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Abstract 

Decision-making is a crucial task for autonomous driving. Taking the 

wrong decision might cause a cartographical accident. Decision-making implies 

planning the appropriate behavior based on the current state of the vehicle and its 

environment. The paper aims to review the current state of the art of behavior 

Planning for autonomous driving. A basic categorization for behavior planning 

algorithms is introduced. Besides, a review of different algorithms is discussed with 

a comparison between different algorithms from the point of view of the suitable 

scenario. Finally, promising research topics are discussed. 
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1. Introduction 

Autonomous vehicles are highly technological products with embedded electronics 

and intelligent algorithms [1]. It aims to avoid the problem of collisions that are made due to 

human errors, save energy, and allow passengers to have comfortable traveling experiences 

[2]–[5]. In 2016 the Society of Automotive Engineers (SAE) defined different levels of 

autonomy [6]. It considers the conventional cars that have no autonomous features as zero-

level. While cars that can handle one task at a time such as braking in an emergency could 

be considered level-one cars. Besides, cars with two automated features or two automated 

control tasks are considered level two cars. Moreover, level three cars can handle different 

circumstances, but still needs human intervention. Level four cars can drive autonomously 

in certain environments and scenarios without human intervention. Finally, cars that can 

drive autonomously in any environment and scenario belong to level five of autonomy. 

DARPA Grand Challenge started in 2004 and highlighted the importance of investigating 

more research on autonomous driving and encourages researchers to investigate this 

field.[7]–[8].  

Many architectures for autonomous cars are developed by researchers in the last few 

years. Some of them consider autonomous cars to have three main modules which are: 

perception, decision-making, and action execution [9]. Other researchers consider 

autonomous driving systems to consist of global localization and planning modules, 

environment, self-perception, planning, and control [10]. Another architecture for 

autonomous driving considers the car to have four main modules: perception, planning, low-

level collision avoidance, and control [11]. The most detailed architecture by combining all 

their point of view is the architecture shown in fig. 1. Autonomous cars can be divided into 

five main modules which are sensors, perception, mapping, planning and control, and 

actuators. In the first module, sensors perceive the surrounding environment in addition to 

perceiving the ego vehicle status. The sensor’s output is the input to the next module, the 

perception module. The perception module carries out the task of detecting and classifying a 

different object on the road and localizes the ego vehicle to know its exact status. In the third 

module, mapping helps in making a map of the car relative to its surroundings. The fourth 

module is the planning and control module which is responsible for executing different 

planning tasks besides vehicle control. Finally, the actuators are responsible for executing the 

different vehicle commands. 

The autonomous driving planning goal is to find suitable control commands to drive 

a vehicle from a certain start point to a goal point [12]. It also aims to establish its task safely 

and efficiently [1]. The planning and control module consists of four subparts which are 

mission planning, Behavior Planning (BP), local planning, and vehicle control as shown in 

fig. 1 [7], [13].  Mission planning is responsible for generating a sequence of waypoints based 

on the user-specified destination. While BP is responsible for decision making which yields 

the generation of maneuver specifications. Besides motion planning is responsible for 

trajectory generation. Finally, the control part is responsible for the execution of the generated 

trajectory. 
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In real driving scenarios, taking a driving decision is a crucial process. Thus, 

autonomous cars need to adopt some sort of decision-making algorithm to deal with the 

dynamic surrounding environment [14]. Although significant achievements have been 

established in the field of autonomous driving, especially after the tangible progress in 

perception technology, BP is still one of the biggest confrontations in the field of autonomous 

driving [15], [16].  

 

 

Fig. 1 Autonomous vehicle architecture 

 

Many published papers reviewed BP for autonomous vehicles. A  general review of 

BP is tackled by [13] who discussed and compared only two popular decision-making 

methodologies. These methodologies are Finite State Machines (FSM) and Partially 

Observable Markov Decision Processes (POMDP). Although they highlighted one of the 

main disadvantages of FSM which is its inability to deal with complex environments and how 

it is solved in the previous research, their study was vague, and they did not compare to any 

other used methodologies to validate its effectiveness. On the contrary [13], discussed the 

advantages and disadvantages of the different existing methodologies. The drawback of their 

study was that they did not adopt any categorization approach to classify the existing methods. 

Another survey on BP was presented by [5]. Their survey in behavioral planning was 

summarized and did not account for each methodology application. In contrast to [5], a 

detailed review of BP is introduced by [17]. The topic was discussed comprehensively as they 

tackled the categorization of the different existing methodologies. Moreover, they have also 

explained the advantages and disadvantages of each algorithm and tackled the suggested 

future directions in a detailed manner. Besides, they mentioned the applications for the 

different methods. Nevertheless, they did not tackle the appropriateness of the methodologies 

with the different scenarios and applications. Lastly, BP methodologies are studied by [18]. 

Although they compared the algorithms from the point of view of the performance, they did 

not mention or refer to any mathematical equations for the method used to measure the 

performance’s parameters. Moreover, they categorize the methodologies by different points 

of view nevertheless they did not mention all the existing algorithms under each category and 

settle for a limited number of examples for each category.  Although BP is a critical module 

in autonomous vehicles, it is apparent that the existing surveys for this point are still limited. 

Considering the importance of the BP module for autonomous vehicles, a framework for BP 
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is introduced, a detailed comparison between the BP methodologies is presented, and further 

details about the suitable algorithm for each scenario are tackled.  

 

The paper summarizes as follows. Section 2 discusses the behavior planning 

framework. Section  3 categorizes the different methodologies and compares them. Section 4 

discusses the applications of the existing methodologies. Section 5 discusses and analyzes the 

existing methodologies. In section 6 the paper is concluded, and future orientation is discussed. 

2. Behavior Planning Framwork 

Previous papers describe different frameworks for BP and decision-making 

modules. One of these frameworks is presented by [17]. The framework consists of 

three layers. The first layer is the input layer. It consists of three levels. The first level is 

the driving environment with all static and dynamic objects in it. The second level is the 

status of the ego vehicle. While the third level is the HD Maps level. The second layer is 

the decision-making layer, which is represented by the road scenario. The road scenario 

can be merging, roundabout, urban intersection, etc. The last layer is the output layer. 

The authors classify these layers into two levels. The first level is high-level behaviors, 

including merging, overtaking, emergency braking, etc. while the second level is low 

level behaviors including angular and longitude velocities and accelerations. Another 

framework for decision-making is described by [18].  They stated that the input to the 

decision-making module is perception and vehicle prediction. The perception stage 

informs the decision-making module about the surrounding vehicle states. While the 

vehicle prediction forecast the future trajectory of other vehicles on the road.  

By observing previous works in BP, a framework is adopted to describe the 

Behavior Planning Algorithm (BPA) as shown in fig.2. The framework has two main 

layers which are the input layer and the output layers. The input to BPA comes from the 

perception, mapping, and mission planning modules. The perception module fed the BPA 

with information about the dynamic objects’ status including their relative position, speed, 

acceleration, etc. It can also feed it with a predicted path or intention of these dynamic 

objects. Besides, the perception module is also responsible to share some information 

about the static objects’ relative positions. The mapping module can provide the BPA 

with some information about the static object as well. Moreover, the localization module 

in the perception module provides the BPA information about the current status of the 

vehicle including its location, velocity, acceleration, etc. Mission planning is responsible 

to provide the BPA knowledge about the car waypoints. The BPA takes all these inputs 

and translates them to a suitable output depending on the road scenario. For example, the 

output can be lane-keeping or lane-changing if the ego vehicle is in a lane-changing 

scenario. It can also be a car's acceleration or deceleration command for car following 

scenario. 
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Fig. 2. BP Framework 

3. Existing Methodologies 

The current BP methodologies have been subjected to many classifications based on 

different points of views. 

3.1. Classification of Methodologies 

BP methodologies can be classified into two main categories classical-based and 

learning-based methods [14], [17], [18]. They have also classified the BP methods based on 

four main categories: knowledge-based, heuristic-based, approximate reasoning-based, and 

human-like methods. Another method of classification of BP is a classification approach 

according to human capabilities. These capabilities are rationality, obeying the rules, 

cognitive abilities, and learning [18]. The existing methodologies is classified into rule-based, 

cooperative-based, probabilistic-based, game theoretic-based, and learning-based approaches 

[19]. One last method of classification and the most recent one is classifying the existing 

methods into rule-based methods, utility-based methods, probabilistic-based methods, game 

theory-based methods, learning-based methods, learning-based methods, and cooperative-

based methods [20]. After reviewing all these classification approaches, it is decided to adapt 

to the most general, simple, and comprehensive one that classifies the methodologies into 

classical approaches and learning approaches as shown in fig.3.  
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Fig. 3. BP Methods 

 

3.1.1. Classical-based Methods  

These methods are based on mathematical modelling thus, they do not need datasets 

and do not depend on learning. These methods have three subcategories which are rules-

based methods, optimization-based methods, and probabilistic-based methods.  

Rules-based methods are methods that consist of predefined scenarios and statements 

so that the vehicle can select the appropriate behavior based on these scenarios and statements 

which are often represent the status of the vehicle and the status of its surroundings including 

the behavior of the dynamic objects around it. The most popular example of this method is 

the finite state machine (FSM) method. FSM is the most popular method for BP starting from 

DARPA competition till now. While the optimization-based method has a utility function that 

improves the vehicle’s performance based on a reward or a punishment.  One example of 

these methods is Model Predictive Control (MPC) methodology. The most popular approach 

that depends on these methods is a game-theory-based approach. Lastly, probabilistic-based 

methods that depend on mathematical probability and statistics concepts. The most famous 

approach under this methodology is Probabilistic Graphical Model (PGM).  

3.1.2. Learning-based Methods  

Methods that depend on artificial intelligence technology to grant the vehicle select 

the appropriate behavior. These methods rely on human-made datasets. The autonomous 

vehicle in this case depends on learning from human behaviors. They are classified into 

three main subcategories which are statistical learning, deep learning, and reinforcement 

learning method.  
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Statistical learning methods are methods that rely on machine learning technology to 

make suitable decisions. Support Vector Machines (SVM), AdaBoost, and random forest are 

examples of algorithms for BP in autonomous cars. Mostly in the case of BP, this decision is 

taken on basis of certain parameters such as efficiency, and safety. Deep learning methods 

utilize neural networks in selecting the appropriate behavior. This approach depends totally 

on datasets in which its input is mostly images and based on these cognitive data, it takes the 

appropriate decision. It is similar to statistical learning methods except in their structure and 

how the features are extracted from the input dataset. The most common approach for BP 

based on deep learning is an end-to-end approach. In which the neural network is fed with 

sensors output and steering, braking, and throttling commands are obtained. This method 

opens the door for imitating human-driver behavior. The end-to-end approach has an 

architecture that is different from the architecture of the autonomous car in the introduction 

section as there are no intermediate blocks between the sensor inputs and the output of the 

actuator. Finally, reinforcement learning methods stand on the ability of an agent or 

autonomous vehicle to learn by doing. In other words, to learn based on a punishment or 

reward function. In the last few years, this method is one most popular method in the field of 

BP due to its ability to handle the interaction between the ego vehicle and its surroundings. 

Most importantly, it can account for environmental uncertainties arise from sensors’ noise 

and inaccurate predictions of the surrounding car’s intentions. 

3.2. Advantages & Disadvantages 

The existing methodologies possess different strengths and weaknesses points from 

different perspectives which are their simplicity in implementation, the computational power 

needed, the computational time needed, and their ability to generalize to different scenarios 

as stated in Table 1. 

3.2.1. Rules-based Methods 

These methods can be easily implemented depending on the if-else programming 

logic and the algorithm is rational as human thinking that it is suitable for real-time 

operation. On the other side, the algorithm is hard to generalize to different scenarios and 

cannot handle unplanned situations.  

A Hierarchal Finite State Machine (HFSM) algorithm is implemented by [1]. In 

which they were able to handle the collisions using a cost assessment model to select the 

appropriate behavior.  They built an HFSM with four states which are cruising, overtaking, 

back-lane, and braking. The HFSM is proven to respond fast to any environmental changes 

and reduce the computational power needed by 39%. 

For the lane change scenario, a three-layer HFSM is built [14]. The first layer is 

responsible for identifying the scene of the ego vehicle based on its position relative to the 

surroundings. The second layer is responsible for calculating the cost for all the possible 

behaviors. The calculated cost is a combination of three parameters which are safety, lane 

idleness, and efficiency. The last layer selects the appropriate behavior based on the 

calculated cost. The method is proven to take the most appropriate behavior with the lowest 

possible cost. 
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A  four states FSM is implemented for lane-keeping and lane-change scenarios [21]. 

The four states for the algorithm are lane keeping, leading vehicle following, aborting, and 

overtaking. The algorithm is executed in three steps. The first step is identifying the safe 

regions using Artificial Potential Field (APF). The second step is selecting the suited 

maneuver by using FSM. The third step is generating an intermediate reference position and 

velocity for the trajectory planning to consider. The algorithm is tested within different 

vehicle velocities and was efficient, but the method is not suitable for complex 

environments due to its overoptimism. 

A whole planning and control algorithm is established for lane-keeping and lane-

change scenarios in urban environments [3]. A five-mode FSM is built for BP handling. The 

five modes are ready mode, stop mode, lane keeping and changing mode, avoiding obstacles 

mode, and emergency handling mode. The algorithm has proven its efficiency in different 

weather and ground conditions in urban environments. 

An FSM  is experimented with for a T-intersection scenario with three states: passing, 

yield, and acceleration [22]. For the transition from one state to another, information like 

position and speed that comes from connected cars is used. To avoid collisions, the speed 

profile is continuously modified according to the position of the dynamic objects that 

surrounds the ego vehicle. The algorithm has proven to make the vehicle navigate safely 

through the intersection. 

3.2.2. Optimization-based Methods 

Although, these methods account for the interactions between other dynamic objects 

in the road, its implementation is computationally costly specially for dense environments.  

A Bayesian game theory model is implemented as a trial to achieve human-like 

behavior generation [23]. The methods were compared to state of art methods and it is 

proven to generate more complex and human-like performance. It was also tested by using 

the Turing test to assure its similarity to human behavior. Most of the participants of the test 

cannot distinguish between human driving and model driving. 

A game theory-based methodology has been experimented with in a congested, 

urban scenario [24]. The experiment is conducted by performing a lane change in an 

intersection. A comparison between human behavior and autonomous vehicle behavior is 

taken under consideration and the results show that 83.3% of the behavior of the 

autonomous car is similar to human behavior. 

A Nash equilibrium and Stackelberg game theory methodology are used for 

decision-making [25]. Ride comfort, drive safety, and travel efficiency was taken under 

consideration in decision-making It is tested for lane change scenario. It is proven to be able 

to achieve human-like behavior. 

A cost-based hierarchal behavior-based methodology is implemented [15]. The 

algorithm is implemented for lane change in both highway and urban environments. It can 

perform any change and has parking capabilities. The algorithm is tested in a simulation 

environment and has proven its efficiency.  
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A game theory-based algorithm is used in merge scenarios in a congestion 

environment [26]. To achieve a semi-optimal policy the algorithm is combined with Monto 

Carla reinforcement learning methodology. The algorithm is combined with a rule-based 

methodology. The difference between the methods is in the response time. The game theoretic 

method is proven to have a faster response than a rule-based method. For merging scenarios, 

a game tree search method is tested [27]. The methodology was experimented with in a 

simulation environment and has proven an ability to run in real-time. 

3.2.3. Probabilistic-based Methods 

Similar to optimization-based methods, these methods need high computational 

power although it has the ability to interact and predict the behavior of other dynamic 

objects in the road. 

 A Factor Graph (FG) combined with Gaussian Mixture Model (GMM) is used for 

interaction with surrounding vehicles in a merge scenario [28]. FG is proven to have better 

performance than PGM from the point of view of safety, and the average distance between 

vehicles. A Sequential Level Bayesian Decision Network (SLBDN) is used for decision-

making in highway scenarios. To decrease the measurement uncertainties, the Extended 

Kalman Filter is used. The method is proven to have satisfactory results even in risky 

situations [29]. 

3.2.4. Statistic Learning-based Methods 

It is powerful from the point of view of learning from small size datasets and does 

not consume high computational power. However, it cannot generalize its behavior for all 

environments, and it acts only based on what it learns.  

Decision-making for lane change is implemented using three different statistic 

learning algorithms which are decision tree, random forest, and Artificial Neural Network 

(ANN). Their performance is compared with fuzzy logic algorithms and all these algorithms 

are proven to be better than a fuzzy logic algorithm [30] . A Support Vector Machine is used 

to solve the problem of the lane change. The inputs of the algorithm are a benefit, safety, and 

tolerance cost, and based on these parameters the decision is taken. The algorithm has proven 

to surpass the FSM performance [2]. 

3.2.5. Deep Learning-based Methods 

These methods is known for its ability to imitate human behaviors, and its 

performance can be easily judged. It can work in more than one scenario but needs huge 

datasets and high computational power to be trained. Sensor’s uncertainties affect the 

performance of these algorithms dramatically. 

 An end-to-end approach is tackled for lane following, avoiding collisions, and 

traffic signals handling. The network takes input images and velocity measurements as 

inputs and generates steering, braking, and throttling commands. The network consists of 

seven elements which are an encoder, two decoders, a traffic light state classifier, flatten 

module, a velocity module, and a driving module. The approach is tested on the CARLA 
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simulator in benchmarked datasets. It implies a high success rate and ability to handle traffic 

lights [31]. 

A deep cascaded neural network is constructed to handle multiple tasks 

simultaneously (Hu et al., 2021). The input to the network is images from front cameras and 

the output is steering, braking, and throttling commands. The network consists of one CNN 

and three LSTM modules. The methodology is tested on five roads which are: country road, 

freeway, mountain road, tunnel, and congested road. It is compared to two state-of-the-art 

methods such as NVIDIA (NVD) and the Weighted Loss Function (WLF) method. The 

proposed method has proven to have the least Root Mean Square Error (RMSE) in 

acceleration and braking values.    

A deep learning approach is established for the lane change scenario [32]. The 

approach aims to imitate the human driving style. It considers not only the traffic 

information but also the driving styles of the surrounding vehicles. Two Convolutional 

Neural Networks (CNNs) are built for lane change decision-making. The first network aims 

to capture information about the surrounding vehicle behavior. While the second one is 

concerned about ego-vehicle behavior. A cost model is established to help in making the 

best decision from the point of view of speed, safety, and tolerance. The output of the two 

CNNs and the cost model is the input of a Fully Connected Network (FCN). Finally, the 

FCN is responsible for taking the best decision. The algorithm is proven to have an accuracy 

of 98.66% in comparison to human performance and surpasses human performance in safety 

and speed.   

An end-to-end approach is presented to take throttling and steering decisions [33]. 

The model depends on images fed by a camera and velocity information to take its decision. 

To make its decisions interpretable, an attention branch network is used. The network 

identifies the parts of the image that make the vehicle take these decisions. The approach is 

proven to have an autonomy of 97.2% when experimented with in both urban and road 

environments. 

 A light end-to-end neural network is implemented to be compatible with the 

automotive embedded system environment [34]. The implemented CNN is fed with images 

from the camera and the output of this network is steering decisions. The implemented 

approach is proven to be capable to work in real time. Its performance was compared to Alex-

net, and it is proven to be 250 times faster than it. The implemented network can work in real-

time with 44 Frame Per Second (FPS).      

3.2.6. Reinforcement Learning-based Methods 

These methods are known of its ability to account for sensors uncertainties. 

Nevertheless, it is unsafe to be experimented in real street environment as the agent needs to 

experiment a bunch of behaviors to learn which may lead to high risk for the ego vehicle 

itself and for all the dynamics objects around it. Besides, it needs high computational power, 

especially in dense environments. 
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Decision-making in a dense urban environment is established by using POMDP 

based on occupancy grid maps. The collision check is done through the occupancy grid map 

to decrease the computational time needed to check for any collisions throughout the driving 

time. By testing the algorithm it is proven that using occupancy grid maps improves the 

POMDP algorithm efficiency by a factor of 50 [35].  

A POMDP based on Interacting Multiple Model (IMM) is proposed for decision-

making in lane change scenarios [36]. The algorithm considers the risk of collision by using 

a function based on time to collision (TTC) and Intravehicular Time (IT). A Monte Carlo 

tree search is used for decision-making as well. It was stated that the algorithm can generate 

safe and reasonable decisions. 

The algorithm is tested on a single-lane car following the scenario and merge 

scenario. It is proven to be able to balance safety and usability. It can also adapt to 

surrounding vehicles’ behavior. An online tree-based POMDP is used for dense crowd 

environments. The algorithm is built for real-time operation. It is proven to be safe and 

efficient, especially in highly dynamic environments  [37]. 

A risk-aware decision-making algorithm is built on basis of POMDP. The 

responsibility-Sensitive-Safety (RSS) distance model is used to measure the distance 

between the ego vehicle and the surrounding vehicle to assure safety [38]. This model 

output is considered by the POMDP algorithm's reward function.  

Markov Decision Process (MDP) is used to deal with the scenario in which ethical 

dilemmas might arise [39]. The implemented framework uses a measure of harm when a 

collision arises. Three different theories of ethics were used to take the appropriate 

decisions. It was proven to have the ability to generate decisions based on ethical theories. 

A Partially Observable Markov Decision Process (POMDP) is used in intersection 

scenarios and urban environments [40]. The algorithm can consider the uncertainties in the 

environment. It can also interact with hidden vehicles and predict their presence. The 

algorithm is proven to deal with uncertainties. 

A POMDP combined with the Monto Carlo tree is also used for lane change and car-

following scenarios [41]. It is also used to account for environmental uncertainties.  The 

algorithm accounts for the risk that might occurs due to the behavior of other cars on the road. 

The algorithm is proven to have the ability to take decisions based on the expected behavior 

of the surrounding cars in the future. 
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Table 1. Existing Methodologies Advantages and Disadvantages 

Categories Subcategories 
Author & 

Date 
Advantages Disadvantages 

Classical 

methods 

Rules-based 

methods 

[1], [3], [14], 

[21], [22] 

- Simple implementation. 

- Low computational 

power. 

- Real-time operation. 

- Adapt the rationality of 

human thinking.  

- Its behavior can be easily 

traced and explained. 

- Inability to handle 

complex environments. 

- Risk of rules explosion. 

- Inability to handle 

uncertainty. 

- Low ability to handle 

unplanned situations. 

 

 

Optimization-

based methods 

[15], [23]–

[27] 

- Interaction between 

dynamic objects can be 

easily handled. 

- Only small traffic 

situations can be handled 

in real-time on state-of-

the-art computing 

hardware 

Probabilistic-based 

methods 

[28], [29] - Ability to interact with 

the behaviors of other 

dynamic objects on the 

road. 

- High computational 

power is required 

- Does not account for 

environment uncertainties 

Learning 

methods 

Statistic Learning-

based methods 

[2], [32] -Requires low 

computational power. 

-Requires small human-

made datasets. 

- Low ability to generalize 

to different environments. 

Deep Learning-

based methods 

[31]–[34], 

[42] 

- Adapt behaviors like 

human behaviors. 

- Simple in judging its 

performance in 

comparison to human 

performance. 

 

 

- Requires high 

computational power. 

- Requires large human-

made datasets. 

- Low ability to generalize 

its behaviors to different 

environments. 

- Most deep-learning 

algorithms are sensitive to 

sensor uncertainties. 

-Low explainability 

 

Reinforcement 

Learning-based 

methods 

[35]–[41] -Ability to handle 

environmental 

uncertainties. 

- High decision-making 

accuracy. 

- Ability to generalize in 

different environments. 

-Requires high 

computational power. 

-Most of the existing 

algorithms are unable to 

work in real time. 

-Suffers from safety 

problems due to the need 

of the agent to test random 

behaviors to learn. 
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4. Applications for BP Methodologies 

Different environments, scenarios, and simulation platforms are used for each 

methodology depending on the adaptability and suitability of each methodology to certain 

applications as shown in Table.1 and Table.2. 

4.1. Testing Environments 

The previous researchers have tested their methodologies in one of two different 

environments which are Highways [H] or Urban [U] environments. Highways are simple 

environments with vehicles that have high velocity,  low traffic, and no pedestrians on them. 

The highways might also have no challenging components such as motorcycles, bicycles, 

and animals.  

While urban and city environments are more challenging environments. It can imply 

many dynamic elements such as vehicles, pedestrians, animals, motorcycles, and bicycles.     

4.2. Testing Platforms 

The previous researchers test their work either on Simulation [S] platforms or 

Realistic [R].  platforms. The simulation platforms are Carla, Prescan, Matlab/ Simulink, 

Udacity self-driving car environment, etc. Some of the researchers depend on games 

environment to test their work such as GTAV. This simulation platform provides 

semirealistic road environments so that the obtained results from testing their work on them 

can be more or less reliable. 

The testing process for real platforms can be conducted indoors or outdoors. Some 

researchers depend on small robots to test their work indoors. While others depend on a real 

vehicle and test their work on real streets. That can be either public or private roads owned by 

the research companies. Deep learning end-to-end methods are mostly tested on a dataset that 

is made by a real vehicle platform such as the NGISM dataset.     

4.3. Testing Scenarios 

There are many different scenarios in which the autonomous car can be on. Some 

of them are simple and some of them are challenging. The challenging scenarios can 

be scenarios in which sudden objects might appear, or scenarios that hazards might 

aries such as construction zones, or scenarios like T-intersection and roundbouts. The 

previous research has established their work on a basis of one of these scenarios. 

These scenarios are Lane Changing [LC], Lane Keeping [LK], Over-taking [O], 

Intersection [I], Roundabout [R], Parking Zone [PZ], and Turning [T]. Considering 

the lane change scenarios that is stated in Table 1 and Table 2, it can be on a regular 

road or in a merge. Lane-keeping is also might be following the heading car or just 

cruising on a lane. 
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Table 2. Classical Methods Applications 

Method Author & Date Testing 

Environment 

Testing 

Platform 

Testing Scenario 

[H] [U] [R] [S] [LC] [LK]] [O] [I] [R] [P] [T] 

Rules-based [1] ✓      ✓    ✓  ✓          

[14] ✓      ✓  ✓  ✓            

[21] ✓       ✓      ✓          

[3]   ✓  ✓

  
  ✓              

[22]   ✓ ✓

  
✓        ✓       

[16]   ✓ ✓     ✓  ✓  ✓
  

    ✓ 

[43] ✓     ✓ ✓  ✓  ✓          

[44]   ✓  ✓

  
        ✓

  
      

[45] ✓      ✓  ✓              

[46] ✓    ✓

  
  ✓    ✓          

[47]   ✓  ✓

  
          ✓

  
    

[48]   ✓  ✓

  
    ✓    ✓

  
  ✓

  
  

[49]   ✓  ✓

  
    ✓  ✓      ✓

  
✓  

Optimization-

based 

[25], [26], [50], 

[51] 
✓      ✓  ✓              

[24]   ✓    ✓  ✓              
[15] ✓  ✓  ✓

  
✓  ✓  ✓        ✓

  
  

[52], [53], ✓      ✓  ✓  ✓            
[54] ✓    ✓

  
  ✓  ✓  ✓          

Probabilistic-

based 

[28], [29], [55], 

[56] 
✓      ✓  ✓              

[57] ✓      ✓      ✓          

[58] ✓      ✓        ✓
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Table 3. Learning Methods Applications 

Method Author & Date Testing 

Environment 

Testing 

Platform 

Testing Scenario 

[H] [U] [R] [S] [LC] [LK] [O] [I] [R] [P] [T] 

Statistical 

Learning-

based 

[30], [59] ✓      ✓  ✓              

[2] ✓    ✓  ✓  ✓              

[60] ✓    ✓    ✓              

Deep 

Learning-

based 

[31] 
 

✓    ✓  ✓  ✓  ✓        ✓  

[42] ✓  ✓    ✓        ✓        

[61]   ✓    ✓                

[32] ✓    ✓    ✓              

[33], [62] ✓  ✓  ✓                  

[34] ✓      ✓                

[63]   ✓  ✓  ✓    ✓          ✓  

[64]   ✓  ✓                ✓  

[65]   ✓  ✓                  

[66] ✓    ✓  ✓    ✓            

[67] ✓    ✓  ✓  ✓  ✓            

Reinforcement 

Learning-

based 

[36], [41], [68] ✓      ✓  ✓              

[36], [40], [69]–

[72] 
  ✓    ✓        ✓        

[38] ✓      ✓  ✓  ✓            

[73], [74]   ✓  ✓          ✓        

[7], [75]   ✓    ✓  ✓              

[76]   ✓    ✓        ✓  ✓      

[10] ✓    ✓  ✓  ✓    ✓          

 

5. Discussion  

In the existing BPAs, there is a tradeoff  between the simplicity, computational 

power, and the ability of the algorithm to be generalized to different environments and 

scenarios. For example, FSM is the simplest of all algorithms and has low 

computational power but cannot be generalized for all scenarios or platforms due to the 

hardness of humans to predict or limit all the possible situations that can arise on the 

road. FSM is the oldest method for BP of all the stated methods it has been used since 

the DARPA competition and there are still updates that come on with it. Mostly, FSM 

does not account for predictions, it can only account for current situations and 
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interactions between the surrounding objects. Optimization methods can handle 

interactions and predictions, but huge computational power is needed and most of the 

researchers test optimization methods using simulation platforms only. Probabilistic 

methods are not popular in the field of autonomous cars BP. Moreover, it is also always 

experimented with in simulation platforms only due to the high computational power 

needed. 

On the other hand, learning-based methods such as statistical learning-based 

methods and deep learning-based methods almost need many human-made datasets. It 

took a lot of time and effort to make such a dataset. Besides, it is still hard to account for 

all the situations in a dataset. The deep-learning methods achieve high accuracy and can 

imitate human behaviors, but as these algorithms depend on sensor inputs and datasets, 

the output will be highly affected by the sensor’s uncertainties. Reinforcement learning 

methods are the most popular in the last few years. It is known for its ability to achieve 

performance that is like human performance. It can also compensate for the sensors and 

environmental uncertainties. It can account for the interaction and predictions between 

dynamic objects on the road. The drawback of the reinforcement learning method is its 

computational power which is not suitable for autonomous embedded systems. This 

opens the door for researchers to try to achieve light versions of the existing 

reinforcement learning algorithms. 

From the applications perspective, Rules-based methods are tested in both 

highways and urban environments. But most of the tests are made on highways except 

for DARPA urban competition. DARPA Urban competition environments are not as 

complex as real urban environments. However, it is believed that rules-based methods 

are more suitable for simple scenarios such as highways. It is mostly used for lane 

change and car following scenarios and rarely to be used in a challenging scenario such 

as roundabouts. It is proven a real success in scenarios such as lane changing, lane 

keeping, and overtaking. Optimization methods can be implemented in both highways 

and urban environments, but as far as we researched optimization methods are mostly 

used for simple scenarios such as lane changing, lane keeping, and overtaking. The 

implemented methods are mostly experimented in simulation platforms rather than a 

real-world scenario and this is mostly due to the high computational power needed for 

these algorithms. Similarly, the probabilistic-based methods are mostly implemented in 

simulated scenarios due to the same reason. Besides, they are only tested on highways, 

and they might be efficient only on highways. It is also almost experimented with in 

simple scenarios such as lane changing and overtaking. By reviewing the classical-

based methods, it is found out that it is appropriate to use them in simple environments. 

Statistical learning methods are dependent on datasets and sensor parameters thus 

it will be easier to be implemented in simple environments such as highways. While deep 

learning methods can be used in any environment and any scenario depending on the 

dataset it learned on. However, it is impossible to account for all the situations the car can 

be on. Finally, reinforcement learning is suitable to be experimented with in both 

highways and urban environments nevertheless the computational power increase 

dramatically within dense urban environments. Moreover, most of the conducted research 
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use simulation platforms to test them due to the risk that might arise from testing it in real 

environments. 

6. Conclusions and Future Orientation 

To conclude, after reviewing the existing methodologies for behavior planning in 

autonomous vehicles and discussing their advantages, disadvantages, and applications, 

it is obvious that the current state of research and the previous work is not enough for 

autonomous vehicles to transfer to level-5 of automation. More investigation in real 

experiments is needed as many of the existing work shows feasible results in 

simulation environments, but this is not enough to prove its efficiency in real world 

implementation.  

From the present point of research, these points can be covered in the future. Fusion 

between different algorithms is needed to be considered as each algorithm has its area 

of application. Combining different algorithms can open the door for autonomous cars 

to operate in different environments and generalize its performance. In addition, 

considering the interaction between vehicles using communication networks protocol 

such as V2V protocol will ease the decision making specially in environments where 

the perception is limited. Since, reinforcement learning methods are promising, 

finding ways to decrease their computational power is important. Situations where 

ethical dilemmas arise needed to be handled by the existing methodologies. More 

research is needed to be conducted in parking scenarios and moving in parking lots 

scenarios. Besides, hazardous places such as construction zones are needed to be 

studied. In addition, highly dynamic objects such as pedestrians, and cyclists are 

needed to be considered while selecting the appropriate behavior. Most of the existing 

research accounts only for the surrounding vehicles and their interaction with them. 

Complex and unstructured environments are needed to be investigated. Furthermore, 

dense environments are needed to be studied.  
. 
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