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Defining the causative source parameters is an essential tool in geophysical exploration and is
often carried out using gravity subject datasets. Naturally stimulated metaheuristic
optimization algorithms are primarily based totally on a few stochastic approaches, and have
attracted greater interest over the past decade, because of their functionality to discover the
finest answer of the version parameters from the explored area. This is done after making use
of the distinct horizontal derivative orders at the located information, to lessen the local
impacts. The most desirable management parameters of the particle swarm optimization rules
were decided, using few parameters tuning research on artificial anomalies. The option for the
optimization issues advanced with the aid of using the horizontal derivatives on the observed
gravity data. So, the present-day inversion algorithm uses the third horizontal derivative, to
minimize the regional anomaly and the particle swarm optimization, to estimate the different
source model parameters. The present-day inversion algorithm was carried out on three
different synthetic models (a two-sided dipping fault version with second and third orders
regional, and without and with 5% and 10% random noises, a two-sided dipping fault with a -
sphere shape model, without and with 5% and 10% random noises, and a -sided dipping fault
model, without and with 10% random noises) and an actual field data set (from the USA).
Applications have proven that, the present-day inversion algorithm provided close results.
However, it indicates that, applying the higher horizontal derivatives turned into greater power
in decreasing the regional component. The acquired results declared that, the present-day
inversion algorithm works nicely, even with inside the existence of noises.
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1. Introduction

Gravity inversion methods have proven to be a powerful tool in geophysics, providing insight into the
subsurface density structure and helping to solve various exploration problems. These methods have been widely
used in oil and gas exploration, mineral exploration, cavity finding, archeological site exploration, geothermal
investigation, basin configuration and structures of the subsurface. (Panisova and Pasteka, 2009; Araffa et al.,
2015; Bouhlassa et al., 2017; Uwiduhaye et al., 2018; Rezaie, 2019; Al-Farhan et al., 2019; Essa et al., 2020;
Kumar et al., 2020; Essa and G"eraud, 2020; and Abedi, 2020) However, despite the success of these methods,
they are not without limitations. (Tarantola, 2005) In particular, the inversion of the gravity data can be
nonunique, making the inverse problem a poor setting.

The researchers worked hard to create and modify various techniques, to address these limitations and
interpret fault-generated gravity data. These methods can be divided into two classifications: Some rely on simple
geometrical models, and some use more complexes models. Simple geometrical models, such as graphic and
mathematical methods, are often used to model buried structures and mainly focus on determining characteristic
parameters of dipping faults. However, these approaches can be viewed as a limitation. Therefore, researchers
have modified techniques, that consider more complex geometry models to overcome these limitations.

One such method is the method developed by Essa (2013) that based on the variance analysis. This method
can simultaneously calculate the dip of the fault and the depth to the center of the fault upthrown plane from the
horizontal derivatives of the residual gravity anomaly. However, this method has limitations: valid only if the
regional gravity anomaly is represented by up to a first-order polynomial. Furthermore, the accuracy of the results
depends on the accuracy, to which the origin of the fault is determined from the observed gravity data, and it does
not consider the effect of the downthrown plane of the fault model.

Another method is the least-squares method developed by Abdelrahman and Essa (2015), which can
successively estimate the dip value in degrees of the fault model, the depth to the upthrown plane of a thin fault
and the amplitude coefficient, using the moving-average residual gravity anomalies. This method can overcome
some of the limitations of the previous method, but it also has limitations.

Nowadays, there are many methods have been developed, based on artificial intelligence (Al). As genetic
algorithm (Montesinos, et al., 2005; and Di Maio, et al., 2020), the (DE) differential evolution algorithm (Ekinci,
et al., 2016; and Balkaya, et al., 2017), the gravitational search algorithm (Rashedi, et al., 2009), the dolphin
echolocation (Kaveh and Faroudi, 2013), the ant colony optimization (ACO) algorithm (Dorigo and Stitzle
2003), the simulated annealing algorithm (SA) (Biswas, 2015), the particle swarm optimization (PSO) algorithm
(Essa, 2021; Essa, et al., 2021b; and Essa, et al., 2022) Those algorithms are not unusualplace amongst
researchers, due to their versatility and advanced cappotential to cope with a style of problems.

This paper proposes a new approach to interpret the gravity data generated by faults. It is based on using
the third horizontal derivative, through graticule spacing and applying the Particle Swarm Optimization (PSO)
algorithm on evaluated anomalies from horizontal derivatives. This paper aims to improve the accuracy of gravity
inversion results, by taking into account more complex geometry models and overcoming the limitations of
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previous methods. The paper will discuss the results of applying this new approach to real-world data and will
provide a comparison to the results obtained, using the traditional methods.

2. Methodology:
2.1. Forward modeling

Figure (1) shows the two-sided (normal or reverse) fault with the parameters (zup is depth to the middle
of the upthrown side, zdown is depth to the middle of the downthrown side of the fault, xo indicates the location of
the fault on the surface, xi is the location of the observation points, © is the angle of the fault in degrees, M is the
amplitude coefficient calculated using the gravitational constant G, the density contrast Ap, and the thickness of
the faulted side t)along the profile of gravity data, as given by the following equation (1) (Hinze et al., 2013):

1 — ( i~ 0) 1 _ ( i— O)
(%1 X0, Zup, Zaown, M, 0) = M [1 + —tan 1 (i + cotH) ——tan 1 (&) + cotB] .. (1)

Zup Zdown

3 x(km)

b 1%

Depth (km)
T

Fig. 1: A sketch, showing the parameters of a two-sided dipping fault structure.

2.2. Formulation of the inverse scheme

As a first step, the scheme starts by using the data generated, through the forward modeling in a synthetic
example or by digitizing the data for the actual data set. Then, applying the third horizontal derivative technique,

which was considered pioneering in separating the regional anomaly from the observed gravity data along the
profile.

Essa and Munschy (2019) described the first horizontal derivative by the following equation:

5) = QGurs)-gn)

Agx(xi'

The third horizontal derivative of the different s values is called the graticule spacing, as the following equation
can be used to separate the regional anomaly from the original total data (Darmawan, et al., 2019).
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Fig. 2: A flowchart, illustrating the model parameters estimation of the presented method.

2.3. The particle swarm optimization

Recent trends use evolutionary, stochastic heuristic and nature-inspired algorithms, to deal with non-linear
problems. Nature-inspired algorithms, such as differential evolution, particle swarm optimization, cuckoo search
and firefly algorithms are simple, flexible and efficient in solving many real-world problems.

In this paper, the applied algorithm is the particle swarm optimization, that established by Eberhart and
Kennedy (1995). Inspired by the bird's search for natural food, the birds presented particles, that work in the
search field to find the solution. Each particle has a random position and velocity vector. The location vectors are
the parameter values. This technique has been applied to geophysical problems (Singh and Biswas, 2016; and
Karcio™glu and Giirer, 2019). The random particles initiate the swarm and search for sources by describing
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generations. During each iteration of the process, all of the particles upgrade their velocity and location, using
the following formulas:

L+1 __ L L+1 L+1
vt = vl + erand (Tpese — %) + corand(Jpese — %7+)

L+1 __ L L+1
Xt = x4 v

where: ij is the present location of the j™" particles at the L™ iterations, v* is the velocity of the j™ particles

at the L' iterations, a random number between [0 and 1] has been used, through utilizing the rand function, the
cognitive, the social and the inertial weight, that are the controlling parameters of the convergence of the particles,
respectively represented by the three symbols c1, c2 and c3(Parsopoulos and Vrahatis, 2002). The parameter c;
contributes towards the self-exploration of a particle; c, is the social parameter, which contributes towards the
motion of the particles in a global direction; and c5 is the inertial factor, that controls the velocity of each particle
(Roshan and Singh, 2017).

Estimating the global minimum of the objective function (JKobjective) is the primary goal of using the particle
swarm optimization (PSO) techniques, to estimate the model parameters of dipping fault, through the gravity
data. (M, zup, Zdown, Xo, and ©). The initial parameters of the model are incrementally updated, while the iterative
process works to achieve the best fit of the observed and predicted gravity data.

To estimate the best model parameters using the following objective function (XKobjective):

1 u
)Kobjective = \/Z Z 1[A g;_)bs(xj) - Agf-alc(xj)]z
i=

where: u represent the observed data point numbers, A g2? represent the gravity data measurements, and

]
A gf“’c represents the calculated gravity data at each data point x;.

The flowchart of the procedures of estimating the model parameters represented in figure (2) following the
incoming steps: The gravity data of the profile is read as the first step of the procedure, then applying the third
horizontal derivatives as the second step, to reduce the effect of the regional data with different orders. Applying
the code of the particle swarm optimization (PSO) will come, as a third step, to estimate the dipping fault
parameter, which considers the best parameter of the fault. In contrast, the particles reach the global minimum by
updating their velocity and location for each parameter. Using a wide range of iterations and different values of
the population of birds or, as indicated here, as the number of particles increase, it takes much longer to estimate
the best global solution. It keeps different answers until reaching the stable area, as the iteration number increase
and finally applying the calculated parameters, using the forward model, to see the match between the observed
and calculated gravity anomalies.

Figure (2). A flowchart of the procedures for estimating the two-sided fault model parameters. These four
steps are: First, read the gravity data profile. Second, applying the third horizontal derivative with various window
lengths (different s values), to minimize the effect of the regional background anomaly, and third using the
horizontal derivative anomalies to estimate the best-buried fault parameters by applying the PSO algorithm. This
updates the location and velocity of each particle, until the best global solution is reached. Following that, we
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take the average of the best-calculated values of the parameters for each s window length. Fourth, forward
modeling the estimated model parameters, to calculate the matching between the calculated and observed
anomalies, to get the minimum root mean square. This indicates a better solution and parameters values, as shown
in the objective function equation.

2.4. Synthetic models
2.4.1.Model no. 1: influence of a two-sided fault, with different orders of regional anomaly model

The examination of the accuracy of the algorithm, when it is applied to a model with interfering structures,
a 100 km gravity data profile was generated; a two-sided fault model was generated. This profile (the amplitude
coefficient M = 200 mGal, the depth to the middle of the upthrown plane zup = 2 km, the dip angle value 6 = 34°,
the depth to the middle of the downthrown plane zdown = 4 km and the origin of the fault xo = 50 km) and at the
first case, adding a second order regional, without and with 5%, and 10% random noises.
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Fig 3: The composite gravity anomaly of a two-sided fault Fig.3a: The third horizontal derivative anomalies, using
model and a deep-seated second-order regional structure. different s values of Fig (3), are shown.

The calculated anomaly, by applying the third horizontal

derivative, is also shown.

The third horizontal derivative was applied to the gravity anomaly, using several s-values (s = 3:1:9 km)
(Fig 3a); then, the PSO technique was applied to estimate the fault parameters. The estimated parameters are the
amplitude coefficient M = 199.95 + 1.04 mGal, the depth to the middle of the upthrown plane zup = 2 £ 0 km, the
dip angle value 6 = 34.1 + 0.65°, the depth to the middle of the downthrown plane zdown = 4.04 £ 0.05 km, the
origin of the fault xo = 50.17 + 0.49 km and the root mean square of the error = 0.6422 mGal, in the case of free
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noise model. Fig (3) shows the observed and predicted parameters of the two-sided fault, by applying the PSO to
the third horizontal derivatives anomalies (Table 1), and the predicted parameters are the amplitude coefficient
M = 200.84 + 3.58 mGal, the depth to the middle of the upthrown plane zup = 2.06 + 0.18 km, the dip angle value
0 =32.8 £ 2.57°, the depth to the middle of the downthrown plane zdown = 3.9 £ 0.2 km, the origin of the fault xo
=49.82 £ 0.84 km, and the root mean square of the error = 4.0569 mGal, in the case of adding 5% random noises,
as shown in Fig (3b). Fig (3c) shows the third horizontal derivative anomaly with 5% random noises.

In the case of adding 10% random noises to the same model, Fig (3d) shows the predicted parameters are the
amplitude coefficient M = 196.03 + 1.22 mGal, the depth to the middle of the upthrown plane zup = 2.06 £ 0.29
km, the dip angle value 6 = 30.9 & 0.83°, the depth to the middle of the downthrown plane zgown = 4.17 £ 0.2 km,
the origin of the fault xo = 49.27 £ 1.04 km and the root mean square of the error = 11.1592 mGal, as shown in
Table (1). Fig (3e) shows the horizontal derivative anomalies, after adding 10% random noises, using different s
values.
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Fig. 3c: The third horizontal derivative anomalies, using
different s values of Fig (3b). are shown.
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Fig. 3b: The composite gravity anomaly of a two-sided fault
model and a deep-seated second-order regional structure,
with 5% random noises. The calculated anomaly, by
applying the third horizontal derivative, is also shown.
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Figure 3e. The third horizontal derivative anomalies, using

Figure 3d. The composite gravity anomaly of a two-sided fault different s values of Fig (3d), are shown.

model and a deep-seated second-order regional structure, with
10% random noises. The calculated anomaly, by applying the
third horizontal derivative, is also shown.

Adding a higher order of the regional anomaly, to test the presented scheme and its capability to deal with the
third order regional anomaly, in the noise-free case and (5% & 10%) random noises level cases. Table (2) shows
the estimated parameters, using the presented scheme, as follows in the noise-free, M = 202.66 + 0.74 mGal, zup
=2.07=+0.11 km, 6 =32.09 £ 1.21°, Zdown = 4.16 £ 0.1 km, Xo = 49.47 + 0.79 km and the root mean square of the
error = 4.0955 mGal (Fig 4). Figure (4a) shows the third horizontal anomaly of the previous model.

In the case of 5% random noises, the predicted parameters are M = 203.07 £ 3.76 mGal, zyp = 1.89 £ 0.13 km, 0
=36.01 £ 1.21°, Zdown = 3.76 = 0.09 km, Xo = 48.62 = 0.5 km and the root mean square of the error = 7.0464 mGal
as shown in Fig (4b). Figure (4c) shows the third horizontal derivative anomaly of the previous model in the case
of 5% random noises.
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Figure 4. The composite gravity anomaly of a two-sided fault Figure 4a. The third horizontal derivative anomalies, using
model and a deep-seated third-order regional structure. The different s values of Fig (4). are shown.
calculated anomaly, by applying the third horizontal derivative,
is also shown.
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Figure 4d. The composite gravity anomaly of a two-sided fault
model and a deep-seated third-order regional structure, with
10% random noises. The calculated anomaly, by applying the
third horizontal derivative, is also shown.

In the case of 10% random noises, the predicted parameters are M = 206.33 £ 2.02 mGal, zuyp = 2.13 £
0.15 km, 6 = 35.65 £ 1.45°, Zdown = 3.68 £ 0.12 km, Xo = 51.46 £ 0.5 km and the root mean square of the error =
14.0956 mGal, as shown in Fig (4d). Figure (4e) shows the third horizontal derivative anomaly of the previous
model in the case of 10% random noises.

Model no. 2: influence of a two-sided fault, with two different spherical structures model

A two-sided fault model with the following parameters: (the amplitude coefficient M = 370 mGal, the
depth to the middle of the upthrown plane zup = 3 km, the dip angle value 6 = 42°, the depth to the middle of the
downthrown plane zdown = 5 km and the origin of the fault xo = 50 km) and two spherical structures with
parameters as follows: (the depth to the middle of the first sphere z1 = 4 km, the amplitude coefficient of the first
sphere M1 = 320 mGal, the depth to the middle of the second sphere z2 = 2 km, the amplitude coefficient of the
second sphere M2 = 210 mGal, the location of the first sphere xo1 = 30 km and the location of the second sphere
Xoz2 = 70 km) generates a gravity profile with a length of 100 km. The model was used, without and with 5% and
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10% random noises. The third horizontal gradient was applied to the composite anomaly, using several s-values
(s=3:1:9 km) (Fig 5a). The PSO technique was applied to estimate the fault parameters. The estimated parameters
are M = 369.99 + 1.01 mGal, zup = 3.02 £ 0.04 km, 6 = 42.35 + 1.02°, Zdown = 4.99 £ 0.07 km, Xo = 50.09 + 0.23
km and the root mean square of the error = 0.6350 mGal, in the case of free noise model.
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Figure 5a. The third horizontal derivative anomalies, using

. . ) . different s values of Fig (5), are shown.
Figure 5. The composite gravity anomaly of a two-sided fault

model and two different spherical structures. The calculated
anomaly, by applying the third horizontal derivative, is also
shown.

Fig (5) shows the observed and predicted parameters of the two-sided fault by applying the PSO to the
third horizontal derivatives anomalies Table (3) in which the predicted parameters are M = 372.24 + 2.92 mGal,
Zup = 3.07 £ 0.09 km, 6 = 43.01 + 1.41°, Zdown = 4.81 + 0.17 km, Xo = 49.49 + 0.22 km and the root mean square
of the error =7.6721 mGal, in the case of adding 5% random noises, as shown in Fig (5b). Fig (5c¢) represents the
third horizontal derivative anomaly with 5% random noises. In the case of adding 10% random noises to the same
model, Fig (5d) shows the predicted parameters are M = 377.3 + 1.77 mGal, zyp = 2.81 £ 0.09 km, 6 = 39.41 +
0.94°, Zdown = 4.78 £ 0.11 km, Xo = 50.87 £ 0.94 km and the root mean square of the error = 18.1373 mGal, as
shown in Table (3). Fig (5e) represents the horizontal derivative anomalies after adding 10% random noises,
using different s values.
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Figure 5b. The composite gravity anomaly of a two-sided fault
model and two different spherical structures, with 5% random
noises. The calculated anomaly, by applying the third

horizontal derivative, is also shown.
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Figure 5d. The composite gravity anomaly of a two-sided fault
model and two different spherical structures, with 10% random
noises. The calculated anomaly, by applying the third

horizontal derivative, is also shown.
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Model no.3: influence of two neighboring two-sided faults, without and with random noises

Two neighboring two-sided faults with different parameters: (the amplitude coefficient of the first fault
Mz = 410 mGal, the depth to the middle of the shared plane zsh = 3 km, the dip angle of the first fault 61 = 55°,
the depth to the middle of the upthrown plane of the first fault z: = 7 km, the origin of the first fault Xo1 = 50 km)
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~  Body parameters: + Composite anomaly
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1020 N
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7 01=58 Mp = 41021 % 1.4 mGal
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Figure 6. The composite gravity anomaly of two neighboring two-sided fault models. The calculated anomaly, by
applying the third horizontal derivative, is also shown.
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and (the amplitude coefficient of the second fault M2 = 460 mGal, the depth to the middle of the shared plane zsh
= 3 km, the dip angle of the second fault 62 = 30°, the depth to the middle of the upthrown plane of the second
fault z2 = 5 km, the origin of the second fault x.2 = 80 km) generates a gravity profile with a 140 km length Table
(4). Fig (6) shows the observed and predicted parameters of the two neighboring faults without noises; in which
the estimated parameters are (M1 = 410.21+ 1.4 mGal, zsh =2.99 £ 0.06 km, 61 = 55 £ 0.15°, z1 = 7.06 = 0.05 km,
Xo1 = 49.99 £ 0.01 km, M2 = 462.45+ 1.91 mGal, z2 = 4.99 + 0.06 km, 02 = 29.98 + 0.09° Xo2 = 80 £ 0.01 km)
and the root mean square = 2.6953 mGal.
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Figure 6a. The composite gravity anomaly of two

neighboring two-sided fault models. The calculated

anomaly is also shown, by applying the third horizontal
derivative, with 5% random noises.

Fig (6a) shows the observed and predicted parameters by applying the PSO to the third horizontal
derivative anomalies with 5% random noises (M1 = 411.65 + 3.45 mGal, zsh = 3.04 + 0.29 km, 61 = 55.93 + 2.88°,
21 =6.9 £ 0.3 km, Xo1 =50.16 + 0.7 km, M2 = 463.76 + 3.95 mGal, z2 = 5.04 £ 0.35 km, 02 = 31.42 + 3.37°, Xo2
=79.94 £ 0.67 km) and the root mean square = 13.4619 mGal.

Fig (6b) shows the observed and predicted parameters by applying the PSO to the third horizontal
derivative anomalies with 10% random noises (M1 = 414.55 + 6.58 mGal, zsh = 3.11 £+ 0.47 km, 01 = 55.86 £
3.34° 71 = 7.06 £ 0.53 km, Xo1 = 49.67 + 0.81 km, M2 = 464.94 + 6.24 mGal, z2 = 5.14 £ 0.4 km, 02 = 31.93 +
3.59° Xo2 = 79.94 £ 0.67 km) and the root mean square = 27.3604 mGal. Table (4). Figs. 6¢, 6d and 6e show the
third horizontal derivative anomalies using different s values (s= 2: 1: 10) without and with different levels of

random noises, 5%, and 10%, respectively.
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Figure 6c. The third horizontal derivative anomalies,

Figure 6d. The third horizontal derivative anomalies,
using different s values of Fig (6a), are shown.

using different s values of Fig (6), are shown.

2.5. Real field examples
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Figure 6e. The third horizontal derivative anomalies,
using different s values of Fig (6b), are shown.

Real dataset: The Seattle fault system, Puget Lowlands, Western Washington, The USA
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The algorithm has been examined formerly, using three different synthetic models without and with
noises; the algorithm has been utilized on a real dataset, that was measured on the Seattle fault system, where The
Puget Lowlands are located in the interior of the front region of the Cascadia Subduction Area. It is surrounded
by the Cascade volcanic arc, the Old Mesozoic Terrane East and North, the Olympic Mountains and the Exhumed

Accretion Complex West. The Puget Lowlands, at a depth of 25-30km, cover the Siletz Terrane, basalt and Island
Arch rock composition (Simons and Crosson, 1997; and Brink, et al., 2002). The basement rocks below the
settling basin reached 2.195-2.637 km deep (Rau and Johnson, 1999). These basement rocks are basalts

interbedded with tuff, conglomerate, siltstone and mafic rocks, intercalated with sandstone (Brink, et al., 2002)
(Fig 6).
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Figure 7. Real dataset: Geologic map (modified, after
Brink, et al., 2002) of the Seattle fault system, Puget

lowland, Western Washington, the United States of

Figure 7a. Observed and predicted gravity data, by
America.

applying the current algorithm, are also shown.
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Fig (7) represents the location of the measured gravity profile and the study area, which is nearly normal to the
Seattle fault zone, which mainly consists of two steeply dipping layers deformed by two or more faults (Johnson,
et al., 1994). The Seattle fault area is a reverse and thrust fault up to 7 km wide and over 70 km long, delimiting
the north on edge of the Seattle uplift. It stands out, concerning its East—West orientation, depth to the bedrock
and the hazard to an urban population center.
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Figure 7b. The third horizontal derivative anomalies, Figure 7c. The convergence rate of the particle swarm
using different s values of Fig (7a), are shown. optimization, after applying the third horizontal
derivatives.

Fig (7a) shows the estimated parameters by applying the PSO algorithm to the third horizontal derivative
anomalies, using varying values of s (s = 1:0.5:5 km), as shown in Fig (7b). The estimated parameters are (the
amplitude coefficient M = -51.49+ 6.73 mGal, the depth to the middle of the upthrown plane zyp = 1.51 + 0.1 km,
the dip angle value in degrees 0 = 38.55 £ 3.62°, the depth to the middle of the downthrown plane zdown = 3.88
0.37 km, the origin of the fault xo = 27.26 = 0.87 km). The root mean square of the error = 1.47 mGal. Table (5).
Fig (7c) shows the convergence rate of the PSO algorithm, using different iteration values.

Table (6) compares the previously published results and the present method result of the actual data set. It shows
a close result and a good match with the geological model.
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5. Conclusions

The current study, for the two-sided fault interpretation, uses the gravity data measured along a profile.
This scheme depends upon the third horizontal derivative anomalies, to reduce the effect of the regional field data
(calculated by using different values of s, to reduce the effect of the different polynomial orders of the regional
data, up to the third polynomial order). Then, applying the PSO algorithm for estimating the parameters of the
two-sided fault structure. The scheme has been applied to three synthetic models and a real example from the
USA. It finds that, the scheme is stable, concerning noise levels and can estimate the parameters, with acceptable
accuracy.
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Table 1. Model no. 1: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of
the gravity profile (100 km) due to composite anomaly of two-sided dipping fault model (M = 200 mGal, zuyp =2
km, 8 =34° zdown =4 kmand x, = 50 km) and second order regional without and with 5%, 10% random noise.

Results
Noise-free case
Used
D ranges s=3 s=4 s=5 s=6 s=17 s=§ s=9 p Error z‘:ﬁ
0
km = (%) (mGal)
M (mGal) 2200-400 201 198 20041 19954 | 199.71 200 201 19995+ 1.04 | 0.0243
Tw (km) 1-9 2 2 2 2 2 2 2 2:0 0
8(degree) | 10-100 | BB | BB | 3¢ | %5 | #7 | 3 33 | 3#1:065 |03067| (g4
Zdown (k) 1-10 41 4 4 4 41 4 41 404:005 |1.0714
x, (km) 40-60 50 50 50 49.89 49.58 50.8 50.91 50.17:0.49 | 0.3371
0
5% Random noise case
200 - 396.34 =
Mimpal | 20040 397.11 384 396.62 400 395.06 | 397.14 | 394.06 334 1.62
lp(km) | 1-9 64 | 67 | 64 | 66 | 63 | 57 | 63 |6382029 | 630
O (degree) | 10-100 | 3710 | 4e06 | 3574 | 3612 | 4425 | 4354 | as7e |args=ans| 4g0 | *OC

Zaown (km) | 1-10 96 93 8.7 8.8 93 94 87 | 9192036 | 210

% (km) | 40-60 | go0) | 6036 | 6965 | 71 | 6949 | 6951 | 7087 | 7009083 | 0.13

10% Random noise case

M (mGal) | -200-400 | 397 | 38167 | 379.71 | 38203 | 384 | 3853 | 3817 [3832=567| 174
Tip (km) 1-9 6.7 6.5 6.8 71 6.7 6.5 68 | 6772019 | 127
O (degree) | 10-100 | 44.74 | 4505 | 4604 | 471 | 4743 | 4657 | 4615 | 45982094 | 1495 | 1LI6
Zan (km) | 1-10 86 83 86 82 83 84 87 | 8472016 | 393
x,(km) | 40-60 | 7205 | 7189 | 7241 | 7309 | 7055 | 713 | 7279 | 72122075 | 3.03
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Table 2. Model no. 1: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of
the gravity profile (100 km) due to composite anomaly of two-sided dipping fault model (M = 200 mGal, zup = 2
km, 6 = 34°, zdown =4 km and Xo = 50 km) and third order regional without and with 5%, 10% random noise.

Results
T Used Noise-free case i
ranges s=3 s=4 s=5§ s=6 s=7 s=8 s=9 Error
km | km | km | km | km | km | km | () |
(mGal)
-200- 202.1 203 20401 202 201.85 | 202.53 203 202.66% | 1.3279
M (mGal) 400 0.74
21, 2.08 189 156 215 21 22 2.07x 3.4286
Zip (km) 1-9 0.11
; ) 2 ; { A . .09z 6134 ,
8 (degree) | 10— 100 32.53 30.08 3152 33.06 31.02 3243 336 3§ 2’.;)*’ 5.613 4.09
Zdovm (km) 1-10 41 418 407 42 424 43 402 416+0.1 | 3.9643
. A : ’ 48, A7% 054
x, (im) 40 — 60 48.58 48.96 50.53 50 50.33 49 8.91 4947+ | 1.0543
0.79
590 Random noise case
-200- 195 205 204.21 | 204.02 | 202.13 | 206.1 205 203.07= | 1.5329
M (mGal) 400 3.76
174 178 189 182 154 199 21 189+ 5.2857
Zup (k) =2 0.13
7. 7. g é ; 4 { 01x : 2
8 (degree) | 10— 100 37.38 3711 36.52 36.21 35.12 3425 35.05 3? (2)1+ 5.8952 205
3.77 38 3.65 3.63 3.7 381 38 376z 6.0714
Zdovm (km) 1-10 0.09
4 48. 48 45, 4507 4 48. 48.62% 757
x, (km) 40— 60 8 8.05 8.63 9.25 9.0 9 8.35 80§52 2.7571
10% Random noise case
-200- 205.08 208 205.14 206 20599 | 2029 | 207.21 | 206.33+ | 3.1657
M (mGal) 400 2.02
2.22 194 221 2.27 185 2.25 21 213+ 6.2857
Zp (bm) | 1-9 015
3 .0 . 7. 5 . ] .65+ | 4.8487
6 (degree) | 10100 33.11 35.03 36.04 37.52 35.88 36.54 35.02 3? i: 848 14.00
3.52 3.83 3.61 3.56 381 373 3.72 3.68% 7.5286
Zdovn (km) | 1-10 0.12
52.01 51.39 50.51 51.05 51.84 50.595 52.04 5146 | 2.522%
x, (km) 40-60 0 05
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Table 3. Model no. 2: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of
the gravity profile (100 km) due to composite anomaly of two-sided dipping fault model (M = 370 mGal, zup =3
km, 8 =42° zsomn =5 kmand x, =50 km) and two spherical structures with different amplitude coefficient, and
at different depths as follow (z1 = 4 km, M1 = 320 mGal, z2 = 2 km, M2 = 210 mGal, xo1 = 30 km, and Xxo2= 70
km) without and with 5%, 10% random noise.

Results
Used Noise-free case
Parameters| - RMS
ranges | s=3 | s=4 | s=5| s=6 | s=7 | s=8 | s=9 é Error SR
km km km km %
(%) (mGal)
100 - 371.02 369 368.31 | 37005 | 3705 3N 370.04 | 369.99:+ | 0.0031
M@Gal) | oy 101
7w (km) 1-8 3 3 3 3.08 3 3.07 3 3.02£0.04 | 0.7618
4127 | 4188 4102 | 4388 4266 | 4271 | 43.05 4235+ | 0.8401
6 (degree) | 10-120 o 0.64
Zdown (km) 1-12 5.06 5.1 489 5 5 491 5 486+0.070.1143
50.04 | 50.39 5044 | 4879 50 50 50 50.09+ | 0.1886
X, (km) | 40-60
0.23
5% Random noise case
100 - 375 375.07 | 368.08 | 368.44 | 37207 | 373 374 372.24+ | 0.6046
MmGal) | g 292
! 5 14 ! ! i & 07£0. .2857
z,,,,(hn) 1-3 3.05 3.2 3.1 2.94 299 3.06 3.1 3.07:0.09 | 2.285
428 4341 41 4155 4306 | 44.07 | 45. 43.01+ .398 AlEH
8 (degree) | 10-120 | 2% ai bl 767
Tia (km) 1-12 46 472 49 48 47 481 512 | 481017 3.8571
49, 48, 49, 487 49, 49, 49, 49 49+ ]
xo(km) 40-60 8.55 8.18 8.53 879 8.63 85 8.22 9.49 1.0286
0.22
10% Random noise case
M ( Gal) 100 - 37809 | 376.18 | 380.1 | 377.08 | 378.25 | 3745 | 37687 3773+ | 19718
" 800 177
Tw (km) 1-8 27 2.83 2.76 252 271 2.83 291 |(281£0.09( 6.381
39.07 | 40.01 40 40.5 378 3866 | 3981 3941+ |6.1735
0 (degree) | 10-120 i 18.14
Zdoven: (k) 1-12 482 49 4483 472 48 462 47 478£0.11 43143
N 50.56 0. 51.02 | 5164 52 48 05 0.8 50.87+ | 1.7371
v, (km) | d0-60 | 0% | 0 1 50.82 b 3
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Table 4. Model no. 3: Results of the PSO-inversion algorithm applied to third horizontal derivative anomalies of
the gravity profile (140 km) due to composite anomaly of two two-sided dipping fault models (M1= 410 mGal,
Zsh=3 km, z1=7 km, 81 =55°) and (M2= 460 mGal, zsh= 3 km, z1= 7 km, 81 = 55°) without and with 10% random
noise.

Results
noise-free case

Parameters | Used ranges

s=2km | s=3km | s=4km | s=Skm | s=6km | s=7Thkm | s=8km | s=0km | *71° é Eé;‘;’ R?fé:l’)“
M; (mGal) | 200-750 | 41213 | 407.06 | 410 410 410 410 | 41095 | 41132 | 41039 | 4102114 | 005
o (k) 1-6 3 3 3.1 3 3 29 3 29 3 2995006 | 037
O:(degree) | 10-100 | 55.14 | 5513 | 55 55 55 55 | 5506 | 5463 | 55 552045 [ 001
< (km) 3-10 7 7 71 7 11 11 7 71 7 7065005 | 0.79
%orfm) | 30-70 | 4999 | 4998 | 50 50 50 50 | 4998 | 50 50| 4999=001 | 001 | 270
Xafm) | 60-100 | 8001 | 8003 | 7999 | 80 80 80 80 80 80 80=001 | 0.00

Oy(degree) | 10-100 | 2092 | 2977 | 30.06 30 30 30 30 3001 | 3002 | 29.98=0.09 | 0.08

My(mGal) | 100-600 | 463 | 46405 | 462 | 46505 | 461 463 | 46421 | 45933 | 46039 | 462.45:191 | 053
2 (km) 2-8 5 5 5.1 5 49 5 5 49 5 499:006 | 02
5 % Random noise case
408 412 415 41263 407 406.06 41417 415 414 41165+3.45 | 0402
M; mGa) | 590 _750 7
27 33 34 28 33 32 32 27 28 3.04£0.29 1481
b (km) 1-6 5
52.01 58.44 58.1 54 51 57 56.78 589 57.11 55.93+2.88 1.684
O (degree) | 1 _ 109 8
7.2 73 6.7 6.8 7.2 6.6 71 6.5 6.7 6.9:0.3 1428
afm) | 5y 6
51 49.88 51 4905 49.76 50.61 50.32 50.49 49.35 50.16+0.7 0324 0
xotflm) | 30-70 P 134
(km) 79 80.12 80.58 79.49 79.24 81 80.53 79.67 79.79 79.94+0.67 0.080
Yol 60 - 100 5
3331 3456 27 28.07 26 34 3347 33.39 33 3142:£337 4740
O (degree) | 1y _109 7
457.81 465.01 464.22 468 467.99 466.42 465 462 45741 46376395 | 0.817
My (mGal) | 15 _ 600 B
. 47 47 53 54 46 54 53 53 47 5.04:0.35 0.888
a2 (km) 2-8 9
10 % Random noise case

MimGa) | 100-750 | 414 | 41526 | 41788 | 413 403 419 421 | 40405 | 41874 | 414552658 | 111

wihm) | g 26 | 26 | 35 | 34 | 27 | 26 | 35 | 37 | 34 | 3112047 |370
Oifdegree) | 10-100 | 58 | seos | 5999 | s074 | s0 | s795 | ;o1 | 5 56 | 5586334 | 156
aflm) | 31 65 | 75 | 16 | 74 | 66 | 65 | 75 | 75 | 64 | 706053 | 079
Xotfkm) | 39_70 50 | 4903 | 49 st | 4004 | 4931 | 492 | 51 | 4944 | 4967081 | 066 | 2736

Xo2 (k) 60-100 79 80.12 | 8058 | 7949 | 79.4 81 80.53 | 79.67 | 79.79 | 79.94=0.67 [ 0.08

Oafdegree) | 19_100 | 3199 | 3426 | 2632 | 2772 | 2845 | 3307 | 34 | 3655 | 3

w

31.93=3.59 | 643

M;(mGal) | 100-600 | 470 | 46505 | 45327
2 (k) 2-3 47

436.29 464 468 471 469.84 46

=i

N
ve)
(351

=1

464.94=6.24 | 1.07
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-
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n
P
=]

48 4.6 34 53

w
K

3.14=04 | 289
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Table 5. Results of the PSO-inversion algorithm applied to the third horizontal derivative anomalies of the Seattle
fault, Puget Lowland, western Washington, The United States of America.

Results
Used
Parameters i
0 =14 =15 =34 =45
e L shlf s=2km sanl.. s=3km Ski“ s=4kn sh:" s=8km | ¢ ermor
(mGal)

MGa) | 4n-20 | 4100 | 2| 0| A8 [ 00| 8 [ A% [ A0 | A | Seeen
i) | 04-65 | 1 | 19 | U019 [ 15 |15 [ 18] 05| 16 | L0l
Dleged | 10-00 | 57 | WO | 0B | 0 | RO SB[ ¥ | NH| ¥ | 8538 | 14
famlim) | 058 | 36 | 37 | 43 | 36 | 34 | 38 | 42| 45 | 38 | amed
oim) | 5% | B9 | B8 | U3 | Be| B4 [ W7 [ B3 |76 | 07 | TRW

Table 6. A comparison between previous published results and the present method of the Seattle fault, Puget
Lowland, western Washington, The United States of America

: " ’
Brink et al. (2002) Anderson et al. (2020) The present method
Pt method method
Applying PSO on the Third horizontal
derivative
M (mGal) - J261=15.74 5149267
7o (km) 13 22052 151201
6 (degree) 0 ' 33552362
| Zipy (km) 38 - 3.88=037
26.5 2506097
x, (k) 5 ik 2126087
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