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STEPANOV AND WEYL CLASSES OF MULTI-DIMENSIONAL

ρ-ALMOST PERIODIC TYPE FUNCTIONS

M. KOSTIĆ

Abstract. In this paper, we analyze Stepanov and Weyl classes of multi-

dimensional ρ-almost periodic type functions F : I × X → Y , where n ∈ N,
∅ 6= I ⊆ Rn, X and Y are complex Banach spaces and ρ is a binary relation on
Y, working in the general setting of Lebesgue spaces with variable exponents.

We provide the main structural characterizations for the introduced classes

of functions and apply our results to the abstract Volterra integro-differential
equations.

1. Introduction and preliminaries

The notion of an almost periodic function was introduced by H. Bohr [6] around
1925 and later generalized by many others. Let I be either R or [0,∞), let c ∈ C\{0}
satisfy |c| = 1, and let f : I → X be a given continuous function, where X is a
complex Banach space equipped with the norm ‖ · ‖. If ε > 0, then a number τ > 0
is called a (ε, c)-period for f(·) if and only if ‖f(t+ τ)− cf(t)‖ ≤ ε, t ∈ I. The set
of all (ε, c)-periods for f(·) is denoted by ϑc(f, ε). The function f(·) is said to be
c-almost periodic if and only if for each ε > 0 the set ϑc(f, ε) is relatively dense
in [0,∞), i.e., there exists l > 0 such that any subinterval of [0,∞) of length l
meets ϑc(f, ε). The usual notion of almost periodicity (almost anti-periodicity) is
obtained by plugging c = 1 (c = −1). For further information concerning almost
periodic functions, we refer the reader to the research monographs [5], [7], [13]-[14],
[17]-[19], [25], [27] and [29].

The notion of (w,T)-periodicity for a continuous function f : [0,∞)→ X, where
ω > 0 and T : X → X is a linear isomorphism, has recently been introduced
by M. Fečkan, K. Liu and J. Wang in [11, Definition 2.2]: a continuous function
f : [0,∞)→ X is called (w,T)-periodic if and only if f(t+ω) = Tf(t) for all t ≥ 0.
The authors have analyzed the existence and uniqueness of (w,T)-periodic solutions
for various classes of impulsive evolution equations using the strongly continuous
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semigroups, the Fredholm alternative type theorems and the fixed point theorems.
In a joint research article [12] with M. Fečkan, M. T. Khalladi and A. Rahmani,
the author of this paper has investigated the basic properties of multi-dimensional
ρ-almost periodic type functions with values in complex Banach spaces.

On the other hand, in [2], A. Chávez, K. Khalil, M. Kostić and M. Pinto have
analyzed multi-dimensional almost periodic functions of form F : I×X → Y, where
(Y, ‖ · ‖Y ) is a complex Banach spaces and ∅ 6= I ⊆ Rn; the multi-dimensional c-
almost periodic type functions have recently been investigated in [16]. For more
details about multi-dimensional Stepanov (Weyl) (c-)almost periodic type func-
tions, multi-dimensional almost automorphic type functions and their applications,
we refer the reader to the forthcoming research monograph [19] by M. Kostić; see
also the research articles [1], [3]-[4], and [22]-[24].

The organization and main ideas of this paper can be briefly described as follows.
After giving some preliminaries about multi-dimensional ρ-almost periodic func-
tions (Subsection 1.1), the basic results and definitions about the Lebesgue spaces
with variable exponent (Subsection 1.2), the multi-dimensional Bochner transform,
the Stepanov distance and the Stepanov norm (Subsection 1.3), we introduce and
analyze the multi-dimensional Stepanov ρ-almost periodic functions in Section 2.
The main purpose of Section 3 is to introduce and analyze several various classes
of the multi-dimensional Weyl ρ-almost periodic functions. In the final section of
paper, we provide certain applications of our theoretical results to the abstract
Volterra integro-differential equations. We feel it is our duty to emphasize that
we do not present proofs for many structural results clarified below since these
proofs can be obtained by insignificant modifications of already known proofs of
corresponding results from our former research studies. Notation and terminol-
ogy. Suppose that X, Y, Z and T are given non-empty sets. Let us recall that
a binary relation between X and Y is any subset ρ ⊆ X × Y. If ρ ⊆ X × Y and
σ ⊆ Z × T with Y ∩Z 6= ∅, then we define ρ−1 ⊆ Y ×X and σ · ρ = σ ◦ ρ ⊆ X × T
by ρ−1 := {(y, x) ∈ Y × X : (x, y) ∈ ρ} and σ ◦ ρ := {(x, t) ∈ X × T : ∃y ∈
Y ∩ Z such that (x, y) ∈ ρ and (y, t) ∈ σ}, respectively. As is well known, the do-
main and range of ρ are defined by D(ρ) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈
X × Y } and R(ρ) := {y ∈ Y : ∃x ∈ X such that (x, y) ∈ X × Y }, respectively;
ρ(x) := {y ∈ Y : (x, y) ∈ ρ} (x ∈ X), x ρ y ⇔ (x, y) ∈ ρ. If ρ is a binary
relation on X and n ∈ N, then we define ρn inductively; ρ−n := (ρn)−1. Set
ρ(X ′) := {y : y ∈ ρ(x) for some x ∈ X ′} (X ′ ⊆ X) and Nn := {1, · · ·, n} (n ∈ N).

We assume henceforth that (X, ‖ · ‖), (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) are three complex
Banach spaces, n ∈ N, B is a certain collection of subsets of X satisfying that for
each x ∈ X there exists B ∈ B such that x ∈ B. By L(X,Y ) we denote the Banach
space of all linear continuous functions from X into Y ; L(X) ≡ L(X,X). We will
always use the principal branch of the exponential function to take the powers of
complex numbers. If t0 ∈ Rn and ε > 0, then we set B(t0, ε) := {t ∈ Rn : |t−t0| ≤
ε}, where | · | denotes the Euclidean norm in Rn. Set IM := {t ∈ I : |t| ≥ M}
(I ⊆ Rn; M > 0). Generally, if F (·) is a function, then we set F̌ (·) := F (−·).

We will use the following definition from [2]:
Definition 1 Suppose that D ⊆ I ⊆ Rn and the set D is unbounded. By C0,D,B(I×
X : Y ) we denote the vector space consisting of all continuous functions Q : I×X →
Y such that, for every B ∈ B, we have limt∈D,|t|→+∞Q(t;x) = 0, uniformly for
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x ∈ B. If X = {0}, then we abbreviate C0,D,B(I × X : Y ) to C0,D,B(I : Y );
furthermore, if D = I, then we omit the term “D” from the notation.

1.1. Multi-dimensional ρ-almost periodic type functions. In [12], we have
recently introduced and analyzed the following notion:
Definition 2 Suppose that ∅ 6= I ′ ⊆ Rn, ∅ 6= I ⊆ Rn, F : I × X → Y is a
continuous function, ρ is a binary relation on Y and I + I ′ ⊆ I. Then we say that:

(i) F (·; ·) is Bohr (B, I ′, ρ)-almost periodic if and only if for every B ∈ B
and ε > 0 there exists l > 0 such that for each t0 ∈ I ′ there exists τ ∈
B(t0, l) ∩ I ′ such that, for every t ∈ I and x ∈ B, there exists an element
yt;x ∈ ρ(F (t;x)) such that∥∥F (t + τ ;x)− yt;x

∥∥
Y
≤ ε.

(ii) F (·; ·) is (B, I ′, ρ)-uniformly recurrent if and only if for every B ∈ B there
exists a sequence (τk) in I ′ such that limk→+∞ |τk| = +∞ and that, for
every t ∈ I and x ∈ B, there exists an element yt;x ∈ ρ(F (t;x)) such that

lim
k→+∞

sup
t∈I;x∈B

∥∥F (t + τk;x)− yt;x
∥∥
Y

= 0.

It is clear that the Bohr (B, I ′, ρ)-almost periodicity of F (·; ·) implies the (B, I ′, ρ)-
uniform recurrence of F (·; ·); the converse statement is not true in general ([19]).
In the case that ρ = T : Y → Y is a single-valued function (not necessarily linear or
continuous), then we obtain the most important case for our further investigations,
when the function F (·; ·) is (B, I ′, T )-almost periodic, resp. (B, I ′, T )-uniformly
recurrent. In the case that X = {0} (I ′ = I), we omit the term “B” (“I ′”) from the
notation; furthermore, if T = cI for some complex number c ∈ C\{0}, then we also
say that the function F (·; ·) is (B, I ′, c)-almost periodic, resp. (B, I ′, c)-uniformly
recurrent. Further on, we say that the function F (·; ·) is almost periodic (uniformly
recurrent) if and only if F (·; ·) is (B, I ′, c)-almost periodic, resp. (B, I ′, c)-uniformly
recurrent with I ′ = I and c = 1; the corresponding notion of almost anti-periodicity
(uniform anti-recurrence) is obtained by plugging I ′ = I and c = −1. We will use
the following results from [12]:
Lemma 1

(i) Suppose that ∅ 6= I ′ ⊆ Rn, ∅ 6= I ⊆ Rn, I + I ′ ⊆ I, and the function F :
I×X → Y is Bohr (B, I ′, ρ)-almost periodic ((B, I ′, ρ)-uniformly recurrent),
where ρ is a binary relation on Y satisfying R(F ) ⊆ D(ρ) and ρ(y) is
a singleton for any y ∈ R(F ). If for each τ ∈ I ′ we have τ + I = I, then
I+(I ′−I ′) ⊆ I and the function F (·; ·) is Bohr (B, I ′−I ′, I)-almost periodic
((B, I ′ − I ′, I)-uniformly recurrent).

(ii) Suppose that ∅ 6= I ′ ⊆ Rn, and the function F : Rn × X → Y is Bohr
(B, I ′, ρ)-almost periodic ((B, I ′, ρ)-uniformly recurrent), where ρ is a bi-
nary relation on Y satisfying R(F ) ⊆ D(ρ) and ρ(y) is a singleton for any
y ∈ R(F ). Then the function F (·; ·) is Bohr (B, I ′ − I ′, I)-almost periodic
((B, I ′ − I ′, I)-uniformly recurrent).

(iii) Suppose that ρ = T ∈ L(Y ) is a linear isomorphism.
(a) Suppose that ∅ 6= I ⊆ Rn, I + I ⊆ I, I is closed, F : I × X → Y is

Bohr (B, T )-almost periodic and B is any family of compact subsets of
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X. If

(∀l > 0) (∃t0 ∈ I) (∃k > 0) (∀t ∈ I)(∃t′0 ∈ I)

(∀t′′0 ∈ B(t′0, l) ∩ I) t− t′′0 ∈ B(t0, kl) ∩ I, (1)

then for each B ∈ B we have that the set {F (t;x) : t ∈ I, x ∈ B} is
relatively compact in Y ; in particular, supt∈I;x∈B ‖F (t;x)‖Y <∞.

(b) Suppose that ∅ 6= I ⊆ Rn, I + I ⊆ I, I is closed and F : I ×X → Y
is Bohr (B, T )-almost periodic, where B is a family consisting of some
compact subsets of X. If the following condition holds

(∃t0 ∈ I) (∀ε > 0)(∀l > 0) (∃l′ > 0) (∀t′, t′′ ∈ I)

B(t0, l) ∩ I ⊆ B(t0 − t′, l′) ∩B(t0 − t′′, l′),
(2)

then for each B ∈ B the function F (·; ·) is uniformly continuous on
I ×B.

(iv) Suppose that ∅ 6= I ′ ⊆ Rn, ∅ 6= I ⊆ Rn, I + I ′ ⊆ I and F : I × X → Y
is a (B, I ′, ρ)-uniformly recurrent function, where ρ = T ∈ L(Y ) is a linear
isomorphism. Then for each real number a > 0 we have:

sup
t∈I,x∈B

∥∥F (t;x)
∥∥
Y
≤ sup

t∈I+I′,|t|≥a,x∈B

∥∥T−1F (t;x)
∥∥
Y
,

and for each x ∈ X we have

sup
t∈I

∥∥F (t;x)
∥∥
Y
≤ sup

t∈I+I′,|t|≥a

∥∥T−1F (t;x)
∥∥
Y
,

so that the function F (·;x) is identically equal to zero provided that the
function F (·; ·) is (B, I ′, ρ)-uniformly recurrent and
lim|t|→+∞,t∈I+I′ F (t;x) = 0.

We will use the following definitions, as well ([12]):
Definition 3 Suppose that D ⊆ I ⊆ Rn, the set D is unbounded, ∅ 6= I ′ ⊆ Rn,
∅ 6= I ⊆ Rn, F : I×X → Y is a continuous function, ρ is a binary relation on Y and
I+I ′ ⊆ I. Then we say that the function F (·; ·) is (strongly) D-asymptotically Bohr
(B, I ′, ρ)-almost periodic, resp. (strongly) D-asymptotically (B, I ′, ρ)-uniformly re-
current, if and only if there exists a Bohr (B, I ′, ρ)-almost periodic function, resp.
(B, I ′, ρ)-uniformly recurrent function, (F0 : Rn ×X → Y ) F0 : I ×X → Y and a
function Q ∈ C0,D,B(I×X : Y ) such that F (t;x) = F0(t;x)+Q(t;x), t ∈ I, x ∈ X.

The functions F0(·; ·) and Q(·; ·) are usually called the principal part of F (·; ·)
and the corrective (ergodic) part of F (·; ·), respectively.
Definition 4 Suppose that D ⊆ I ⊆ Rn and the set D is unbounded, as well as
∅ 6= I ′ ⊆ Rn, ∅ 6= I ⊆ Rn, F : I ×X → Y is a continuous function, I + I ′ ⊆ I and
ρ is a binary relation on X. Then we say that:

(i) F (·; ·) is D-asymptotically Bohr (B, I ′, ρ)-almost periodic of type 1 if and
only if for every B ∈ B and ε > 0 there exist l > 0 and M > 0 such that
for each t0 ∈ I ′ there exists τ ∈ B(t0, l) ∩ I ′ such that, for every t ∈ I and
x ∈ B with t, t + τ ∈ DM , there exists an element yt,x ∈ ρ(F (t;x)) such
that ∥∥F (t + τ ;x)− yt,x

∥∥
Y
≤ ε.
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(ii) F (·; ·) is D-asymptotically (B, I ′, ρ)-uniformly recurrent of type 1 if and
only if for every B ∈ B there exist a sequence (τk) in I ′ and a sequence
(Mk) in (0,∞) such that limk→+∞ |τk| = limk→+∞Mk = +∞ and that,
for every t ∈ I and x ∈ B, there exists an element yt;x ∈ ρ(F (t;x)) such
that

lim
k→+∞

sup
t,t+τk∈DMk ;x∈B

∥∥F (t + τk;x)− yt,x
∥∥
Y

= 0.

In the case that X = {0} (I ′ = I), we omit the term “B” (“I ′”) from the notation,
as before.

1.2. Lebesgue spaces with variable exponents Lp(x). Let ∅ 6= Ω ⊆ Rn be
a nonempty Lebesgue measurable subset and let M(Ω : X) denote the collection
of all measurable functions f : Ω → X; M(Ω) := M(Ω : R). Furthermore, P(Ω)
denotes the vector space of all Lebesgue measurable functions p : Ω → [1,∞]. For
any p ∈ P(Ω) and f ∈M(Ω : X), we define

ϕp(x)(t) :=


tp(x), t ≥ 0, 1 ≤ p(x) <∞,

0, 0 ≤ t ≤ 1, p(x) =∞,

∞, t > 1, p(x) =∞
and

ρ(f) :=

∫
Ω

ϕp(x)(‖f(x)‖) dx.

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent by

Lp(x)(Ω : X) :=
{
f ∈M(Ω : X) : lim

λ→0+
ρ(λf) = 0

}
.

Equivalently

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) : there exists λ > 0 such that ρ(λf) <∞

}
;

see, e.g., [9, p. 73]. For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg norm
of u(·) by

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{
λ > 0 : ρ(u/λ) ≤ 1

}
.

Equipped with the above norm, the space Lp(x)(Ω : X) becomes a Banach space
(see e.g. [9, Theorem 3.2.7] for the scalar-valued case), coinciding with the usual
Lebesgue space Lp(Ω : X) in the case that p(x) = p ≥ 1 is a constant function.
Further on, for any p ∈M(Ω), we define

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).

Set
D+(Ω) :=

{
p ∈M(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ <∞ for a.e. x ∈ Ω

}
.

For p ∈ D+([0, 1]), the space Lp(x)(Ω : X) behaves nicely, with almost all funda-
mental properties of the Lebesgue space with constant exponent Lp(Ω : X) being
retained; in this case, we know that

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) ; for all λ > 0 we have ρ(λf) <∞

}
.

We will use the following lemma (cf. [9] for the scalar-valued case):
Lemma 2
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(i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1

q(x)
=

1

p(x)
+

1

r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω :
X) and

‖uv‖q(x) ≤ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e.
on Ω. Then Lp(x)(Ω : X) is continuously embedded in Lq(x)(Ω : X), and
the constant of embedding is less than or equal to 2(1 +m(Ω)).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈ M(Ω : X) and 0 ≤ ‖g‖ ≤ ‖f‖ a.e. on Ω. Then
g ∈ Lp(x)(Ω : X) and ‖g‖p(x) ≤ ‖f‖p(x).

We will use the following simple lemma, whose proof can be omitted:
Lemma 3 Suppose that f ∈ Lp(x)(Ω : X) and A ∈ L(X,Y ). Then Af ∈ Lp(x)(Ω :
Y ) and ‖Af‖Lp(x)(Ω:Y ) ≤ ‖A‖ · ‖f‖Lp(x)(Ω:X).
For further information concerning the Lebesgue spaces with variable exponents
Lp(x), we refer the reader to [9], [10] and [26].

1.3. Stepanov multi-dimensional Bochner transform, Stepanov distance
and Stepanov norm. In this subsection and the subsequent section, we will al-
ways assume that Ω is a fixed compact subset of Rn with positive Lebesgue measure
and p ∈ P(Ω). Further on, Λ denotes a general non-empty subset of Rn satisfying
Λ+Ω ⊆ Λ (in [2] and the Subsection 1.1, this region has been denoted by I). Recall

that the multi-dimensional Bochner transform F̂Ω : Λ×X → Y Ω is defined by[
F̂Ω(t;x)

]
(u) := F (t + u;x), t ∈ Λ, u ∈ Ω, x ∈ X.

The notion of Stepanov (Ω, p(u))-boundedness on B is introduced in [4] as follows:
Definition 5 Suppose that ∅ 6= Λ ⊆ Rn satisfies Λ + Ω ⊆ Λ and F : Λ×X → Y
satisfies that for each t ∈ Λ and x ∈ X, the function F (t + u;x) belongs to the
space Lp(u)(Ω : Y ). Then we say that F (·; ·) is Stepanov (Ω, p(u))-bounded on B if
and only if for each B ∈ B we have

sup
t∈Λ;x∈B

∥∥∥[F̂Ω(t;x)
]
(u)
∥∥∥
Lp(u)(Ω:Y )

= sup
t∈Λ;x∈B

∥∥∥F (t + u;x)
∥∥∥
Lp(u)(Ω:Y )

<∞.

Denote by L
Ω,p(u)
S,B (Λ×X : Y ) the set consisting of all Stepanov (Ω, p(u))-bounded

functions on B.
If n = 1, X = {0}, Ω = [0, 1] and Λ = [0,∞) or Λ = R, then the notion introduced
above reduces to the notion introduced recently in [8, Definition 4.1]. If X = {0},
then we abbreviate L

Ω,p(u)
S,B (Λ×X : Y ) to L

Ω,p(u)
S (Λ : Y ); in this case, we say that the

function F (·) is Stepanov (Ω, p(u))-bounded and define ‖F‖SΩ,p(u) := supt∈Λ ‖F (t+
u)‖Lp(u)(Ω:Y ); in the usually considered case Ω = [0, 1]n, then we also say that the

function F (·; ·) is Stepanov p(u)-bounded. Let ∅ 6= Λ ⊆ Rn satisfy Λ + Ω ⊆ Λ.
Suppose first that p(u) ≡ p ∈ [1,∞) and F : Λ → Y and G : Λ → Y are two
functions for which ‖F (t + u) − G(t + u)‖Y ∈ Lp(Ω : C) for all t ∈ Λ. We define
the Stepanov distance Dp

S
Ω

(F,G) of functions F (·) and G(·) by

Dp
SΩ

(F,G) := sup
t∈Λ

[( 1

m(Ω)

)1/p

‖F (t + u)−G(t + u)
∥∥
Lp(Ω:Y )

]
.
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Suppose now that p, q ∈ P(Ω), 1/p(u)+1/q(u) = 1 for a.e. u ∈ Ω and q(u) < +∞
for a.e. u ∈ Ω. In this case (the definition is consistent with the above given

provided that p(u) ≡ p ∈ (1,∞)), we define the Stepanov distance D
p(·)
S

Ω
(F,G) of

functions F (·) and G(·) by

D
p(·)
SΩ

(F,G) := sup
t∈Λ

[
m(Ω)−1‖1‖Lq(u)(Ω)‖F (t + u)−G(t + u)

∥∥
Lp(u)(Ω:Y )

]
.

Clearly, if 1 ≤ p1(u) ≡ p1 ≤ p2 ≡ p2(u) for a.e. u ∈ Ω, then we have Dp1

SΩ
(F,G) ≤

Dp2

SΩ
(F,G). If Ω ≡ [0, l]n for some l > 0, then we also write Dp

Sl
(F,G) ≡ Dp

SΩ
(F,G)

and D
p(·)
Sl

(F,G) ≡ D
p(·)
SΩ

(F,G). By SpΩ(Λ : Y ) we denote the vector space of all

functions F : Λ → Y for which ‖F (t + u)‖Y ∈ Lp(Ω : Y ) for all t ∈ Λ and the
Stepanov norm

‖F‖SpΩ := sup
t∈Λ

[( 1

m(Ω)

)1/p

‖F (t + u)
∥∥
Lp(Ω:Y )

]
is finite. If p, q ∈ P(Ω), 1/p(u) + 1/q(u) = 1 for a.e. u ∈ Ω and q(u) < +∞ for
a.e. u ∈ Ω, then (the definition is consistent with the above given provided that
p(u) ≡ p ∈ (1,∞)), we define the Stepanov norm ‖F‖

S
p(u)
Ω

by

‖F‖
S
p(u)
Ω

:= sup
t∈Λ

[
m(Ω)−1‖1‖Lq(u)(Ω)‖F (t + u)

∥∥
Lp(u)(Ω:Y )

]
;

again, S
p(u)
Ω (Λ : Y ) denotes the vector space consisting of all functions F : Λ→ Y

satisfying that ‖F (t + u)‖Y ∈ Lp(u)(Ω : Y ) for all t ∈ Λ and ‖F‖
S
p(u)
Ω

< ∞.

We know that S
p(u)
Ω (Λ : Y ) is a Banach space equipped with the norm ‖ · ‖

S
p(u)
Ω

.

For simplicity and better exposition, we will always assume that the following two
conditions hold henceforth:

(A1) The binary relation ρ on Y is a function, i.e., ρ(y) is a singleton for each
y ∈ D(ρ).

(A2) We have p ∈ D+(Ω). Then the continuity of mapping F : Λ × X → Y

implies the continuity of mapping F̂Ω : Λ×X → Lp(u)(Ω : Y ); see [4].

2. Stepanov multi-dimensional ρ-almost periodic functions in
Lebesgue spaces with variable exponents

In this section, we will tacitly assume that, for any considered function F :
Λ × X → Y, the function F̂Ω : Λ × X → Lp(u)(Ω : Y ) is continuous. Unless
stated otherwise, our standing assumptions will be that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn,
Λ+Λ′ ⊆ Λ, Λ+Ω ⊆ Λ, and F : Λ×X → Y . We introduce the notion of a Stepanov
multi-dimensional ρ-almost periodic function in the following way (in any concept
proposed, Stepanov or Weyl, we omit the term “ρ” if ρ = I, the identity operator
on Y ):
Definition 6 Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ,
and F : Λ×X → Y .

(i) Then we say that F (·; ·) is Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic
(Stepanov (Ω, p(u))-(B, ρ)-almost periodic, if Λ′ = Λ) if and only if for
every B ∈ B and ε > 0 there exists l > 0 such that for each t0 ∈ Λ′ there
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exists τ ∈ B(t0, l) ∩ Λ′ such that, for every t ∈ I and x ∈ B, the mapping
u 7→ ρ(F (t+u;x)), u ∈ Ω is well defined, belongs to the space Lp(u)(Ω : Y )
and∥∥F (t + τ + u;x)− ρ(F (t + u;x))

∥∥
Lp(u)(Ω:Y )

≤ ε, t ∈ Λ, x ∈ B.

By APS
Ω,p(u),ρ
B,Λ′ (Λ × X : Y ) and APS

Ω,p(u),ρ
B (Λ × X : Y ) we denote the

spaces consisting of all Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic func-
tions and Stepanov (Ω, p(u))-(B, ρ)-almost periodic functions, respectively.

(ii) Then we say that F (·; ·) is Stepanov (Ω, p(u), ρ)-(B,Λ′)-uniformly recurrent
(Stepanov (Ω, p(u), ρ)-B-uniformly recurrent, if Λ′ = Λ) if and only if for
every B ∈ B there exists a sequence (τn) in Λ′ such that limn→+∞ |τn| =
+∞ and that, for every t ∈ I and x ∈ B, the mapping u 7→ ρ(F (t + u;x)),
u ∈ Ω is well defined, belongs to the space Lp(u)(Ω : Y ) and

lim
n→+∞

sup
t∈I;x∈B

∥∥F (t + τn + u;x)− ρ(F (t + u;x))
∥∥
Lp(u)(Ω:Y )

= 0.

By URS
Ω,p(u),ρ
B,Λ′ (Λ × X : Y ) and URS

Ω,p(u),ρ
B (Λ × X : Y ) we denote

the spaces consisting of all Stepanov (Ω, p(u), ρ)-(B,Λ′)-uniformly recur-
rent functions and Stepanov (Ω, p(u), ρ)-B-uniformly recurrent functions,
respectively.

If X ∈ B, then it is also said that F (·; ·) is Stepanov (Ω, p(u))-(Λ′, ρ)-almost peri-
odic (Stepanov (Ω, p(u))-(Λ′, ρ)-uniformly recurrent) [Stepanov (Ω, p(u))-ρ-almost
periodic (Stepanov (Ω, p(u))-ρ-uniformly recurrent), if Λ = Λ′].
Employing Lemma 2, we immediately get the following (the same conclusions hold
for the corresponding spaces of Stepanov uniformly recurrent functions):
Proposition 1 Suppose that ∅ 6= Λ ⊆ Rn satisfies Λ+Ω ⊆ Λ, and F : Λ×X → Y.

(i) For every p ∈ P(Ω), we have that APS
Ω,p(u),ρ
B,Λ′ (Λ × X : Y ) is a subset of

APSΩ,1,ρ
B,Λ′ (Λ×X : Y )

(ii) For every p, q ∈ P(Ω), we have that the assumption q(u) ≤ p(u) for a.e.

u ∈ Ω implies that APS
Ω,p(u),ρ
B,Λ′ (Λ×X : Y ) is a subset of APS

Ω,q(u),ρ
B,Λ′ (Λ×

X : Y ).
(iii) If 1 ≤ p− ≤ p(u) ≤ p+ < +∞ for a.e. u ∈ Ω, then

APS
Ω,p+,ρ
B,Λ′ (Λ×X : Y ) ⊆ APSΩ,p(u),ρ

B,Λ′ (Λ×X : Y ) ⊆ APSΩ,p−,ρ
B,Λ′ (Λ×X : Y ).

In the next proposition, we will reconsider the statements of [15, Proposition 2.9]
and [21, Proposition 2.13] (see also [4, Example 2.8]) for Stepanov multi-dimensional
ρ-almost periodic type functions:
Proposition 2 Suppose that ρ = T ∈ L(Y ), l ∈ N, ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn,
Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, and F : Λ×X → Y is Stepanov (Ω, p(u))-(B,Λ′, T )-almost
periodic (Stepanov (Ω, p(u))-(B,Λ′, T )-uniformly recurrent). Then Λ + lΛ′ ⊆ Λ
and the function F (·; ·) is Stepanov (Ω, p(u))-(B, lΛ′, T l)-almost periodic (Stepanov
(Ω, p(u))-(B, lΛ′, T l)-uniformly recurrent).

Proof. We will consider only Stepanov (Ω, p(u))-(B,Λ′, T )-almost periodic func-
tions. Inductively, we easily get Λ + lΛ′ ⊆ Λ. Let ε > 0 and B ∈ B be given.
Further on, if t0, τ ∈ lΛ′, then t0/l, τ/l ∈ Λ′ and the result follows from the
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corresponding definition and the computation (t ∈ Λ, u ∈ Ω, x ∈ B):∥∥∥F (t + τ + u;x
)
− T lF (t + u;x)

∥∥∥
Lp(u)(Ω:Y )

=

∥∥∥∥∥
l−1∑
j=0

T j
[
F
(
t + ((l − j)τ/l) + u;x

)
− TF

(
t + ((l − j − 1)τ/l) + u;x

)]∥∥∥∥∥
Lp(u)(Ω:Y )

≤
l−1∑
j=0

‖T‖j
∥∥∥F (t + ((l − j)τ/l) + u;x

)
− TF

(
t + ((l − j − 1)τ/l) + u;x

)∥∥∥
Lp(u)(Ω:Y )

≤ ε
l−1∑
j=0

‖T‖j .

�

The next simple result follows almost immediately from Definition 5 and Defi-
nition 6; this result enables us to deduce many structural properties of Stepanov
multi-dimensional ρ-almost periodic functions using the corresponding properties
of multi-dimensional ρ-almost periodic functions:
Proposition 3 Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ,
and F : Λ×X → Y .

(i) Define a binary relation ρ1 on Lp(u)(Ω : Y ) by ρ1([F̂Ω(t;x)](·)) := ρ(F (t +
·;x)), t ∈ Λ, x ∈ X. If the function F (·; ·) is Stepanov (Ω, p(u))-(B,Λ′, ρ)-
almost periodic (Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent), then

the function F̂Ω : Λ × X → Lp(u)(Ω : Y ) is (B,Λ′, ρ1)-almost periodic
((B,Λ′, ρ1)-uniformly recurrent).

(ii) Let ρ1 be a binary relation on Lp(u)(Ω : Y ) such that ρ1(G) is a singleton

for all functions G ∈ R(F̂Ω). Define a binary relation ρ on Y by ρ(F (t +

u;x)) := ρ1([F̂Ω(t;x)](u)), t ∈ Λ, x ∈ X, u ∈ Ω. If the function F̂Ω :
Λ ×X → Lp(u)(Ω : Y ) is (B,Λ′, ρ1)-almost periodic ((B,Λ′, ρ1)-uniformly
recurrent), then the function F (·; ·) is Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost
periodic (Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent).

For example, using Lemma 1 and Proposition 3 (see also Lemma 3 for the issue
(iv)), we may deduce the following:
Theorem 1

(i) Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ, and
F : Λ ×X → Y is Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic (Stepanov
(Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent). If for each τ ∈ Λ′ we have τ+Λ =
Λ, then Λ + (Λ′ − Λ′) ⊆ Λ and the function F (·; ·) is Stepanov (Ω, p(u))-
(B,Λ′ −Λ′, I)-almost periodic (Stepanov (Ω, p(u))-(B,Λ′ −Λ′, I)-uniformly
recurrent).

(ii) Suppose that ∅ 6= Λ′ ⊆ Rn, and the function F : Rn ×X → Y is Stepanov
(Ω, p(u))-(B,Λ′, ρ)-almost periodic (Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly
recurrent). Then the function F (·; ·) is Stepanov (Ω, p(u))-(B,Λ′ − Λ, I)-
almost periodic (Stepanov (Ω, p(u))-(B,Λ′ − Λ, I)-uniformly recurrent).

(iii) Suppose that ρ = T ∈ L(Y ) is a linear isomorphism.
(a) Suppose that ∅ 6= Λ ⊆ Rn, Λ + Λ ⊆ Λ, Λ is closed, F : Λ × X → Y

is Stepanov (Ω, p(u))-(B, T )-almost periodic and B is any family of
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compact subsets of X. If (1) holds with the region I replaced with the

region Λ therein, then for each B ∈ B we have that the set {F̂Ω(t;x) :
t ∈ I, x ∈ B} is relatively compact in Lp(u)(Ω : Y ); in particular,
F (·; ·) is Stepanov (Ω, p(u))-bounded on B.

(b) Suppose that ∅ 6= Λ ⊆ Rn, Λ + Λ ⊆ Λ, Λ is closed and F : Λ ×X →
Y is Stepanov (Ω, p(u))-(B, T )-almost periodic, where B is a family
consisting of some compact subsets of X. If (2) holds with the region
I replaced with the region Λ therein, then for each B ∈ B the function
F̂Ω(·; ·) is uniformly continuous on Λ×B.

(iv) Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, Λ + Λ′ ⊆ Λ and F : Λ ×X → Y
is a Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent function, where ρ =

T ∈ L(Y ) is a linear isomorphism. Define the function T̃ : Lp(u)(Ω : Y )→
Lp(u)(Ω : Y ) by[

T̃F
]
(u) := TF (u), u ∈ Ω, F ∈ Lp(u)(Ω : Y ). (3)

Then T̃ ∈ L(Lp(u)(Ω : Y )) is a linear isomorphism, for each real number
a > 0 we have:

sup
t∈Λ,x∈B

∥∥F̂Ω(t;x)
∥∥
Lp(u)(Ω:Y )

≤ sup
t∈Λ+Λ′,|t|≥a,x∈B

∥∥T̃−1F̂Ω(t;x)
∥∥
Lp(u)(Ω:Y )

,

and for each x ∈ X we have

sup
t∈Λ

∥∥F̂Ω(t;x)
∥∥
Lp(u)(Ω:Y )

≤ sup
t∈Λ+Λ′,|t|≥a

∥∥T̃−1F̂Ω(t;x)
∥∥
Lp(u)(Ω:Y )

,

so that the function F (·;x) is almost everywhere equal to zero on the set
Λ + Ω, provided that the function F (·; ·) is Stepanov (Ω, p(u))-(B,Λ′, ρ)-

uniformly recurrent and lim|t|→+∞,t∈Λ+Λ′ F̂Ω(t;x) = 0.

Further on, the following analogue of [12, Theorem 2.11] holds true:
Theorem 2 Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + Ω ⊆ Λ,
and F : Λ × X → Y is Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic (Stepanov
(Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent). Then the following holds:

(i) Set σ := {(‖y1‖Y , ‖y2‖Y ) | ∃t ∈ Λ + Ω ∃x ∈ X : y1 = F (t;x) and y2 ∈
ρ(y1)}. Then the function ‖F (·; ·)‖Y is Stepanov (Ω, p(u))-(B,Λ′, σ)-almost
periodic (Stepanov (Ω, p(u))-(B,Λ′, σ)-uniformly recurrent).

(ii) Suppose that λ ∈ C \ {0}. Set ρλ := {λ(y1, y2) | ∃t ∈ Λ + Ω ∃x ∈ X : y1 =
F (t;x) and y2 ∈ ρ(y1)}. Then the function λF (·; ·) is Stepanov (Ω, p(u))-
(B,Λ′, ρλ)-almost periodic (Stepanov (Ω, p(u))-(B,Λ′, ρλ)-uniformly recur-
rent).

(iii) Suppose a ∈ C and x0 ∈ X. Define G : (Λ − a) × X → Y by G(t;x) :=
F (t + a;x + x0), t ∈ Λ − a, x ∈ X, as well as Bx0 := {−x0 + B : B ∈ B},
Λ′a := Λ′ and ρa,x0

:= {(y1, y2) | ∃t ∈ Λ + Ω − a ∃x ∈ X : y1 = F (t +
a;x+ x0) and y2 ∈ ρ(y1)}. Then the function G(·; ·) is Stepanov (Ω, p(u))-
(Bx0

,Λ′a, ρa,x0
)-almost periodic (Stepanov (Ω, p(u))-(Bx0

,Λ′a, ρa,x0
)-uniformly

recurrent).
(iv) Suppose that a, b ∈ C \ {0}. Define the function G : (Λ/a) × X → Y by

G(t;x) := F (at; bx), t ∈ Λ/a, x ∈ X, as well as Bb := {b−1B : B ∈ B},
Λ′a := Λ′/a and ρa,b := {(y1, y2) | ∃t ∈ (Λ + Ω)/a ∃x ∈ X : y1 =
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F (at; bx) and y2 ∈ ρ(y1)}. Then the function G(·; ·) is Stepanov (Ω, p(u))-
(Bb,Λ′a, ρa,b)-almost periodic (Stepanov (Ω, p(u))-(Bb,Λ′a, ρa,b)-uniformly re-
current).

(v) Assume that for each B ∈ B there exists εB > 0 such that for each element
x ∈ B◦ ∪

⋃
y∈∂B B(y, εB), the sequence (Fk(·;x)) of Stepanov (Ω, p(u))-

(B,Λ′, ρ)-almost periodic functions (Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly
recurrent functions) converges to a function F (·;x) in the norm ‖ · ‖

S
p(u)
Ω

,

uniformly with respect to x ∈ B◦. Then the function F (·; ·) is likewise
Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic (Stepanov (Ω, p(u))-(B,Λ′, ρ)-
uniformly recurrent), provided that {F (t + u;x) : t ∈ Λ, u ∈ Ω, x ∈ X} ⊆
D(ρ) and

(Cρ) For each ε > 0 there exists δ > 0 such that, for every y1, y2 ∈ {F (t +
·;x) : t ∈ Λ, x ∈ X} ∪k∈N {Fk(t + ·;x) : t ∈ Λ, x ∈ X} with
‖y1 − y2‖Lp(u)(Ω:Y ) < δ, we have ‖z1 − z2‖Y < ε/3 with z1 = ρ1(y1),

z2 = ρ1(y2) and ρ1 being defined in Proposition 3(i).

We continue by providing the following illustrative example:
Example 1 It is worth noting that Theorem 1(i) does not hold if there exists a
point τ ∈ Λ′ such that τ + Λ 6= Λ. For example, in [12, Example 2.21], we have
considered the situation in which Λ = [0,∞), Λ′ = (0,∞), and Y = C2. Let it be
the case, let a ∈ C satisfy |a| > 1, and let the function u : [0,∞) → C be almost
periodic; further on, let

T =

[
a 1− a
a 1− a

]
and Ω = [0, 1]. Then N(A) = {(α, β) ∈ C2 : αa+ β(1− a) = 0}; suppose that q =
(q1, q2) : [0,∞) → N(A) is any continuous function satisfying limt→+∞ q(t) = 0.
We have shown that the function t 7→ ~u(t) := (u(t) + q1(t), u(t) + q2(t)), t ≥ 0 is
(Λ′, T )-almost periodic but not almost periodic. Since any uniformly continuous,
Stepanov almost periodic function f : [0,∞)→ Y is almost periodic (see e.g., [19]),
the function t 7→ ~u(t), t ≥ 0 cannot be Stepanov almost periodic (p(u) ≡ 1), and

therefore, the function t 7→ ~u(t), t ≥ 0 cannot belong to the space APS
Ω,p(u),I
Λ′ (Λ :

Y ) due to Proposition 1(i).
Concerning Stepanov (Ω, p(u))-(B,Λ′, T )-almost periodic functions with values in
the finite-dimensional space Y = Ck, where T ∈ Ck,k is a complex matrix of
format k× k, we will clarify only one result closely connected with our conclusions
established in Example 1. This is an analogue of [4, Proposition 2.20] for Stepanov
classes of ρ-almost periodic type functions; the proof follows from Proposition 3
and the argumentation used in the proof of the afore-mentioned result:
Proposition 4 Suppose that k ∈ N, T = [aij ] is a complex matrix of format k×k,
Ω = [0, 1], Λ = R or Λ = [0,∞), Λ′ ⊆ R, Λ + Λ′ ⊆ Λ, and the function F : Λ→ Ck
is Stepanov (Ω, p(u))-(Λ′, T )-almost periodic (Stepanov (Ω, p(u))-(Λ′, T )-uniformly

recurrent and the function F̂Ω(·) is Stepanov p(u)-bounded). If F = (F1, · · ·, Fk),
then there exists a non-trivial linear combination F of functions F1, · · ·, Fk which
is Stepanov (Ω, p(u))-(Λ′, I)-almost periodic (Stepanov (Ω, p(u))-(Λ′, I)-uniformly

recurrent and the function F̂Ω is Stepanov p(u)-bounded).
Further on, in [4, Proposition 2.22], we have clarified a sufficient condition for a
function F : Λ ×X → Y to be Stepanov (Ω, p(u))-B-almost periodic. This result
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can be extended in the following way:
Proposition 5 Let T ∈ L(Y ), Λ + Λ ⊆ Λ, Λ + Ω ⊆ Λ, B is any family of compact
subsets of X and F : Λ×X → Y satisfy the following conditions:

(i) For each x ∈ X, F (·;x) ∈ APSΩ,p(u),T (Λ : Y ).
(ii) F (·; ·) is Sp(u)-uniformly continuous with respect to the second argument

on each compact subset B in B, i.e., for each ε > 0 there exists δB,ε > 0
such that for all x1, x2 ∈ B we have

‖x1 − x2‖ ≤ δB,ε =⇒
∥∥∥F (t + ·;x1)− F (t + ·;x2)

∥∥∥
Lp(u)(Ω:Y )

≤ ε for all t ∈ Λ.

(4)

Then F (·; ·) is Stepanov (Ω, p(u), T )-B-multi-almost periodic.

Proof. The proof is almost the same as the corresponding proof of the afore-
mentioned proposition, and we will provide the main details in the case that
p(u) ≡ p ∈ [1,∞). Suppose that ε > 0 and B ⊆ X is a compact set. It follows that
there exists a finite subset {x1, ..., xn} ⊆ B (n ∈ N) such that B ⊆

⋃n
i=1B(xi, δB,ε).

Therefore, for every x ∈ B, there exists i ∈ Nn satisfying ‖x − xi‖ ≤ δB,ε. Let
τ ∈ Λ. Then we have (∫

Ω

‖F (t + s + τ ;x)− TF (t + s;x)‖pY ds

) 1
p

≤

(∫
Ω

‖F (t + s + τ ;x)− F (t + s + τ ;xi)‖pY ds

) 1
p

+

(∫
Ω

‖F (t + s + τ ;xi)− TF (t + s;xi)‖pY ds

) 1
p

+

(∫
Ω

‖TF (t + s;xi)− TF (t + s;x)‖pY ds

) 1
p

, t ∈ Λ. (5)

Using (i) to conclude that for each i = 1, . . . , n there exists lB,ε > 0 such that for
all t0 ∈ Λ there exists τ ∈ B(t0, lB,ε) satisfying(∫

Ω

‖F (t + s + τ ;xi)− TF (t + s;xi)‖pY ds
) 1
p

≤
(∫

Ω

‖F (t + s + τ ;xi)− F (t + s;xi)‖pY ds
) 1
p

≤ ε

3
for all t ∈ Λ. (6)

Since ‖x− xi‖ ≤ δK,δ and T ∈ L(Y ), it follows that(∫
Ω

‖F (t + s + τ ;x)− F (t + s + τ ;xi)‖pY ds
) 1
p

≤ ε

3
for all t ∈ Λ, (7)

and (∫
Ω

‖TF (t + s;x)− TF (t + s;xi)‖pY ds
) 1
p

(8)

≤‖T‖
(∫

Ω

‖F (t + s;x)− F (t + s;xi)‖pY ds
) 1
p

≤ ε

3
for all t ∈ Λ. (9)
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Inserting (6), (7) and (9) in (5), we obtain

sup
x∈B

(∫
Ω

‖F (t + s + τ ;x)− TF (t + s;x)‖pY ds
) 1
p

≤ ε for all t ∈ Λ.

Hence, F (·; ·) is Stepanov (Ω, p(u))-(B, T )-almost periodic. �

Concerning the convolution invariance of Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost
periodic type functions, we will clarify the following result:
Theorem 3 Suppose that h ∈ L1(Rn) and F : Rn ×X → Y satisfies that for each
x ∈ X the function t 7→ F (t;x), t ∈ Rn is measurable as well as that for each set
B ∈ B there exists a real number εB > 0 such that supt∈Rn,x∈B· ‖F (t, x)‖Y < +∞,
where B· ≡ B◦ ∪

⋃
x∈∂B B(x, εB). Suppose, further, that ρ = A is a closed linear

operator on Y satisfying that:

(B) For each t ∈ Rn and x ∈ B, the function s 7→ AF (t−s+·;x) ∈ Lp(u)(Ω : Y ),
s ∈ Rn is well defined and bounded.

Then the function

(h ∗ F )(t;x) :=

∫
Rn
h(σ)F (t− σ;x) dσ, t ∈ Rn, x ∈ X (10)

is well defined and for each B ∈ B we have supt∈Rn,x∈B· ‖(h ∗ F )(t;x)‖Y < +∞;
furthermore, if F (·; ·) is Stepanov (Ω, p(u))-(B,Λ′, A)-almost periodic (Stepanov
(Ω, p(u))-(B,Λ′, A)-uniformly recurrent), then the function (h ∗ F )(·; ·) is likewise
Stepanov (Ω, p(u))-(B,Λ′, A)-almost periodic (Stepanov (Ω, p(u))-(B,Λ′, A)-uniformly
recurrent).

Proof. We will consider only Stepanov (Ω, p(u))-(B,Λ′, A)-almost periodic func-
tions. It is clear that the function (h∗F )(·; ·) is well defined and supt∈Rn,x∈B· ‖(h∗
F )(t;x)‖Y < +∞ for all B ∈ B; furthermore, supt∈Rn,x∈B· ‖F̂Ω(t;x)‖Lp(u)(Ω:Y ) <
∞ for all B ∈ B. Define

Â ≡
{

(F,G) ∈ Lp(u)(Ω : Y )× Lp(u)(Ω : Y ) : AF (u) = G(u) for a.e. u ∈ Ω
}
.

Using the fact that the space Lp(u)(Ω : Y ) is continuously embedded in L1(Ω : Y )
as well as the fact that any sequence of functions converging in L1(Ω : Y ) converges

pointwisely for a.e. u ∈ Ω, we can easily show that Â is a closed linear operator
in Lp(u)(Ω : Y ). Using condition (B) and [12, Theorem 2.14], it follows that the

function (h ∗ F̂Ω)(·; ·) ∈ Lp(u)(Ω : Y ) is Bohr (B,Λ′, Â)-almost periodic. Then the
final conclusion follows from Proposition 3 and the obvious equality

h ∗ F̂Ω = ˆ(h ∗ F )Ω.

�

Keeping in mind the proofs of Theorem 3, [4, Theorem 5.1] and [17, Proposition
2.6.11] (see also [8, Proposition 6.1]), it is straightforward to deduce the follow-
ing result about the inheritance of Stepanov (Ω, p(u))-(Λ′, ρ)-almost periodicity
(-uniform recurrence) under the actions of the infinite convolution products:
Theorem 4 Let ρ = A be a closed linear operator on Y, Ω = [0, 1]n, q ∈ P(Ω),
1/p(x) + 1/q(x) = 1 for all x ∈ Ω, and (R(t))t∈(0,∞)n ⊆ L(X,Y ) is a strongly
continuous operator family satisfying that

∑
k∈Nn0

‖R(· + k)‖Lq(u)(Ω) < ∞ and
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R(t)A ⊆ AR(t) for all t ∈ (0,∞)n. If f̌ : Rn → X is Stepanov (Ω, p(u))-(Λ′, A)-
almost periodic (Stepanov (Ω, p(u))-(Λ′, A)-uniformly recurrent), and the following
conditions hold:

(i) The functions f̌(·) and Af̌(·) are Stepanov (Ω, q(u))-bounded on B;
(ii) The Bochner transform of function f̌(·) is uniformly continuous on Rn (with

values in Lp(u)(Ω : Y )).

Then the function F : Rn → Y, given by

F (t) :=

∫ t1

−∞

∫ t2

−∞
· · ·
∫ tn

−∞
R(t− s)f(s) ds, t ∈ Rn,

is well defined and almost periodic (bounded uniformly recurrent).
Remark 1

(i) It is worth noticing that conditions (i)-(ii) from the formulation of Theorem
4 hold if Λ′ = Rn and A ∈ L(Y ) is a linear isomorphism; see Theorem 1(iii).

(ii) The most important applications of Theorem 4, and Proposition 8 below,
can be given in the one-dimensional setting, for various classes of abstract
(degenerate) Volterra integro-differential equations; basically, we will not
consider here such applications; see [17] for more details.

The following illustrative example can be formulated in the multi-dimensional set-
ting (see e.g., [19, Example 6.2.9], where we have considered case c = 1, only):
Example 2 Let f : R → R be a Bohr almost anti-periodic function; Ω ≡ [0, 1].
Define sign(0) := 0 and F : R→ R by F (t) := sign(f(t)), t ∈ R. Then the function
F (·) is Stepanov p(u)-almost anti-periodic. This can be shown by using the argu-
mentation given in the proof of [25, Theorem 5.3.1, p. 210] and the computation
carried out in [17, Example 2.2.2(i)].
The following important result about extensions of Stepanov (Ω, p(u))-(Λ′, ρ)-almost
periodic type functions follows from Proposition 3 and the argumentation contained
in the proof of [4, Theorem 2.15]:
Theorem 5 Suppose that ρ = T ∈ L(Y ) is a linear isomorphism, the linear iso-

morphism T̃ of space Lp(u)(Ω : Y ) is given through (3), the set Λ′ is unbounded,

m(∂Λ) = 0, Ω◦ 6= ∅, F : Λ→ Y satisfies that F̂Ω : Λ→ Lp(u)(Ω : Y ) is a uniformly

continuous, Bohr (Λ′, T̃ )-almost periodic function, resp. a uniformly continuous,

(Λ′, T̃ )-uniformly recurrent function, S ⊆ Rn is bounded and, for every t′ ∈ Rn,
there exists a finite real number M > 0 such that t′+Λ′M ⊆ Λ. Define ΛS := Λ′∪S.
Then there exists a Stepanov (Ω, p(u))-(ΛS , T )-almost periodic, resp. a Stepanov

(Ω, p(u))-(ΛS , T )-uniformly recurrent, function F̃ : Rn → Y such that F̃ (t) = F (t)
for a.e. t ∈ Λ; furthermore, in Stepanov almost periodic case, if Rn\ΛS is a bounded

set and any T̃ -almost periodic function defined on Rn is almost automorphic, then
any such extension of function F (·) is unique.
Remark 2 As in all previous investigations of the multi-dimenaional almost pe-
riodicity and its generalizations, it is worth noting that Theorem 5 is applicable
provided that (v1, · · ·,vn) is a basis of Rn,

Λ′ = Λ =
{
α1v1 + · · ·+ αnvn : αi ≥ 0 for all i ∈ Nn

}
is a convex polyhedral in Rn and Ω is any compact subset of Λ with non-empty
interior.
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2.1. D-Asymptotically Stepanov ρ-almost periodic type functions. We start
this subsection by recalling the following notion from [4]:
Definition 7 Suppose that D ⊆ Λ ⊆ Rn, Λ+Ω ⊆ Λ and the set D is unbounded. By

S
Ω,p(u)
0,D,B (Λ×X : Y ) we denote the vector space consisting of all functionsQ : Λ×X →
Y such that, for every t ∈ Λ and x ∈ X, we have [Q̂Ω(t;x)](u) ∈ Lp(u)(Ω : Y ) as well

as that, for every B ∈ B, we have limt∈D,|t|→+∞[Q̂Ω(t;x)](u) = 0 in Lp(u)(Ω : Y ),
uniformly for x ∈ B. In the case that X = {0} and B = {X}, then we abbreviate

S
Ω,p(u)
0,D,B (Λ×X : Y ) to S

Ω,p(u)
0,D (Λ : Y ).

For the sake of completeness, we will provide all details of the proof of the following
simple result (which remains true for all p ∈ P(Ω)):
Lemma 4 Suppose that D ⊆ Λ ⊆ Rn, Λ + Ω ⊆ Λ and the set D is unbounded. If

D + Ω ⊆ D, then C0,D,B(Λ×X : Y ) ⊆ SΩ,p(u)
0,D,B (Λ×X : Y ).

Proof. Let Q ∈ C0,D,B(Λ × X : Y ). Then the mapping u 7→ Q(t + u;x), u ∈ Ω
is continuous and bounded, so that it belongs to the space L∞(Ω : Y ). Applying
Lemma 2(ii), we get that this mapping belongs to the space Lp(u)(Ω : Y ). We need
to prove that limt∈D,|t|→+∞Q(t + u;x) = 0 in Lp(u)(Ω : Y ), uniformly for x ∈ B.
Let ε > 0 be given. The required limit equality follows from the existence of a finite
real number Mε > 0 such that ‖Q(t + u;x)‖Y ≤ ε for any x ∈ B and t ∈ D with
|t| ≥Mε, where we have employed our assumption D + Ω ⊆ D, and an application
of Lemma 2(ii), which shows that∥∥Q(t + u;x)

∥∥
Lp(u)(Ω:Y )

≤ 2(1 +m(Ω))
∥∥Q(t + u;x)

∥∥
L∞(Ω:Y )

≤ 2(1 +m(Ω))ε,

provided t ∈ D and |t| ≥Mε. �

Now we are ready to introduce the following notion:
Definition 8 Suppose that ∅ 6= Λ ⊆ Rn satisfies Λ+Ω ⊆ Λ, D ⊆ Λ ⊆ Rn, the set D
is unbounded, and F : Λ×X → Y. Then we say that the function F (·; ·) is (strongly)
D-asymptotically Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic, resp. (strongly) D-
asymptotically Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent, if and only if there
exist a Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic function (H : Rn × X → Y )
H : Λ×X → Y, resp. a Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent function

(H : Rn ×X → Y ) H : Λ ×X → Y, and a function Q ∈ SΩ,p(u)
0,D,B (Λ ×X : Y ) such

that F (t;x) = H(t;x) +Q(t;x) for a.e. t ∈ Λ and all x ∈ X.
If X ∈ B, then we also say that the function F (·; ·) is (strongly) D-asymptotically
Stepanov (Ω, p(u))-(Λ′, ρ)-almost periodic ((strongly) Stepanov (Ω, p(u))-(Λ′, ρ)-
uniformly recurrent). If D = Λ, then we omit the “prefix D-” and say that the func-
tion F (·; ·) is asymptotically Stepanov (Ω, p(u))-(Λ′, ρ)-almost periodic ((strongly)
Stepanov (Ω, p(u))-(Λ′, ρ)-uniformly recurrent).
Arguing similarly as in the proof of Lemma 4, we can prove that any Bohr (B,Λ′, ρ)-
almost periodic function ((B,Λ′, ρ)-uniformly recurrent function) is automatically
Stepanov (Ω, p(u))-(B,Λ′)-almost periodic (Stepanov (Ω, p(u))-(B,Λ′)-unifromly
recurrent); see also [8, Proposition 4.5]. Keeping in mind the afore-mentioned
lemma and the corresponding definitions, we may deduce the following:
Proposition 6 Suppose that D ⊆ Λ ⊆ Rn and the set D is unbounded, as
well as ∅ 6= Λ′ ⊆ Λ ⊆ Rn, F : Λ × X → Y, Λ + Λ′ ⊆ Λ and D + Ω ⊆ D.
Then a (strongly) D-asymptotically Bohr (B,Λ′, ρ)-almost periodic function, resp.
(strongly) D-asymptotically (B,Λ′, ρ)-uniformly recurrent function, is (strongly)



26 M. KOSTIĆ EJMAA-2022/10(2)

D-asymptotically Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic, resp. (strongly) D-
asymptotically Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent.
The following slightly weaker notion of D-asymptotical Stepanov
(Ω, p(u))-(B,Λ′, ρ)-almost periodicity is important, as well (see also [12, Proposi-
tion 2.26], which can be formulated for the Stepanov classes):
Definition 9 Suppose that D ⊆ Λ ⊆ Rn and the set D is unbounded, as well as
∅ 6= Λ′ ⊆ Λ ⊆ Rn, F : Λ×X → Y and Λ + Λ′ ⊆ Λ. Then we say that:

(i) F (·; ·) is D-asymptotically Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic of
type 1 if and only if for every B ∈ B and ε > 0 there exist l > 0 and M > 0
such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, l) ∩ Λ′ such that∥∥F (t + τ + u;x)− ρ(F (t + u;x))

∥∥
Lp(u)(Ω:Y )

≤ ε, provided t, t + τ ∈ DM , x ∈ B.

(ii) F (·; ·) is D-asymptotically Stepanov (Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent
of type 1 if and only if for every B ∈ B there exist a sequence (τn) in Λ′ and
a sequence (Mn) in (0,∞) such that limn→+∞ |τn| = limn→+∞Mn = +∞
and

lim
n→+∞

sup
t,t+τn∈DMn ;x∈B

∥∥F (t + τn + u;x)− ρ(F (t + u;x))
∥∥
Lp(u)(Ω:Y )

= 0.

If Λ′ = Λ, then we also say that F (·; ·) is D-asymptotically Stepanov (Ω, p(u))-
(B, ρ)-almost periodic of type 1 (D-asymptotically Stepanov
(Ω, p(u))-(B, ρ)-uniformly recurrent of type 1); furthermore, if X ∈ B, then it is also
said that F (·; ·) is D-asymptotically Stepanov (Ω, p(u))-(Λ′, ρ)-almost periodic of
type 1 (D-asymptotically Stepanov (Λ′, ρ)-uniformly recurrent of type 1). If Λ′ = Λ
and X ∈ B, then we also say that F (·; ·) is D-asymptotically Stepanov ρ-almost
periodic of type 1 (D-asymptotically Stepanov ρ-uniformly recurrent of type 1). As
before, we remove the prefix “D-” in the case that D = Λ and remove the prefix
“(B, )” in the case that X ∈ B.
The question when a given uniformly continuous, bounded function F : Λ → Y
which is both Λ-asymptotically Bohr T -almost periodic function of type 1 and Λ-
asymptotically Bohr I-almost periodic function of type 1 is Λ-asymptotically Bohr
T -almost periodic, where T ∈ L(Y ), has been examined in [4, Theorem 2.27].
This statement can be formulated for the corresponding Stepanov classes using the
multi-dimensional Bochner transform and Proposition 3; details can be left to the
interested reader.
The following analogue of Proposition 6 holds true:
Proposition 7 Suppose that D ⊆ Λ ⊆ Rn and the set D is unbounded, as well
as ∅ 6= Λ′ ⊆ Λ ⊆ Rn, Λ + Λ′ ⊆ Λ and D + Ω ⊆ D. Then any D-asymptotically
(B,Λ′, ρ)-almost periodic function F : Λ × X → Y of type 1 (D-asymptotically
(B,Λ′, ρ)-uniformly recurrent function F : Λ×X → Y of type 1) is D-asymptotically
Stepanov (Ω, p(u))-(B,Λ′, ρ)-almost periodic of type 1 (D-asymptotically Stepanov
(Ω, p(u))-(B,Λ′, ρ)-uniformly recurrent of type 1).
Further on, define It := (−∞, t1] × (−∞, t2] × · · · × (−∞, tn] and Dt := It ∩ D
for any t = (t1, t2, · · ·, tn) ∈ Rn. Keeping in mind Theorem 4 and the proof of [4,
Proposition 5.3], we may deduce the following result about the invariance of strong
D-asymptotical Stepanov (Ω, p(u))-(Λ′, ρ)-almost periodicity (-uniform recurrence)
under the actions of the finite convolution product:
Proposition 8 Suppose that ρ = A is a closed linear operator on Y , Ω = [0, 1]n,
q ∈ P(Ω), 1/p(x) + 1/q(x) = 1 for all x ∈ Ω, and (R(t))t>0 ⊆ L(X,Y ) is a
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strongly continuous operator family satisfying that
∑

k∈Nn0
‖R(·+ k)‖Lq(u)(Ω) <∞

and R(t)A ⊆ AR(t) for all t ∈ (0,∞)n. Suppose that ǧ : Rn → X is Stepanov
(Ω, p(u))-(Λ′, A)-almost periodic (Stepanov (Ω, p(u))-(Λ′, A)-uniformly recurrent),
and the following conditions hold:

(i) The functions ǧ(·) and Aǧ(·) are Stepanov (Ω, q(u))-bounded on B;
(ii) The Bochner transform of function ǧ(·) is uniformly continuous and bounded

on Rn (with values in Lp(u)(Ω : Y )).

Suppose, further, that ∅ 6= Λ ⊆ Rn satisfies Λ + Ω ⊆ Λ, D ⊆ Λ ⊆ Rn and the set D
is unbounded. Let q : Λ → X, and let f(t) := g(t) + q(t) for all t ∈ Λ. Then the
function F : Λ→ Y, defined by

F (t) :=

∫
Dt

R(t− s)f(s) ds, t ∈ Λ,

is strongly D-asymptotically Stepanov (Ω, p(u))-(Λ′, A)-almost periodic (strongly
D-asymptotically Stepanov (Ω, p(u))-(Λ′, A)-uniform recurrent), provided that

lim
|t|→∞,t∈D

∑
k∈Nn0

∥∥R(s + k)
∥∥
Lq(s)((t−k−[It∩Dc])∩Ω)

= 0,

and for each ε > 0 there exists r > 0 such that for each t ∈ D with |t| ≥ r there
exists a finite real number rt > 0 such that∑

k∈Nn0

{∥∥R(s + k)
∥∥
Lq(s)((t−k−[It∩B(0,rt)])∩Ω)

×
∥∥q̌(s + k− t)

∥∥
Lq(s)((t−k−[Dt∩B(0,rt)])∩Ω)

}
< ε/2

and ∑
k∈Nn0

{∥∥R(s + k)
∥∥
Lq(s)((t−k−[Dt∩B(0,rt)c])∩Ω)

×
∥∥q̌(s + k− t)

∥∥
Lp(s)((t−k−[Dt∩B(0,rt)c])∩Ω)

}
< ε/2.

We close this subsection with the observation that the statement of [4, Theorem
2.23] can be formulated for Stepanov classes, as well.

3. Multi-dimensional Weyl ρ-almost periodic type functions

In our recent joint research study with V. E. Fedorov [23], we have analyzed
various classes of multi-dimensional Weyl almost periodic type functions. Further
on, in [22, Section 5], we have expanded this study by exploring various classes of
multi-dimensional Weyl c-almost periodic type functions, where c ∈ C \ {0}. The
main aim of this section is to briefly describe how the structural results obtained
in [22] can be slightly generalized for the general class of multi-dimensional Weyl
ρ-almost periodic type functions.

In the first concept, we assume that the following condition holds:
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(WM1): ∅ 6= Λ ⊆ Rn, ∅ 6= Λ′ ⊆ Rn, ∅ 6= Ω ⊆ Rn is a Lebesgue measurable set such
that m(Ω) > 0, p ∈ P(Λ), Λ′ + Λ + lΩ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0,
φ : [0,∞)→ [0,∞) and F : (0,∞)× Λ→ (0,∞).

We introduce the following classes of multi-dimensional Weyl ρ-almost periodic
functions:
Definition 10

(i) By e−W (p(u),φ,F,ρ)
Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions

F : Λ × X → Y such that, for every ε > 0 and B ∈ B, there exist two
finite real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, L)∩Λ′ such that, for every x ∈ B, the mapping u 7→ ρ(F (u;x)),
u ∈ Ω is well defined, and

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F (τ + u;x)− ρ(F (u;x))

∥∥
Y

)
Lp(u)(t+lΩ)

< ε. (11)

(ii) By W
(p(u),φ,F),ρ
Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions

F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exists a finite
real number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L)∩Λ′

such that, for every x ∈ B, the mapping u 7→ ρ(F (u;x)), u ∈ Ω is well
defined, and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F (τ + u;x)− ρ(F (u;x))

∥∥
Y

)
Lp(u)(t+lΩ)

< ε.

Definition 11

(i) By e−W (p(u),φ,F,ρ)1

Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions
F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exist two finite
real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, L)∩Λ′ such that, for every x ∈ B, the mapping u 7→ ρ(F (u;x)),
u ∈ Ω belongs to the space Lp(u)(t + lΩ : Y ) for each t ∈ Λ, and

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F (τ + u;x)− ρ(F (u;x))

∥∥
Lp(u)(t+lΩ:Y )

)
< ε.

(ii) By W
(p(u),φ,F,ρ)1

Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions
F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exists a finite
real number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L)∩Λ′

such that, for every x ∈ B, the mapping u 7→ ρ(F (u;x)), u ∈ Ω belongs to
the space Lp(u)(t + lΩ : Y ) for each t ∈ Λ, and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F (τ + u;x)− ρ(F (u;x))

∥∥
Lp(u)(t+lΩ:Y )

)
< ε.

Definition 12

(i) By e−W (p(u),φ,F,ρ)2

Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions
F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exist two finite
real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, L)∩Λ′ such that, for every x ∈ B, the mapping u 7→ ρ(F (u;x)),
u ∈ Ω belongs to the space Lp(u)(t + lΩ : Y ) for each t ∈ Λ, and

sup
x∈B

sup
t∈Λ

φ
(
F(l, t)

∥∥F (τ + u;x)− ρ(F (u;x))
∥∥
Lp(u)(t+lΩ:Y )

)
< ε.
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(ii) By W
(p(u),φ,F,ρ)2

Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions
F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exists a finite
real number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L)∩Λ′

such that, for every x ∈ B, the mapping u 7→ ρ(F (u;x)), u ∈ Ω belongs to
the space Lp(u)(t + lΩ : Y ) for each t ∈ Λ, and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

φ
(
F(l, t)

∥∥F (τ + u;x)− ρ(F (u;x))
∥∥
Lp(u)(t+lΩ:Y )

)
< ε.

In the second concept, we intend to ensure the translation invariance of multi-
dimensional Weyl ρ-almost periodic functions. Assume now that the following
condition holds:

(WM2): ∅ 6= Λ ⊆ Rn, ∅ 6= Λ′ ⊆ Rn, ∅ 6= Ω ⊆ Rn is a Lebesgue measurable set such
that m(Ω) > 0, p ∈ P(Ω), Λ′ + Λ + lΩ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0,
φ : [0,∞)→ [0,∞) and F : (0,∞)× Λ→ (0,∞).

We introduce the following classes of functions:
Definition 13

(i) By e−W [p(u),φ,F,ρ]
Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions

F : Λ × X → Y such that, for every ε > 0 and B ∈ B, there exist two
finite real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there
exists τ ∈ B(t0, L) ∩ Λ′ such that, for every t ∈ Λ and x ∈ B, we have
F (t + lu;x) ∈ D(ρ) and

sup
x∈B

sup
t∈Λ

lnF(l, t)φ
(∥∥F (t + τ + lu;x)− ρ(F (t + lu;x))

∥∥
Y

)
Lp(u)(Ω)

< ε.

(ii) By W
[p(u),φ,F,ρ]
Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions

F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exists a finite
real number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L)∩Λ′

such that, for every l > 0, t ∈ Λ and x ∈ B, we have F (t + lu;x) ∈ D(ρ)
and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

lnF(l, t)φ
(∥∥F (t + τ + lu;x)− ρ(F (t + lu;x))

∥∥
Y

)
Lp(u)(Ω:Y )

< ε.

Definition 14

(i) By e−W [p(u),φ,F,ρ]1
Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions

F : Λ × X → Y such that, for every ε > 0 and B ∈ B, there exist two
finite real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there
exists τ ∈ B(t0, L)∩Λ′ such that, for every t ∈ Λ and x ∈ B, the mapping
u 7→ ρ(F (t+lu;x)), u ∈ Ω is well defined, belongs to the space Lp(u)(Ω : Y )
and

sup
x∈B

sup
t∈Λ

lnF(l, t)φ
(∥∥F (t + τ + lu;x)− ρ(F (t + lu;x))

∥∥
Lp(u)(Ω:Y )

)
< ε.

(ii) By W
[p(u),φ,F,ρ]1
Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions

F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exists a finite real
number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L)∩Λ′ such
that, for every l > 0, t ∈ Λ and x ∈ B, the mapping u 7→ ρ(F (t + lu;x)),
u ∈ Ω is well defined, belongs to the space Lp(u)(Ω : Y ) and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

lnF(l, t)φ
(∥∥F (t + τ + lu;x)− ρ(F (t + lu;x))

∥∥
Lp(u)(Ω:Y )

)
< ε.
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Definition 15

(i) By e−W [p(u),φ,F,ρ]2
Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions

F : Λ × X → Y such that, for every ε > 0 and B ∈ B, there exist two
finite real numbers l > 0 and L > 0 such that for each t0 ∈ Λ′ there
exists τ ∈ B(t0, L)∩Λ′ such that, for every t ∈ Λ and x ∈ B, the mapping
u 7→ ρ(F (t+lu;x)), u ∈ Ω is well defined, belongs to the space Lp(u)(Ω : Y )
and

sup
x∈B

sup
t∈Λ

φ
(
lnF(l, t)

∥∥F (t + τ + lu;x)− ρ(F (t + lu;x))
∥∥
Lp(u)(Ω:Y )

)
< ε.

(ii) By W
[p(u),φ,F,ρ]2
Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions

F : Λ×X → Y such that, for every ε > 0 and B ∈ B, there exists a finite real
number L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L)∩Λ′ such
that, for every l > 0, t ∈ Λ and x ∈ B, the mapping u 7→ ρ(F (t + lu;x)),
u ∈ Ω belongs to the space Lp(u)(Ω : Y ) and

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

φ
(
lnF(l, t)

∥∥F (t + τ + lu;x)− ρ(F (t + lu;x))
∥∥
Lp(u)(Ω:Y )

)
< ε.

It can be simply shown that the both concepts are equivalent in the constant
coefficient case; see also [24] for the study of Weyl one-dimensional almost periodic
functions.
We will only mention in passing that [22, Example 5.4] can be reformulated in
our new framework (cf. also [22, Example 2.10]), as well as the statement of [12,
Proposition 5.5]. The situation is a little bit complicated with the statement of [22,
Theorem 5.6, Proposition 5.9]; this problem can be left to the interested readers.
Concerning [22, Example 5.7], we would like to stress the following:
Example 3 Suppose that ∅ 6= K ⊆ Rn is a compact set, F (t) := χK(t), t ∈ Rn,
Λ := Λ′ := Rn, φ(x) ≡ x, Ω := [0, 1]n and ρ(z) := zk for some non-negative integer

k ∈ N0. Then for each p ∈ D+(Ω) we have F ∈ e−W [p(u),x,l−σ,ρ]
Ω,Rn (Rn : C). Keeping

in mind Lemma 2(ii), we get that (τ ∈ Rn; l > 0):

sup
t∈Rn

ln−σ
∥∥∥χK(t + τ + lu)− χkK(t + lu)

∥∥∥
Lp(u)(Ω)

≤ 4 sup
t∈Rn

ln−σ
∥∥∥χK(t + τ + lu)− χkK(t + lu)

∥∥∥
Lp+ (Ω)

= 4 sup
t∈Rn

l−σ
∥∥∥χK(t + τ + u)− χkK(t + u)

∥∥∥
Lp+ (lΩ)

≤ 4 sup
t∈Rn

l−σ

[∥∥χK(·)
∥∥
Lp+ (lΩ∩[K−t−τ ])

+
∥∥χkK(·)

∥∥
Lp+ (lΩ∩[K−t])

]
≤ 4l−σm(K).

This simply implies that F ∈ e−W [p(u),x,l−σ,ρ]
Ω,Rn (Rn : C), as claimed.

Concerning the function F (t) := χ[0,∞)n(t), t ∈ Rn, we want only to recall that

F ∈ W [p,x,l−σ,1]
Ω,Rn (Rn : C) if and only if σ > (n − 1)/p, as well as that there is no

σ > 0 such that F ∈ e−W [p,x,l−σ,1]
Ω,Rn (Rn : C). We also know that there is no σ > 0

and c ∈ C \ {0} such that F ∈ e −W [p,x,l−σ,cI]
Ω,Rn (Rn : C) as well as that there is no

c ∈ C \ {0, 1} such that F ∈ W [p,x,l−σ,cI]
Ω,Rn (Rn : C) for n ≥ σ > (n − 1)/p, which is
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the optimal result.

Concerning the convolution invariance of spaces (e−)W
(p(u),φ,F,ρ)
Ω,Λ′,B (Rn × X : Y )

and (e−)W
[p(u),φ,F,ρ]
Ω,Λ′,B (Rn × X : Y ), we will only state the following result; the

corresponding proof is very similar to the proof of [23, Theorem 2.9] and therefore
omitted; see also [22, Theorem 5.8].
Theorem 6 Suppose that ϕ : [0,∞) → [0,∞), φ : [0,∞) → [0,∞) is a convex
monotonically increasing function satisfying φ(xy) ≤ ϕ(x)φ(y) for all x, y ≥ 0,

ρ = T ∈ L(Y ), h ∈ L1(Rn), Ω = [0, 1]n, F ∈ (e−)W
(p(u),φ,F,T )
Ω,Λ′,B (Rn × X : Y ),

1/p(u) + 1/q(u) = 1, and for each x ∈ X we have supt∈Rn ‖F (t;x)‖Y < ∞. If
F1 : (0,∞) × Rn → (0,∞), p1 ∈ P(Rn) and if, for every t ∈ Rn and l > 0, there
exists a sequence (ak)k∈lZd of positive real numbers such that

∑
k∈lZn ak = 1 and∫

t+lΩ

ϕp1(u)

(
2
∑

k∈lZn
akl
−n
[
ϕ
(
a−1
k lnh(u− v)

)]
Lq(v)(u−k+lΩ)

F1(l, t)
[
F(l,u− k)

]−1

)
du ≤ 1,

then h ∗ F ∈ (e−)W
(p1(u),φ,F1,T )
Ω,Λ′,B (Rn ×X : Y ).

4. Applications to the abstract Volterra integro-differential
equations

In this section, we apply our results in the analysis of existence and uniqueness
of generalized multi-dimensional ρ-almost periodic type solutions for various classes
of abstract Volterra integro-differential equations.

4.1. Newtonian potential and logarithmic potential. Concerning the notion
introduced in Definition 10-Definition 12, we would like to note that there exist some
important cases in which it is extremely important that the function F(l, t) depends
not only on l > 0 but also on t ∈ Λ. We will illustrate this fact by considering
the second-order partial differential equation ∆u = −f, where f ∈ C2(R3) has a
compact support. It is well known that the Newtonian potential of f(·), defined by

u(x) :=
1

4π

∫
R3

f(x− y)

|y|
dy, x ∈ R3,

is a unique function belonging to the class C2(R3), vanishing at infinity and satis-
fying ∆u = −f ; see e.g. [28, Theorem 3.9, pp. 126-127]. For simplicity, suppose
that p = p1 = 1, Ω = [0, 1]n, Λ′ ⊆ Λ = R3 and

sup
l>0;t∈R3

∫
R3

F1(l, t)

|y| · F(l, t− y)
dy < +∞. (12)

Then we have the following (we consider here case ρ = I but the same conclusions
hold if ρ(z) = zk, z ∈ C for some k ∈ N; see [12] for more details):

Theorem 7 Suppose that f ∈ (e−)W 1,x,F,I
[0,1]n,Λ′(R

3 : C) and (12) holds. Then

u ∈ (e−)W 1,x,F1,I
[0,1]n,Λ′(R

3 : C).

Proof. Suppose that l > 0 and t ∈ R3 are arbitrary; consider the class e −
W 1,x,F,I

[0,1]n,Λ′(R
3 : C) for brevity. Let a point τ ∈ R3 satisfy (11). Using the Fubini
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theorem and (12), we have∥∥u(·+ τ)− u(·)
∥∥
L1(t+lΩ)

≤ 1

4π

∫
t+lΩ

∫
R3

|f(x+ τ − y)− f(x− y)|
|y|

dy dx

≤ 1

4π

∫
R3

[∫
t+lΩ

|f(x+ τ − y)− f(x− y)| dx

]
dy

|y|

=
1

4π

∫
R3

[∫
t−y+lΩ

|f(x+ τ)− f(x)| dx

]
dy

|y|

≤ 1

4π

∫
R3

ε · dy
|y| · F(l, t− y)

≤ ε

F1(l, t)
.

This simply implies the required. �

Concerning Theorem 7, we would like to emphasize that the function y 7→ |y|−1,
y ∈ R3 does not belong to the class L1(R3) so that the results on convolution
invariance of multi-dimensional Weyl ρ-almost periodicity cannot be applied here.

We can similarly analyze the two-dimensional analogue of this example by con-
sidering the logarithmic potential of f(·), given by

u(x) :=
(−1)

2π

∫
R2

ln(|y|) · f(x− y) dy, x ∈ R2.

In this case, we only need to replace condition (12) by

sup
l>0;t∈R2

∫
R2

ln(|y|) · F1(l, t)

F(l, t− y)
dy < +∞;

see also [28, Remark 3.7, p. 128].
It will be very complicated to reconsider here many other formulas from the

classical theory of partial differential equations which can be employed for our
purposes.

4.2. Applications to the Gaussian semigroup in Rn. In a great number of
recent research papers concerning multi-dimensional almost periodic type functions,
we have presented certain applications to the Gaussian semigroup in Rn and the
Poisson semigroup in Rn, with obvious applications to the inhomogeneous heat
equation in Rn.

Let Y be one of the spaces Lp(Rn), C0(Rn) or BUC(Rn), where 1 ≤ p < ∞.
Then we know that the Gaussian semigroup

(G(t)F )(x) :=
(
4πt
)−(n/2)

∫
Rn
F (x− y)e−

|y|2
4t dy, t > 0, f ∈ Y, x ∈ Rn,

can be extended to a bounded analytic C0-semigroup of angle π/2, generated by
the Laplacian ∆Y acting with its maximal distributional domain in Y. It is clear
that our results about the convolution invariance of Stepanov multi-dimensional ρ-
almost periodic functions and the convolution invariance of Weyl multi-dimensional
ρ-almost periodic functions (see Theorem 3 and Theorem 6) can be applied to the
function x 7→ (G(t0)F )(x), x ∈ Rn, where t0 > 0 is a fixed real number. It is
also worth noting that Theorem 3 and Theorem 6 can be applied in the qualitative
analysis of solutions of the abstract ill-posed Cauchy problems of first order whose
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solutions are governed by integrated semigroups or C-regularized semigroups (see
[19] for more details); the applications can be given also to the abstract ill-posed
Cauchy problems of second (fractional) order.

5. Conclusions and final remarks

The present paper is devoted to the study of various classes of Stepanov multi-
dimensional ρ-almost periodic type functions with values in complex Banach spaces.
In the investigation of all examined classes of generalized multi-dimensional ρ-
almost periodic type functions, we use definitions and results from the theory of
Lebesgue spaces with variable exponents. We also provide some relevant applica-
tions to the abstract Volterra integro-differential equations.

Finally, let us mention some intriguing topics not analyzed here. In [12], we have
recently introduced and analyzed the following notion (cf. also [20]):
Definition 16 Let ω ∈ Rn \ {0}, ρ be a binary relation on X and ω + I ⊆ I. A
continuous function F : I → X is said to be (ω, ρ)-periodic if and only if F (t+ω) ∈
ρ(F (t)), t ∈ I.

Definition 17 Let ωj ∈ R \ {0}, ρj ∈ C \ {0} is a binary relation on X and
ωjej + I ⊆ I (1 ≤ j ≤ n). A continuous function F : I → X is said to be
(ωj , ρj)j∈Nn -periodic if and only if F (t + ωjej) ∈ ρj(F (t)), t ∈ I, j ∈ Nn.

In the case that ρj = cjI for some non-zero complex numbers cj (1 ≤ j ≤ n),
then we also say that the function F (·) is (ωj , cj)j∈Nn -periodic; furthermore, if
cj = 1 for all j ∈ Nn, then we say that F (·) is (ωj)j∈Nn -periodic. In this paper, we
have not analyzed Stepanov and Weyl classes of multi-dimensional (ω, ρ)-periodic
functions ((ωj , ρj)j∈Nn-periodic functions).

Concerning composition principles for Stepanov one-dimensional ρ-almost peri-
odic functions, we would like to note that the statements of [19, Theorem 4.2.38,
Theorem 4.2.39] can be straightforwardly reformulated for Stepanov one-dimensional
T -almost periodic functions, where T ∈ L(Y ) is not necessarily linear isomorphism.
A possible application can be given to the abstract semilinear Cauchy inclusions
analyzed in [19, Subsection 4.2.2], provided that the operator T commutes with
the closed multivalued linear operator A generating the fractional resolvent family
(Rγ(t))t>0 appearing therein; the pivot Banach space should be

BUR(αk);T,uc :=

{
u : R→ Y : u(·) is bounded, uniformly continuous,

T − uniformly recurrent and lim
k→+∞

sup
t∈R
‖f(t+ αk)− Tf(t)‖ = 0

}
.

See [19, Theorem 4.2.40] for more details. We have not analyzed, among many other
topics, composition principles for Stepanov (Weyl) multi-dimensional ρ-almost pe-
riodic functions here.
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