4). Figure (4a) shows the third horizontal anomaly of the previous model. 

 

 In the case of 5% random noises, the predicted parameters are M = 203.07 ± 3.76 mGal, zup = 1.89 ± 0.13 km, θ 

= 36.01 ± 1.21o, zdown = 3.76 ± 0.09 km, xo = 48.62 ± 0.5 km and the root mean square of the error = 7.0464 mGal 

as shown in Fig (4b). Figure (4c) shows the third horizontal derivative anomaly of the previous model in the case 

of 5% random noises. 

Figure 3d. The composite gravity anomaly of a two-sided fault 

model and a deep-seated second-order regional structure, with 

10% random noises. The calculated anomaly, by applying the 

third horizontal derivative, is also shown. 

 

Figure 3e. The third horizontal derivative anomalies, using 

different s values of Fig (3d), are shown. 
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Figure 4. The composite gravity anomaly of a two-sided fault 

model and a deep-seated third-order regional structure. The 

calculated anomaly, by applying the third horizontal derivative, 

is also shown. 

 

Figure 4a. The third horizontal derivative anomalies, using 

different s values of Fig (4). are shown. 

Figure 4b. The composite gravity anomaly of a two-sided fault 

model and a deep-seated third-order regional structure, with 

5% random noises. The calculated anomaly, by applying the 

third horizontal derivative, is also shown. 

Figure 4c. The third horizontal derivative anomalies, using 

different s values of Fig (4b), are shown 
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   In the case of 10% random noises, the predicted parameters are M = 206.33 ± 2.02 mGal, zup = 2.13 ± 

0.15 km, θ = 35.65 ± 1.45o, zdown = 3.68 ± 0.12 km, xo = 51.46 ± 0.5 km and the root mean square of the error = 

14.0956 mGal, as shown in Fig (4d). Figure (4e) shows the third horizontal derivative anomaly of the previous 

model in the case of 10% random noises. 

  Model no. 2: influence of a two-sided fault, with two different spherical structures model 

   A two-sided fault model with the following parameters: (the amplitude coefficient M = 370 mGal, the 

depth to the middle of the upthrown plane zup = 3 km, the dip angle value θ = 42o, the depth to the middle of the 

downthrown plane zdown = 5 km and the origin of the fault x0 = 50 km) and two spherical structures with 

parameters as follows: (the depth to the middle of the first sphere z1 = 4 km, the amplitude coefficient of the first 

sphere M1 = 320 mGal, the depth to the middle of the second sphere z2 = 2 km, the amplitude coefficient of the 

second sphere M2 = 210 mGal, the location of the first sphere xO1 = 30 km and the location of the second sphere 

xO2 = 70 km) generates a gravity profile with a length of 100 km. The model was used, without and with 5% and 

Figure 4d. The composite gravity anomaly of a two-sided fault 

model and a deep-seated third-order regional structure, with 

10% random noises. The calculated anomaly, by applying the 

third horizontal derivative, is also shown. 

Figure 4e. The third horizontal derivative anomalies, using 

different s values of Fig (4d), are shown. 
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10% random noises. The third horizontal gradient was applied to the composite anomaly, using several s-values 

(s = 3:1:9 km) (Fig 5a). The PSO technique was applied to estimate the fault parameters. The estimated parameters 

are M = 369.99 ± 1.01 mGal, zup = 3.02 ± 0.04 km, θ = 42.35 ± 1.02o, zdown = 4.99 ± 0.07 km, xo = 50.09 ± 0.23 

km and the root mean square of the error = 0.6350 mGal, in the case of free noise model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig (5) shows the observed and predicted parameters of the two-sided fault by applying the PSO to the 

third horizontal derivatives anomalies Table (3) in which the predicted parameters are M = 372.24 ± 2.92 mGal, 

zup = 3.07 ± 0.09 km, θ = 43.01 ± 1.41o, zdown = 4.81 ± 0.17 km, xo = 49.49 ± 0.22 km and the root mean square 

of the error = 7.6721 mGal, in the case of adding 5% random noises, as shown in Fig (5b). Fig (5c) represents the 

third horizontal derivative anomaly with 5% random noises. In the case of adding 10% random noises to the same 

model, Fig (5d) shows the predicted parameters are M = 377.3 ± 1.77 mGal, zup = 2.81 ± 0.09 km, θ = 39.41 ± 

0.94o, zdown = 4.78 ± 0.11 km, xo = 50.87 ± 0.94 km and the root mean square of the error = 18.1373 mGal, as 

shown in Table (3). Fig (5e) represents the horizontal derivative anomalies after adding 10% random noises, 

using different s values. 

 

 

Figure 5. The composite gravity anomaly of a two-sided fault 

model and two different spherical structures. The calculated 

anomaly, by applying the third horizontal derivative, is also 

shown. 

Figure 5a. The third horizontal derivative anomalies, using 

different s values of Fig (5), are shown. 
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Figure 5b. The composite gravity anomaly of a two-sided fault 

model and two different spherical structures, with 5% random 

noises. The calculated anomaly, by applying the third 

horizontal derivative, is also shown. 

 

Figure 5c. The third horizontal derivative anomalies, using 

different s values of Fig (5b), are shown. 

 

Figure 5d. The composite gravity anomaly of a two-sided fault 

model and two different spherical structures, with 10% random 

noises. The calculated anomaly, by applying the third 

horizontal derivative, is also shown. 

 

Figure 5e. The third horizontal derivative anomalies, using 

different s values of Fig (5d), are shown. 
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Model no.3: influence of two neighboring two-sided faults, without and with random noises 

   Two neighboring two-sided faults with different parameters: (the amplitude coefficient of the first fault 

M1 = 410 mGal, the depth to the middle of the shared plane zsh = 3 km, the dip angle of the first fault θ1 = 55o, 

the depth to the middle of the upthrown plane of the first fault z1 = 7 km, the origin of the first fault xo1 = 50 km)  

 

and (the amplitude coefficient of the second fault M2 = 460 mGal, the depth to the middle of the shared plane zsh 

= 3 km, the dip angle of the second fault θ2 = 30o, the depth to the middle of the upthrown plane of the second 

fault z2 = 5 km, the origin of the second fault xo2 = 80 km) generates a gravity profile with a 140 km length Table 

(4). Fig (6) shows the observed and predicted parameters of the two neighboring faults without noises; in which 

the estimated parameters are (M1 = 410.21± 1.4 mGal, zsh = 2.99 ± 0.06 km, θ1 = 55 ± 0.15o, z1 = 7.06 ± 0.05 km, 

xo1 = 49.99 ± 0.01 km, M2 = 462.45± 1.91 mGal, z2 = 4.99 ± 0.06 km, θ2 = 29.98 ± 0.09o, xo2 = 80 ± 0.01 km) 

and the root mean square = 2.6953 mGal.  

Figure 6. The composite gravity anomaly of two neighboring two-sided fault models. The calculated anomaly, by 

applying the third horizontal derivative, is also shown. 
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  Fig (6a) shows the observed and predicted parameters by applying the PSO to the third horizontal 

derivative anomalies with 5% random noises (M1 = 411.65 ± 3.45 mGal, zsh = 3.04 ± 0.29 km, θ1 = 55.93 ± 2.88o, 

z1 = 6.9 ± 0.3 km, xo1 = 50.16 ± 0.7 km, M2 = 463.76 ± 3.95 mGal, z2 = 5.04 ± 0.35 km, θ2 = 31.42 ± 3.37o, xo2 

= 79.94 ± 0.67 km) and the root mean square = 13.4619 mGal. 

  Fig (6b) shows the observed and predicted parameters by applying the PSO to the third horizontal 

derivative anomalies with 10% random noises (M1 = 414.55 ± 6.58 mGal, zsh = 3.11 ± 0.47 km, θ1 = 55.86 ± 

3.34o, z1 = 7.06 ± 0.53 km, xo1 = 49.67 ± 0.81 km, M2 = 464.94 ± 6.24 mGal, z2 = 5.14 ± 0.4 km, θ2 = 31.93 ± 

3.59o, xo2 = 79.94 ± 0.67 km) and the root mean square = 27.3604 mGal. Table (4). Figs. 6c, 6d and 6e show the 

third horizontal derivative anomalies using different s values (s= 2: 1: 10) without and with different levels of 

random noises, 5%, and 10%, respectively. 

Figure 6a. The composite gravity anomaly of two 

neighboring two-sided fault models. The calculated 

anomaly is also shown, by applying the third horizontal 

derivative, with 5% random noises. 

 

Figure 6b. The composite gravity anomaly of two 

neighboring two-sided fault models. The calculated 

anomaly is also shown, by applying the third horizontal 

derivative, with 10% random noises. 
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2.5. Real field examples 

Real dataset: The Seattle fault system, Puget Lowlands, Western Washington, The USA 

Figure 6c. The third horizontal derivative anomalies, 

using different s values of Fig (6), are shown. 

 

Figure 6d. The third horizontal derivative anomalies, 

using different s values of Fig (6a), are shown. 

 

Figure 6e. The third horizontal derivative anomalies, 

using different s values of Fig (6b), are shown. 
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   The algorithm has been examined formerly, using three different synthetic models without and with 

noises; the algorithm has been utilized on a real dataset, that was measured on the Seattle fault system, where The 

Puget Lowlands are located in the interior of the front region of the Cascadia Subduction Area. It is surrounded 

by the Cascade volcanic arc, the Old Mesozoic Terrane East and North, the Olympic Mountains and the Exhumed 

Accretion Complex West. The Puget Lowlands, at a depth of 25–30km, cover the Siletz Terrane, basalt and Island 

Arch rock composition (Simons and Crosson, 1997; and Brink, et al., 2002). The basement rocks below the 

settling basin reached 2.195–2.637 km deep (Rau and Johnson, 1999). These basement rocks are basalts 

interbedded with tuff, conglomerate, siltstone and mafic rocks, intercalated with sandstone (Brink, et al., 2002) 

(Fig 6).  

 

 

 

 

 

Figure 7. Real dataset: Geologic map (modified, after 

Brink, et al., 2002) of the Seattle fault system, Puget 

lowland, Western Washington, the United States of 

America. 

 

Figure 7a. Observed and predicted gravity data, by 

applying the current algorithm, are also shown. 
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 Fig (7) represents the location of the measured gravity profile and the study area, which is nearly normal to the 

Seattle fault zone, which mainly consists of two steeply dipping layers deformed by two or more faults (Johnson, 

et al., 1994). The Seattle fault area is a reverse and thrust fault up to 7 km wide and over 70 km long, delimiting 

the north on edge of the Seattle uplift. It stands out, concerning its East–West orientation, depth to the bedrock 

and the hazard to an urban population center. 

 

 

 

  Fig (7a) shows the estimated parameters by applying the PSO algorithm to the third horizontal derivative 

anomalies, using varying values of s (s = 1:0.5:5 km), as shown in Fig (7b). The estimated parameters are (the 

amplitude coefficient M = -51.49± 6.73 mGal, the depth to the middle of the upthrown plane zup = 1.51 ± 0.1 km, 

the dip angle value in degrees θ = 38.55 ± 3.62o, the depth to the middle of the downthrown plane zdown = 3.88 ± 

0.37 km, the origin of the fault xo = 27.26 ± 0.87 km). The root mean square of the error = 1.47 mGal. Table (5). 

Fig (7c) shows the convergence rate of the PSO algorithm, using different iteration values. 

  Table (6) compares the previously published results and the present method result of the actual data set. It shows 

a close result and a good match with the geological model. 

 

 

Figure 7b. The third horizontal derivative anomalies, 

using different s values of Fig (7a), are shown. 

 

Figure 7c. The convergence rate of the particle swarm 

optimization, after applying the third horizontal 

derivatives. 
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5. Conclusions 

   The current study, for the two-sided fault interpretation, uses the gravity data measured along a profile. 

This scheme depends upon the third horizontal derivative anomalies, to reduce the effect of the regional field data 

(calculated by using different values of s, to reduce the effect of the different polynomial orders of the regional 

data, up to the third polynomial order). Then, applying the PSO algorithm for estimating the parameters of the 

two-sided fault structure. The scheme has been applied to three synthetic models and a real example from the 

USA. It finds that, the scheme is stable, concerning noise levels and can estimate the parameters, with acceptable 

accuracy. 
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Table 1.  Model no. 1: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of 

the gravity profile (100 km) due to composite anomaly of two-sided dipping fault model (𝑀 = 200 mGal, zup = 2 

km,  𝜃 = 34o, zdown = 4 km and  𝑥0 = 50 km) and second order regional without and with 5%, 10% random noise.   
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Table 2.  Model no. 1: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of 

the gravity profile (100 km) due to composite anomaly of two-sided dipping fault model (M = 200 mGal, zup = 2 

km, θ = 34o, zdown = 4 km and  x0 = 50 km) and third order regional without and with 5%, 10% random noise. 
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Table 3.  Model no. 2: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of 

the gravity profile (100 km) due to composite anomaly of two-sided dipping fault model (𝑀 = 370 mGal, zup = 3 

km,  𝜃 = 42o, zdown = 5 km and  𝑥0 = 50 km) and two spherical structures with different amplitude coefficient, and 

at different depths as follow (z1 = 4 km, M1 = 320 mGal, z2 = 2 km, M2 = 210 mGal, xO1 = 30 km, and xO2 = 70 

km) without and with 5%, 10% random noise.  
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Table 4.  Model no. 3: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of 

the gravity profile (140 km) due to composite anomaly of two two-sided dipping fault models (M1= 410 mGal, 

zsh= 3 km, z1= 7 km, 𝜃1 = 55 o) and (M2= 460 mGal, zsh= 3 km, z1= 7 km, 𝜃1 = 55 o) without and with 10% random 

noise. 
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Table 5. Results of the PSO-inversion algorithm applied to the third horizontal derivative  anomalies of the Seattle 

fault, Puget Lowland, western Washington, The United States of America. 

 

 

Table 6. A comparison between previous published results and the present method of the Seattle fault, Puget 

Lowland, western Washington, The United States of America 
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