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Abstract 

Rebars in reinforced concrete (RC) slab-column structures may corrode 

under unfavourable conditions, making slab-column joints (SCJs) more susceptible 

to punching shear (PS) failure. Moreover, PS failure is a common brittle failure, 

which makes it more difficult to evaluate slab column systems' functioning and 

failure probability. Thus, the prediction of PS resistance and the related reliability 

analysis are key factors for building RC slab-column systems. In this study, a high-

fidelity finite-element model was created using Abaqus. A comprehensive 

experimental record is compiled for corroded RC slab-column joints subjected to 

punching shear loading. Then, effective parameters are established by applying 

statistical technique principles. The text then provided a model of artificial 

intelligence, an artificial neural network (ANN). In addition, it provided guidelines 
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for the future development of design codes by identifying the significance of each 

variable on strength. In addition, it supplied an expression demonstrating the 

intricate interdependence of affective variables. The results show that The ACI is 

the most dependable standard, while the CSA is the least. The ANN model had an 

average, coefficient of variation (COV), root mean square error (RMSE), and lower 

95 % values of 0.93, 12.2 %, 1.8, and 0.82, respectively. As a result, the ANN 

model was found to be more accurate, reliable, and design-safe than variable 

uncertainty. 

 

Keywords: RC slab-column structure, artificial neural network, Corrosion, Finite 

element, Punching shear capacity.  
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1. Introduction 

Reinforced concrete (RC) slab-column joint (SCJ) structures consisting of slabs and 

columns are vulnerable to punching shear (PS) because the beams are not arranged according 

to structural layout considerations under slabs [1]. Under extreme PS loads, the interior slab-

column joint (SCJ) typically collapses first, followed by the other joints, and the overall 

structure gradually collapses [2], [3]. Numerous experimental studies on the punching shear 

resistance have been carried out in order to evaluate the behavior of slab-column structures, 

particularly the slab-column joints (SCJs). According to the experiment results, assessorial 

models based on different mechanical theories have been developed [4], [5], [14], [6]–[13]. 

Kinnunen and Nylander [6] analyzed the experimental results of circle slab-circle columns 

and developed a sector model. Accordingly, Broms [6], [8], [14] developed a modified model 

taking the effect of size into account, which led to the determination of the slabs' ultimate 

angle. According to the model for shear stress proposed by Stasio et al.[12], Moe suggested a 

more effective model that has wider applicability [11], which became the theoretical basis for 

GB 50010-2010 [10] and ACI 318-19 [7]. After analyzing the critical cracks of SCJs and 

evaluating the effect of aggregate size, Muttoni suggested the critical shear crack theory 

(CSCT) [5]. In accordance with the modified compression field theory (MCFT), Wu et al. [4] 

established a prediction model, and numerous experimental data were used to validate its 

performance in making predictions. Based on the regression linear analysis results of the 

experimental data, a prediction model was created by Chetchotisak et al. [13] But, the above 

mechanical or experimental models have a problem with the accurate prediction [15]–[17]. 

This study creates a machine learning (ML) analysis based on the Monte Carlo sampling 

technique (MCS) for reliability analysis to fulfill the needs of real projects. The artificial 

neural network models are the potential ML models chosen for this article (ANN). Four 

performance indicators are used to compare the performance of the final prediction models: 

average, coefficient of variation COV, root mean square error (RMSE), and lower 95 % value. 

To display the advantages of the ML models, two design provisions (CSA 23.3–14 [18], and 

ACI 318-19 [7]), as well as two prediction models proposed by Tian et al. [4], and Wu et al. 

[19], are utilized to compare the prediction performance of ML models. Based on the existing 

ML model, MCS is used to analyze the dependability of a slab-column structure in a real-

world engineering application. In addition, sensitivity analysis is used to debate the 

assessment of the structure's safety. 

2. Methodology  

Numerical, theoretical, and machine learning analyses of corroded RC SCJ have been 

conducted to understand and assess the punching-shear behavior of corroded SCJs. The 

subsequent work is carried out as follows:  

• Finite element analysis has been conducted using Abaqus and verified by Quin et 

al. experimental program [20], and some variables are studied to get extensive 

data.  

•  Comprehensive analysis of available PS strength models for corroded and non-

corroded reinforced concrete slabs under PS was collected.  
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• A model of artificial neural network (ANN) was developed for calculating 

punching-shear capacity and compared with some design codes. 

3. Numerical analysis 

3.1. Properties FE modeling of elements and materials 

The capacity of SCJs was estimated using the FE model of RC SCJs, and the analysis 

used was "Dynamic Explicit". The generated numerical FE models in this work use two-node 

elements T3D2 for the stirrups and three-dimensional (3D) solid elements C3D8R for the 

concrete and longitudinal reinforcing bars [21]. The brick elements had 50 mm face 

dimensions after meshing. The Concrete Damaged Plasticity model (CDP) was used because 

it is more accurate for numeric calculation, and all specification of the damage-plasticity 

model's parameters has been calculated using Kadhim et al. [22] 

3.2. Bond Modeling and Reduction in Concrete and Steel bar Properties 

The bond in RC SCJ was simulated using cohesive behavior [21], [23]. Corrosion of 

steel rebar will lessen the qualities of reinforcement and lead to cracking concrete, which 

lowers the strength of the concrete. The yield stress, ultimate stress, and elastic modulus of 

the corroded rebars as well as the concrete compressive strength in the corroded area was 

corrected to simulate corrosion condition.  

3.3. FE model validation 

Fig. 1 shows the FE model of the specimen constructed by Qian, et all [20]. All 

Details of the models which are used for verification are provided in Table 1. Force–

displacement diagrams of the numerical models are compared with the results of experimental 

SCJs, as shown in fig. 2. The PS stress and ultimate displacement of the corroded, and non-

corroded SCJs can both be accurately predicted by the FE model, as demonstrated by the fact 

that each specimen's simulated curve closely resembles its measured curve as shown in fig. 2. 

The FE simulations' errors are within acceptable bounds, and they closely match the 

measurements as shown in Table 2. 

 

Table 1. Font type and size list for EJ’s template. 

  

Specimen 

ID   

Dimensions 

(m) 

Column 

size 

(mm) 

d 

(mm) 

fc’ 

(MPa) 

Bottom 

reinforcement 

(mm) 

ρ 

(%) 

Target 

corrosion 

degree 

(%)  

S-0 2.2*2.2*0.15 200 118 36.3 T12@105 0.91 0 

S-10 2.2*2.2*0.16 200 118 39.3 T12@106 0.91 10 

S-20 2.2*2.2*0.17 200 118 41.1 T12@107 0.91 20 

S-30 2.2*2.2*0.18 200 118 40.9 T12@108 0.91 30 

 

mailto:T12@105
mailto:T12@105
mailto:T12@105
mailto:T12@105
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Fig. 1. Finite element model. 

 

Table 2. Comparison of ultimate load (kN) and ultimate displacement (mm) between Qian et 

al experimental program and FEM 

  

specimen ID 
Ultimate load, Pu (kN) Central deflection at Pu (mm) 

Exp FE accuracy Exp FE accuracy 

S-0 379.45 367.613 3.12 11.92 12.2381 -2.67 

S-10 337.5149905 344.747 -2.14 13.58207899 13.7865 -1.51 

S-20 301.9402971 304.244 -0.76 19.74057256 19.011625 3.69 

S-30 289.846227 303.88 -4.84 22.13040241 21.86856 1.18 
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Fig. 2. Test and simulation load-displacement curves are compared. 

4.  Data Base of Punching Shear Resistance for RC SCJs 

The building of ML models requires high-fidelity data; hence the gathering of an 

experimental database is necessary. The PS resistance database including 119 results is 

displayed in Table 3 (Appendix. A), and the statistical data of input factors are presented in 

Table 4. Several papers indicate that SCJs are influenced by eight primary factors: column's 

cross-sectional area (X1), effective depth of a slab (X2), compressive strength  of concrete 

(X3), span depth ratio (X4), reinforcement ratio (X5), column rectangularity (X6), yield 

strength of reinforcement (X7), and corrosion degree (X8). Their distributions are classified 

by minimum, maximum, standard deviation, and average as shown in Table 4. The aim of the 

ML models is to predict the PS resistance (Y) of SCJs. The relative frequency distributions 

of the input factors are depicted by the histograms in Fig. 3 [24]–[26].  
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(X1) cross-section area of column                     (X2) slab’s effective depth 

 
(X3) compressive strength  of concrete               (X4) span depth ratio 

Table 4. Descriptive statistics of variables 

Input factors Notation Min Average Std. Dev Max 

The cross-section area of column (mm2) X1 3025 28256.933 20558.38 160000 

      

Slab’s effective depth (mm) X2 29.7 104.80756 35.65166 170 

Compressive strength of concrete (MPa) X3 18.2 33.710756 6.384261 45.6 

Span depth ratio X4 6.3 11.2 3.6461 20.0 

Reinforcement ratio (%) X5 0.2 1.0528571 0.429116 2.3 

Column rectangularity X6 1 1.3319328 0.754302 4 

Yield strength of reinforcement (MPa) X7 280 456.66555 87.76229 744 

Corrosion degree (%) X8 0 5.8907563 8.52294 30 

Punching shear capacity (kN) Y 30.5 205.96696 103.9359 480 
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(X5) reinforcement ratio                                      (X6) column rectangularity 

 

 
(X7) yield strength of reinforcement                    (X3) corrosion degree 
 

Fig. 3. Histograms of input variables. 

5.  Construction of Machine Learning (ML) models 

5.1. Introduction 

 The application of machine learning (ML) to predict the PS capacity of corroded 

reinforced concrete (RC) SCJs has been discussed seldom, with just a handful of research 

accessible in the published literature. The artificial neural network (ANN) is made up of 

several processing components known as neurons. Neurons are interconnected via linkages 

known as weights. Initially, during training, weights are set arbitrarily; they are then adjusted 

by comparing the predicted values to the actual values, and the mistakes are backpropagated 

through the network to minimize the observed errors. The construction of a three-layer ANN 

is illustrated in fig. 4. It consists of K number of inputs, L number of neurons in the hidden 

layer, and M number of outputs, demonstrating the potential of ANN to predict multiple 

outputs simultaneously and emphasizing the strength of ANN. The ANN training procedure 

consists of three primary steps: (1) Initialization of internal parameters; (2) Evaluation of the 

model; and (3) Updating the internal variables to obtain the best points. The network weights 

are updated using backpropagation, which is a mechanism for fine-tuning the weights of an 

ANN depending on the error rate achieved in the previous training cycle. The primary benefit 

of ANN is its capacity to capture complicated correlations between input and output variables 

without previous knowledge of the nature of these interactions. However, adopting the 
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conventional gradient descent approach for ANN training might result in significant 

inaccuracies and local minima [27]. Consequently, the first ANN model suggested is trained 

using gradient descent with two key alterations. The suggested model is trained using 119 

records of available experimental data, as shown in Table 5.  

 

 

Fig. 4. Three-layer ANN Structure. 

5.2. The ANN models 

There are four primary training approaches for ANNs: Gradient Descent (ANN-GD), 

Quasi-Newton method (ANN-QN), Levenberg-Marquardt (ANN-LM), and Conjugate 

Gradient (ANN-CG). Choosing the best training approach is difficult since certain training 

Table 5. Training Summary for ANN 

  

Parameter  Description 

Neurons in the input layer   8 

Neurons in the output layer   1 

The hidden layer activation function   Sigmoid 

Output layer activation function   Linear 

Cost function   MSE 

Number of hidden layers   1 

Number of training iterations   10 
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techniques may work for one type of problem but not another [27]. Comparing traditional 

ANN- GD to other approaches, it exhibits promising, trustworthy outcomes [28] wherein the 

errors between the actual experimental results and the expected results from the trained model 

are reduced [29] and can easily adapt to the complex behavior of the training data. The goal 

of ANN- GD, often regarded as the most well-liked optimization strategy in machine learning, 

is to locate the coefficients that reduce the error function to the greatest extent feasible by 

locating a local minimum of a differentiable function. It calculates the change in all weights 

in relation to the change in error [30], [31]. The conventional ANN-GD is a training model 

that updates its weights and biases in the direction of the performance function's negative 

gradient, as follows:  

𝑤(𝑖+1) = 𝑤(𝑖) −  ∇𝑓 (𝑤(𝑖)) ɳ(𝑖)                                                                                        Eq.1 

where 𝑤(𝑖) are the weights in the ith iteration , ∇𝑓 (𝑤(𝑖))  is the gradient of the loss 

function f in  𝑤(𝑖)  , and  ɳ(𝑖) is the rate of learning ith iteration. In the training process, the 

learning rate ɳ is a hyperparameter that regulates the changes to the model, i.e., How quickly 

the model adapts to the given problem, relative to the evaluated error in each training iteration, 

maybe the most important hyperparameter when configuring the network, where too high 

values for ɳ may result in a model that converges too quickly to a suboptimal model and a too 

small value may result in an unstable model, as depicted in fig. 5. The challenge is in 

determining the correct ɳ value.[32]. ANN-GD is utilized with several changes, such as an 

adjustable learning rate and the addition of a momentum term, to improve performance and 

training stability. This model employs an adjustable learning rate, with a default value of 0.01, 

which is typical for standard ANN-GD. Afterward, it is changed based on performance 

measurements throughout training. If at the conclusion of each training iteration, the 

performance declines in the direction of our aim, then the learning rate is raised by the factor 

ηinc = 1.05. If performance grows by more than a certain factor during the training phase, it 

is reduced by a factor of ηdec  = 0.7. Training is quicker and more consistent when an 

adjustable learning rate is used. Gradient descent with momentum and backpropagation of the 

adaptive learning rate is the training approach employed. The momentum term (mc) aids in 

accelerating convergence without reducing the model's capacity to solve nonlinear issues. 

Backpropagation is used to update the network weights; it is a method for fine-tuning the 

weights of an ANN depending on the error rate achieved during the previous training iteration. 

it is derived using the performance (p) derivatives with respect to the weight and bias variables 

× For each training iteration i. Each variable is modified based on gradient descent with 

momentum.    

dx(i) = mc ∗ dx(i−1) +
ɳ∗mc∗dp

dx
                                                                       Eq.2                                                                                                                                       

where dx(i−1)is the previous change in the weights or bias, mc is the momentum 

coefficient, x is the weights and bias, and ( dp) is the derivative of the performance. The used 

training approach is capable of training any network whose weight, inputs and transfer 

functions contain derivative functions. The ANN model learns from the experimental 

database of corroded RC slabs to determine the PS capacity. As shown in fig. 6, the model 

comprises an input layer, a hidden layer with 15 neurons, and an output layer. The model is 
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trained using the following inputs: cross-section area of column (X1), slab’s effective depth 

(X2), compressive strength  of concrete (X3), span depth ratio (X4), reinforcement ratio (X5), 

column rectangularity (X6), yield strength of reinforcement (X7), and corrosion degree (X8). 

the output is the prediction of the PS capacity of corroded RC SCJ. Our trained model will 

terminate training if any of the following conditions are met: a) the maximum number of 

training iterations is reached, b) the maximum amount of time has elapsed, or c) the 

performance target has been reached. The stopping criterion in our model was the third 

condition. The model was trained with 119 records from a dataset. According to 

recommendations for optimal performance evaluation, the dataset is separated into two major 

sections [33]: the training set comprised 70 % of the entire data, while the remaining 30 % 

was used for testing and validation. The dataset was utilized without any additional processing. 

fig. 7 demonstrates that the model converges at the 10-training iteration, but the best 

performance was achieved at the 4-training iteration. The error numbers for the training, 

validation, and testing phases are depicted in fig. 8. Additionally, a linear fit is given to each 

case and plotted. Fig. 9 depicts a regression model that displays the ANN model's correlation 

between real and predicted values. Pearson Correlation Coefficient R =0.91, 0.94, and 0.91 

for training, validation, and testing, respectively. 

 

Fig. 5. The effect of learning rate on the training process[33]. 
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Fig. 6. ANN- GD training model. 

 
Fig. 7. The performance of the ANN-GD training process. 

 
Fig. 8. The errors of ANN-GD  
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Fig. 9. Regression Analysis for ANN-GD model training, validation, and testing. 

6. Comparison between proposed models and selected models 

To assess the efficacy of the proposed models, four statistical measures were computed 

for the proposed model and the chosen models: Average, coefficient of variation COV, root 

mean square error RMSE, and lower 95 % value. fig. 10 depicts a comparison of the selected 

and proposed models. Based on these four statistical measures, the proposed models are 

reliable, consistent, and reasonably safe for design. Whereas the ANN model's average 

coefficient of variation, root mean square error, and lower 95 % value, respectively, were 0.93, 

12.2%, 1.8, and 0.82. 
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                         Average                                         coefficient of Variation (%) 

  
Lower value at 95 % confidence level                      RMSE 

Fig. 10. Comparison between all models. 
 

7. Conclusion 

This study examined the punching-shear behavior of corroded RC slab-column joints. 

According to the numerical, theoretical, and machine learning analysis of corroded RC SCJ, 

the following conclusions can be drawn: 

• The FE simulations' errors are within acceptable bounds, and they closely 

match the measurements. 

• The PS capacity and displacement of the uncorroded and corroded SCJ 

specimens can both be accurately predicted by the FE model. 

• Based on the average, coefficient of variation (COV), root mean square error 

(RMSE), and lower 95 % value the selected models were found to need further 

investigation.  

• It is noted that The ACI is the most reliable among the selected models and 

the CSA the least reliable.  

• The ANN model was found to be more accurate, consistent, and reasonably 

safe for design compared to variable uncertainty.  
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Appendix A  

 
Table. 3 Experimental databases for corroded RC SCJs under punching shear 

X1 X2 X3 X4 X5 

X

6 X7 

X

8 Y paper 

40000 118 
36.3 

14.

7 

0.9

1 1 532 0 376 (Qian et al., 2022) 

40000 118 
39.3 

14.

7 

0.9

1 1 435 10 335 (Qian et al., 2022) 

40000 118 
41.1 

14.

7 

0.9

1 1 412 20 302 (Qian et al., 2022) 

40000 118 
40.9 

14.

7 

0.9

1 1 399 30 289 (Qian et al., 2022) 

40000 118 
43.7 

14.

7 

0.5

2 1 532 0 280 (Qian et al., 2022) 

40000 118 
44.1 

14.

7 

0.5

2 1 471 10 244 (Qian et al., 2022) 

40000 118 
45.6 

14.

7 

0.5

2 1 448 20 212 (Qian et al., 2022) 

40000 118 
40.5 

14.

7 

0.5

2 1 396 30 192 (Qian et al., 2022) 

40000 93 
37.6 

17.

6 

1.1

6 1 532 0 274 (Qian et al., 2022) 

40000 93 
41.1 

17.

6 

1.1

6 1 423 10 238 (Qian et al., 2022) 

40000 93 
41.3 

17.

6 

1.1

6 1 401 20 228 (Qian et al., 2022) 

40000 93 
41.5 

17.

6 

1.1

6 1 380 30 215 (Qian et al., 2022) 

40000 93 
43.7 

14.

7 

0.5

2 1 532 0 270 (Qian et al., 2022) 

40000 93 
44.1 

14.

7 

0.5

2 1 471 10 250 (Qian et al., 2022) 

40000 118 
43.7 

14.

7 

0.5

2 1 532 0 365 (Qian et al., 2022) 

40000 118 
44.1 

14.

7 

0.5

2 1 471 10 340 (Qian et al., 2022) 

40000 143 
43.7 

14.

7 

0.5

2 1 532 0 480 (Qian et al., 2022) 

40000 143 
44.1 

14.

7 

0.5

2 1 471 10 455 (Qian et al., 2022) 

40000 118 
43.7 

14.

7 

0.7

4 1 532 0 330 (Qian et al., 2022) 

40000 118 
44.1 

14.

7 

0.7

4 1 471 10 310 (Qian et al., 2022) 
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40000 118 
43.7 

14.

7 

1.1

8 1 532 0 412 (Qian et al., 2022) 

40000 118 
44.1 

14.

7 

1.1

8 1 471 10 395 (Qian et al., 2022) 

40000 118 
43.7 

14.

7 

1.5

2 1 532 0 480 (Qian et al., 2022) 

40000 118 
44.1 

14.

7 

1.5

2 1 471 10 433 (Qian et al., 2022) 

62500 104 
40 

18.

3 1 1 532 0 370 (Mahmoud et al., 2016) 

62500 104 
40 

18.

3 1 1 471 26 297 (Mahmoud et al., 2016) 

62500 138 
21 

14.

5 2.2 1 530 0 374 (Kim & Lee, 2021) 

10000 80 

20.1

8 

12.

5 

0.3

4 1 530 0 109.34 

(Yooprasertchai et al., 

2021) 

10000 55 
31.9 

11.

5 

0.3

4 1 533 0 49.2 (Harajli & Soudki, 2003) 

10000 55 
35.5 

11.

5 

0.7

3 1 545 0 60.5 (Harajli & Soudki, 2003) 

10000 75 
35.5 

8.4 

0.3

4 1 540 0 78.8 (Harajli & Soudki, 2003) 

10000 75 
29.1 

8.4 

0.7

3 1 565 0 122 (Harajli & Soudki, 2003) 

22500 70 25.8 

17.

4 1 1 530 0 160.3 

(El Maaddawy & Soudki, 

2003) 

62500 120 33 

16.

6 

0.9

7 1 520 0 30.5 (Taresh et al., 2021b) 

4000 120 28.9 

16.

6 1 1 740 0 272 

(Filatov & Galyautdinov, 

2018) 

10000

0 120 22.3 

18.

3 1 

2.

5 744 0 281.3 

(Filatov & Galyautdinov, 

2018) 

16000

0 120 25.6 

20.

0 1 4 740 0 328.4 

(Filatov & Galyautdinov, 

2018) 

6400 85 
30 

10.

0 

0.4

3 1 510 0 

160.03

3 (Jaafer et al., 2019) 

22500 120 
35 

8.5 

0.9

7 1 385 0 222.68 (H. Abdel-Kareem, 2020) 

22500 90 
30 

11.

0 

0.9

7 1 385 0 150 (Shaaban et al., 2013) 

3600 45 
30 

11.

6 0.2 1 280 0 55.76 (Ye et al., 2021) 

3600 45 
30 

11.

6 0.6 1 280 0 76.7 (Ye et al., 2021) 

3600 45 
30 

11.

6 1.4 1 280 0 99.01 (Ye et al., 2021) 
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3600 45 
30 

11.

6 2.3 1 280 0 112.5 (Ye et al., 2021) 

3600 45 30 8.3 1.4 1 280 0 116.5 (Ye et al., 2021) 

62500 130 33 

14.

3 

1.0

7 1 385 0 309 (Taresh et al., 2021b) 

16900 102 
36.5 

12.

0 

0.4

6 1 601 0 224 (Madkour et al., 2021) 

40000 90 
44 

15.

0 1 1 455 0 253 (Madkour et al., 2021) 

14400 40 32 

18.

3 

0.2

5 1 556 0 37.5 (Madkour et al., 2021) 

10000 80 
44.4 

12.

0 

0.7

1 1 510 0 157.5 (Madkour et al., 2021) 

62500 105 
27.1 

8.4 

0.5

9 1 492 0 284 (Madkour et al., 2021) 

10000 80 
40 

12.

0 

0.8

5 1 570 0 166 (Madkour et al., 2021) 

16900 102 
36.8 

12.

0 1.4 1 601 0 295 (Madkour et al., 2021) 

16900 97 
40.4 

12.

0 0.8 1 625 0 272 (Madkour et al., 2021) 

22500 92 
42.4 

11.

4 

1.8

4 1 420 0 241 (Madkour et al., 2021) 

40000 129 
39 

14.

7 

0.5

6 1 520 0 256 (Madkour et al., 2021) 

40000 129 
39 

14.

7 

0.8

7 1 520 0 315 (Madkour et al., 2021) 

40000 129 
39 

14.

7 

1.1

8 1 520 0 395 (Madkour et al., 2021) 

22500 110 
44 

12.

0 1.2 1 455 0 253 (Bertagnoli et al., 2019) 

90000 140 
30 

20.

0 0.7 1 570 0 319 

(Mohamed & Khattab, 

2020) 

40000 90 
33 

8.0 

1.2

6 1 570 0 122 

(Neamah & Al-Ramahee, 

2021) 

22500 80 
18.2 

10.

0 1.2 1 385 0 113.7 (C. C. Chen & Chen, 2020) 

22500 80 
27.6 

10.

0 1.2 1 385 0 136.8 (C. C. Chen & Chen, 2020) 

22500 80 
18.2 

10.

0 0.6 1 385 0 145.9 (C. C. Chen & Chen, 2020) 

22500 80 
27.6 

10.

0 0.6 1 385 0 176.1 (C. C. Chen & Chen, 2020) 

10000 45 
31.9 

12.

1 

0.5

9 1 

487.

6 0 49.2 (Harajli & Soudki, 2003) 
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10000 45 
35.5 

12.

1 

0.8

3 1 

487.

6 0 60.5 (Harajli & Soudki, 2003) 

10000 65 
35.5 

8.9 

0.7

4 1 

488.

5 0 78.8 (Harajli & Soudki, 2003) 

10000 65 
29.1 

8.9 

1.0

4 1 

488.

5 0 122 (Harajli & Soudki, 2003) 

40000 130 
29 

13.

3 1 1 410 0 421 (Sharaf et al., 2006) 

10000 90 
29 

12.

0 

0.2

3 1 375 0 30.5 (Silva et al., 2021a) 

3025 

29.

7 
43.2 

10.

0 1.2 1 400 0 51.31 (Alhussainawe et al., 2017) 

3025 

39.

7 
38.6 

8.3 1.2 1 400 0 61.02 (Alhussainawe et al., 2017) 

3025 

59.

7 
38.6 

6.3 1.2 1 400 0 135.53 (Alhussainawe et al., 2017) 

22500 90 30 7.8 

1.5

7 3 380 15 

138.61

7 FEM 

22500 170 30 7.8 

0.8

9 3 385 15 130.65 FEM 

22500 90 30 7.8 

1.5

7 1 385 15 

129.44

97 FEM 

22500 170 30 7.8 

1.5

7 1 485 0 245.65 FEM 

22500 90 30 7.8 

1.5

7 3 485 0 

217.51

9 FEM 

22500 170 30 7.8 

0.8

9 3 380 15 155.63 FEM 

22500 90 30 7.8 

1.5

7 3 485 0 196 FEM 

22500 170 30 7.8 

1.5

7 1 485 0 

217.51

9 FEM 

22500 90 30 7.8 

1.5

7 3 368 15 178.98 FEM 

22500 90 30 7.8 

0.8

9 1 485 0 265.65 FEM 

22500 90 30 7.8 

0.8

9 3 365 15 

138.61

7 FEM 

22500 90 30 7.8 

0.8

9 3 485 0 255.36 FEM 

22500 170 30 7.8 

1.5

7 3 365 15 105.36 FEM 

22500 170 30 7.8 

1.5

7 1 365 15 120.6 FEM 

22500 90 30 7.8 

1.5

7 1 386 15 145.36 FEM 



 

19              MSA ENGINEERING JOURNAL 

Volume 2 Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 (https://msaeng.journals.ekb.eg//) 

22500 170 30 7.8 

0.8

9 1 485 0 230.65 FEM 

22500 90 30 7.8 

1.5

7 1 485 0 

217.51

9 FEM 

22500 170 30 7.8 

1.5

7 3 485 0 

218.36

5 FEM 

22500 170 30 7.8 

1.5

7 1 380 15 237.89 FEM 

22500 170 30 7.8 

0.8

9 1 380 15 189.65 FEM 

22500 170 30 7.8 

0.8

9 1 380 15 155.63 FEM 

22500 90 30 7.8 

0.8

9 3 380 15 220 FEM 

22500 90 30 7.8 

0.8

9 1 380 15 187 FEM 

22500 90 30 7.8 

0.8

9 1 480 0 265.65 FEM 

22500 170 30 7.8 

1.5

7 3 480 0 145.6 FEM 

22500 170 30 7.8 

0.8

9 3 480 0 

180.36

5 FEM 

22500 90 30 7.8 

1.5

7 1 480 0 

165.32

5 FEM 

22500 170 30 7.8 

0.8

9 3 480 0 201.36 FEM 

22500 170 30 7.8 

0.8

9 1 480 0 230.65 FEM 

22500 90 30 7.8 

0.8

9 1 370 15 130.65 FEM 

22500 170 30 7.8 

1.5

7 3 377 15 100.56 FEM 

22500 90 30 7.8 

0.8

9 3 468 0 255.36 FEM 

22500 90 
30 

7.8 

1.5

7 1 485 0 217 FEM 

22500 90 
31.3 

7.8 

1.5

7 1 480 5 195 FEM 

22500 90 
31.1 

7.8 

1.5

7 1 447 10 171 FEM 

22500 90 
30.3 

7.8 

1.5

7 1 385 15 145 FEM 

22500 90 
30.3 

7.8 

1.5

7 1 377 20 125 FEM 

22500 90 
30.3 

7.8 

1.5

7 1 360 25 120 FEM 
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22500 90 
30.3 

7.8 

1.5

7 1 334 30 102 FEM 

22500 90 
30.3 

7.8 

1.5

7 2 385 15 118 FEM 

22500 90 
30.3 

7.8 

1.5

7 3 385 15 98 FEM 

22500 130 
30.3 

7.8 

1.5

7 1 385 15 142 FEM 

22500 170 
30.3 

7.8 

1.5

7 1 385 15 150 FEM 

22500 90 
30.3 

7.8 

0.8

9 1 385 15 118 FEM 

22500 90 
30.3 

7.8 

1.1

2 1 385 15 123 FEM 
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