NOTE ON THE DISTRIBUTION OF THE DIRICHLET L-FUNCTIONS AT THE a-POINTS OF THE CORRESPONDING Δ-FUNCTIONS

KAMEL MAZHOUDA AND MOHAMMED MEKKAOUI

Abstract

Let $L(s, \chi)$ be a Dirichlet L-function associated with a primitive character $\chi \bmod q$ and a be a non zero complex number. We denote by $\Delta(s, \chi)$ the function which appears in the functional equation $L(s, \chi)=\Delta(s, \chi) L(1-$ $s, \bar{\chi})$ and $\delta_{a, \chi}=\beta_{a, \chi}+i \gamma_{a, \chi}$ the solutions of the equation $\Delta(s, \chi)=a$ which are called a-points of $\Delta(s, \chi)$. In this note, we will prove that for every complex number $a \neq 0$ the mean of the values $L\left(\delta_{a, \chi}, \chi\right)$ on the sequence of a-points $\delta_{a, \chi}$ of the function $\Delta(s, \chi)$ exists and equals $a+1$.

1. Introduction and main result

Let q be a positive integer and χ be a Dirichlet character modulo q associated with the Dirichlet L-function

$$
L(s, \chi)=\sum_{n=1}^{+\infty} \frac{\chi(n)}{n^{s}}
$$

The series $L(s, \chi)$ converges absolutely and uniformly in the region $\operatorname{Re}(s)>1+\epsilon$, for any $\epsilon>0$. It therefore represents a holomorphic function on the half-plane $\operatorname{Re}(s)>1$, which further extends to a meromorphic function in the complex plane \mathbb{C}. In particular, for the principal character $\chi=1$, we get back the Riemann zeta function $\zeta(s)$. The function $L(s, \chi)$ has only real zeros in the half plane $\operatorname{Re}(s)<0$, these zeros are called the trivial zeros. If $\chi(-1)=1$, the trivial zeros of $L(s, \chi)$ are $s=-2 n$ for all non-negative integers n. If $\chi(-1)=-1$, the trivial zeros of $L(s, \chi)$ are $s=-2 n-1$ for all non-negative integers n. Beside the trivial zeros of $L(s, \chi)$, there are infinitely many non-trivial zeros lying in the strip $0<\operatorname{Re}(s)<1$.

Let

$$
\Delta(s, \chi)=\frac{2 \tau(\chi)}{i^{\kappa} q}\left(\frac{2 \pi}{q}\right)^{s-1} \Gamma(1-s) \sin \left(\frac{\pi}{2}(s+\kappa)\right)
$$

with $\tau(\chi)=\sum_{r=1}^{q} \chi(r) e^{\frac{2 \pi i r}{q}}$ and $\kappa=\frac{1}{2}(1-\chi(-1))$. The function $\Delta(s, \chi)$ appears in the functional equation $L(s, \chi)=\Delta(s, \chi) L(1-s, \bar{\chi})$. Let denote by $\delta_{a, \chi}=$

[^0]$\beta_{a, \chi}+i \gamma_{a, \chi}$ the solutions of the equation $\Delta(s, \chi)=a$ which are called a-points of $\Delta(s, \chi)$.

In this paper, we will prove that for every complex number $a \neq 0$ the mean of the values $L\left(\delta_{a, \chi}, \chi\right)$ on the sequence of a-points $\delta_{a, \chi}$ of the function $\Delta(s, \chi)$ exists and equals $a+1$; the case $a=0$ is related to the trivial zeros of $L(s, \chi)$. Therefore, these averages of these $L(s, \chi)$-values attain all but one possible complex limit. This indicates an interesting link between the distribution of $a+1$-points of the Dirichlet L-functions and a-points of $\Delta(s, \chi)$. To do so, we give an asymptotic formula for the sum

$$
\sum_{\substack{\delta_{a, \chi}: 0<\gamma_{a, \chi}<T \\ \beta_{a, \chi}>-1}} L\left(\eta+\delta_{a, \chi}, \chi\right), \quad \text { as } T \rightarrow \infty
$$

where $\eta \in(-\epsilon, 1)$ and ϵ is arbitrary. The proof of Lemma 2.1 below will show that for $a \neq 0$ the a-points of $\Delta(s, \chi)$ are clustered around the critical line or, in other words, with increasing imaginary part $\gamma_{a, \chi}$ the real part $\beta_{a, \chi}$ is tending to $1 / 2$. Hence, the critical line $1 / 2+i \mathbb{R}$ is the unique vertical Julia line for $\delta_{a, \chi}{ }^{1}$. There are further a-points of $\Delta(s, \chi)$ in the left half-plane, close to zeros of $\Delta(s, \chi)$, the condition $\beta_{a}>-1$ excludes them with at most finitely many exceptions. Notice that $\Delta(s, \chi)$ is regular except for simple poles at the positive integers $s=2 n+1$, if $\chi(-1)=1$ and $s=2 n$, if $\chi(-1)=-1$; moreover, $\Delta(s, \chi)$ vanishes exactly for the non-positive integers $s=-2 n$ if $\chi(-1)=1$ and $s=-2 n-1$, if $\chi(-1)=-1$. Both, 0 and ∞ are thus deficient values for in the language of value-distribution theory. It appears that the distribution of values of both, $\Delta(s, \chi)$ and $L(s, \chi)$ in the left half-plane is pretty similar (except for the value 0 when $\chi(-1)=1$). In this context the formula in this lemma should be compared with the (in principle) identical counterpart for $L(s, \chi)$.

The main result is stated in the flowing theorem which extend Steuding \& Suriajaya work [8] to the Dirichlet L-functions.

1 Julia improved the Big Picard-theorem by showing that if the analytic function f has an essential singularity at b, then there exist a real θ_{0} and a complex z such that for every sufficiently small $\epsilon>0$

$$
\mathbb{C}-\{z\} \subset f\left(\left\{a+r \exp (i \theta):\left|\theta-\theta_{0}\right|<\epsilon, 0<r<\epsilon\right\}\right) .
$$

The ray $\left\{b+r \exp \left(i \theta_{0}\right): r>0\right\}$ is called Julia line. Steuding in [7] remarked that the distribution of the a-points close to the real axis is quite regularly and it can be shown that there is always a a-point in a neighborhood of any trivial zero of $L(s, \chi)$ (and for any function in the Selberg class), and with finitely many exceptions there are no other in the left half-plane. Moreover, he indicated that the extraordinary value distribution shows that the critical line is a so-called Julia line.

Theorem 1.1. Let χ be a primitive character modulo q and a be a non zero complex number. Then as $T \rightarrow \infty$, we have

$$
\begin{gather*}
\sum_{\delta_{a, \chi}: 0<\gamma_{a, \chi}<T} L\left(\eta+\delta_{a, \chi}, \chi\right) \\
=\frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi e}\right)+\frac{a}{q(1-\eta)}\left(\frac{q T}{2 \pi}\right)^{1-\eta} \log \left(\frac{q T}{2 \pi}\right) \\
-\frac{a}{q(1-\eta)^{2}}\left(\frac{q T}{2 \pi}\right)^{1-\eta}+O_{a}\left((q T)^{\frac{1}{2}+\epsilon}\right), \tag{1}
\end{gather*}
$$

where $\eta \in(-\epsilon, 1)$ and ϵ is arbitrary.
From Theorem 1.1 and Lemma 2.1 below, we deduce the average value of $L\left(\delta_{a, \chi}, \chi\right)$ over the a-points $\delta_{a, \chi}$ of $\Delta(s, \chi)$ with $0<\operatorname{Im}\left(\delta_{a, \chi}\right)<T$, i.e.,

$$
\lim _{T \rightarrow+\infty} \frac{1}{N_{a, \chi}(T)} \sum_{\substack{\delta_{a, \chi}: 0<\gamma_{a, \chi}<T \\ \beta_{a, \chi}>-1}} L\left(\delta_{a, \chi}, \chi\right)=a+1,
$$

where $N_{a, \chi}(T)$ is the number of a-points $\delta_{a, \chi}=\beta_{a, \chi}+i \gamma_{a, \chi}$ of $\Delta(s, \chi)$ satisfying $\beta_{a, \chi}>-1$ and $0<\gamma_{a, \chi}<T$.

2. Preliminary lemmas and equations

In this section, we give some lemmas and formulas useful for the proof of our Theorem which its proof uses the same argument as in [8]. We start with well-known results on the Dirichlet L-function $L(s, \chi)$ (see Davenport book [1]).

If $\chi \bmod q$ is a primitive character, then

$$
\begin{equation*}
L(s, \chi)=\Delta(s, \chi) L(1-s, \bar{\chi}) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta(s, \chi)=\frac{2 \tau(\chi)}{i^{\kappa} q}\left(\frac{2 \pi}{q}\right)^{s-1} \Gamma(1-s) \sin \left(\frac{\pi}{2}(s+\kappa)\right) \tag{3}
\end{equation*}
$$

with $\tau(\chi)=\sum_{r=1}^{q} \chi(r) e^{\frac{2 \pi i r}{q}}$ and $\kappa=\frac{1}{2}(1-\chi(-1))$. The function $\Delta(s, \chi)$ is a meromorphic function with only real zeros and poles satisfying the functional equation

$$
\Delta(s, \chi) \Delta(1-s, \bar{\chi})=1
$$

From (3) and by stirling's formula (see[4, page 13]), we get

$$
\begin{align*}
& =\frac{\tau(\chi)}{i^{\kappa} \sqrt{q}} \exp \left\{-i t \log \left(\frac{q|t|}{2 \pi e}\right)+\operatorname{sgn}(t)\left(\frac{i \pi}{2}\right)\left(\frac{1}{2}-\kappa\right)\right\} \\
& \\
& \times\left(\frac{q|t|}{2 \pi}\right)^{\frac{1}{2}-\sigma}\left(1+O\left(\frac{1}{|t|}\right)\right) \tag{4}
\end{align*}
$$

in any fixed halfstrip $\alpha \leq \sigma \leq \beta,|t| \geq 1$. Moreover, for any fixed σ and $|t| \geq 1$, we have

$$
\begin{equation*}
\frac{\Delta^{\prime}}{\Delta}(s, \chi)=-\log \left(\frac{q|t|}{2 \pi}\right)+O\left(\frac{1}{|t|}\right) . \tag{5}
\end{equation*}
$$

By the functional equation (2) and the Phragmén-Lindelöf principle, we deduce that ${ }^{2}$

$$
L(s, \chi)<_{\epsilon} \begin{cases}|q t|^{\frac{1}{2}-\sigma+\epsilon} & \sigma<0 \tag{6}\\ |q t|^{\frac{1}{2}(1-\sigma)+\epsilon} & 0 \leq \sigma \leq 1 \\ |q t|^{\epsilon} & \sigma>1\end{cases}
$$

as $|t| \rightarrow \infty$ and where ϵ is an arbitrarily small positive number.
For a non zero complex number a. We write

$$
\begin{equation*}
\frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a}=\frac{\Delta^{\prime}}{\Delta}(s, \chi) \frac{1}{1-\frac{a}{\Delta(s, \chi)}} \tag{7}
\end{equation*}
$$

From equations (4) and (5), we obtain, for $\sigma>\frac{1}{2}$ and $t \geq t_{a}>1\left(t_{a}\right.$ is defined below in Lemma 2.1)

$$
\begin{equation*}
\frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} \lll a_{a}(q t)^{\frac{1}{2}-\sigma} \log (q t+1) \tag{8}
\end{equation*}
$$

Furthermore, we find for $\sigma<\frac{1}{2}$ that

$$
\begin{align*}
\frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} & =\frac{\Delta^{\prime}}{\Delta}(s, \chi)\left(1+\sum_{n \geq 1}\left(\frac{a}{\Delta(s, \chi)}\right)^{n}\right) \\
& =-\log \left(\frac{q t}{2 \pi}\right)+O\left(\frac{1}{t}\right)+O_{a}\left((q t)^{\sigma-\frac{1}{2}} \log (q t+1)\right) \tag{9}
\end{align*}
$$

Moreover, for an a-point $\delta_{a, \chi}=\beta_{a, \chi}+i \gamma_{a, \chi}$ of $\Delta(s, \chi)$, it follows from equation (4) that

$$
\begin{equation*}
|a|=\left(\frac{q \gamma_{a, \chi}}{2 \pi}\right)^{\frac{1}{2}-\beta_{a, \chi}}\left(1+O\left(\frac{1}{\gamma_{a, \chi}}\right)\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\gamma_{a, \chi}\left(\log \left(\frac{2 \pi e}{q \gamma_{a, \chi}}\right)\right)+\frac{\pi}{4}+\theta_{0}+O\left(\frac{1}{\gamma_{a, \chi}}\right) \quad \bmod 2 \pi \tag{11}
\end{equation*}
$$

where $a=\Delta\left(\delta_{a, \chi}, \chi\right)=|a| \exp (i \phi)$ and $\tau(\chi)=\sqrt{q} \exp \left(i \theta_{0}\right)$.
This shows that

$$
\begin{equation*}
\beta_{a, \chi} \rightarrow \frac{1}{2} \quad \text { as } \quad \gamma_{a, \chi} \rightarrow \infty \tag{12}
\end{equation*}
$$

Hence, there exists a positive real number $t_{a}>1$, depending only on a, such that all a-points $\delta_{a, \chi}=\beta_{a, \chi}+i \gamma_{a, \chi}$ have a real part $\beta_{a, \chi} \in(-1,2)$ whenever $\gamma_{a, \chi}>t_{a}$.

$$
\begin{aligned}
& { }^{2} \text { From [2] and an application of the Phragmén-Lindelöf principle yields the estimate } \\
& \qquad L(s, \chi) \ll(q(|t|+2)) \frac{3}{16}+\epsilon \text { for } \frac{1}{2} \leq \sigma \leq 1+\frac{1}{\log q t}
\end{aligned}
$$

and

$$
L(s, \chi) \ll(q(|t|+2))^{\frac{1}{2}} \log (q(|t|+2)) \text { for }-\frac{1}{\log q t} \leq \sigma \leq \frac{1}{2}
$$

When we assume the Riemann hypothesis, the first bound can be replaced by $(q(|t|+2))^{\epsilon}$.

Lemma 2.1. Let χ be a primitive character modulo q and a be a non zero complex number. Then for sufficiently large T, we have

$$
\begin{equation*}
N_{a, \chi}(T)=\frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi e}\right)+O_{a}(\log (q T)) \tag{13}
\end{equation*}
$$

where $N_{a, \chi}(T)$ is the number of a-points $\delta_{a, \chi}=\beta_{a, \chi}+i \gamma_{a, \chi}$ of $\Delta(s, \chi)$ satisfying $\beta_{a, \chi}>-1$ and $0<\gamma_{a, \chi}<T$.

Proof. To prove this lemma, we use the argument principle theorem to the function $\Delta(s, \chi)-a$ and integrate counterclockwise over the rectangular contour \mathbf{R} determined by the vertices $-1+i t_{a}, 2+i t_{a}, 2+i T$ and $-1+i T$. We have

$$
N_{a, \chi}(T)=\sum_{\substack{0<\gamma_{a, \chi}<T \\ \beta_{a, \chi}>-1}} 1=\frac{1}{2 \pi i} \int_{\mathbf{R}} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} d s+O_{a}(1)
$$

Hence, we have

$$
\begin{aligned}
N_{a, \chi}(T) & =\frac{1}{2 \pi i}\left\{\int_{-1+i t_{a}}^{2+i t_{a}}+\int_{2+i t_{a}}^{2+i T}+\int_{2+i T}^{-1+i T}+\int_{-1+i T}^{-1+i t_{a}}\right\} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} d s+O(1) \\
& :=I_{1}+I_{2}+I_{3}+I_{4}+O_{a}(1)
\end{aligned}
$$

The integral I_{1} is independent of T, so we have $I_{1}=O_{a}(1)$. Next, using equations (8) and (9), we get

$$
I_{2}=\frac{1}{2 \pi i} \int_{2+i t_{a}}^{2+i T} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} d s=O_{a}\left(\int_{t_{a}}^{T}(q t)^{\frac{1}{2}-2} \log (q t) d t\right)=O_{a}(\log (q T))
$$

and

$$
\begin{aligned}
I_{3}= & \frac{1}{2 \pi i} \int_{2+i T}^{-1+i T} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} d s=\frac{1}{2 \pi i}\left\{\int_{2+i T}^{\frac{1}{2}+i T}+\int_{\frac{1}{2}+i T}^{-1+i T}\right\} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} d s \\
= & \int_{\frac{1}{2}}^{2} O_{a}\left((q T)^{\frac{1}{2}-\sigma} \log (q T)\right) d \sigma \\
& +\int_{-1}^{\frac{1}{2}}\left\{\log \left(\frac{q T}{2 \pi}\right)+O\left(\frac{1}{T}\right)+O_{a}\left((q T)^{\sigma-\frac{1}{2}} \log (q T)\right)\right\} d \sigma \\
= & O_{a}(\log (q T)) .
\end{aligned}
$$

Finally, we estimate I_{4}. By equation (9), we have

$$
\begin{aligned}
I_{4} & =-\frac{1}{2 \pi i} \int_{-1+i t_{a}}^{-1+i T} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} d s \\
& =\frac{1}{2 \pi} \int_{t_{a}}^{T}\left(\log \left(\frac{q t}{2 \pi}\right)+O\left(\frac{1}{t}\right)\right) d t+O_{a}(\log (q T)) \\
& =\frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi}\right)-\frac{T}{2 \pi}+O_{a}(\log (q T)) .
\end{aligned}
$$

Hence, Lemma 2.1 follows from estimates of I_{1}, I_{2}, I_{3} and I_{4}.

Lemma 2.2. Let χ be a primitive character modulo q and a be a non zero complex number. Then, for $-1 \leq \sigma \leq 2$ and $t \geq 1$, we have

$$
\begin{equation*}
\frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a}=\sum_{\left|t-\gamma_{a, \chi}\right| \leq 1} \frac{1}{s-\delta_{a, \chi}}+O_{a}(\log (q t)) \tag{14}
\end{equation*}
$$

Proof. Recall that $\Delta(s, \chi)$ is analytic except for simple poles at $s=2 n+1+\kappa$. Thus, $(\Delta(s, \chi)-a) \Gamma\left(\frac{1-s+\kappa}{2}\right)^{-1}$ is an entire function of order one. Hence, by the Hadamard factorization theorem, we have

$$
\Delta(s, \chi)-a=\exp (A(\chi)+B(\chi) s) \prod_{\delta_{a, \chi}}\left(1-\frac{s}{\delta_{a, \chi}}\right) \exp \left(\frac{s}{\delta_{a, \chi}}\right)
$$

where $A(\chi)$ and $B(\chi)$ are certain complex constants and the product is taken over all a-points $\delta_{a, \chi}$ of $\Delta(s, \chi)$. Hence, taking the logarithmic derivative, we get

$$
\frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a}=-\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1-s+\kappa}{2}\right)+B(\chi)+\sum_{\delta_{a, \chi}} \frac{1}{s-\delta_{a, \chi}}+\frac{1}{\delta_{a, \chi}}
$$

It follows from Stirling's formula that

$$
\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1-s+\kappa}{2}\right) \ll \log (t)
$$

and from equation (8), we have

$$
\frac{\Delta^{\prime}(2+i t, \chi)}{\Delta(2+i t, \chi)-a} \ll{ }_{a} 1
$$

Using last estimates, we obtain

$$
\begin{aligned}
\frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a}= & \sum_{\delta_{a, \chi}} \frac{1}{s-\delta_{a, \chi}}-\frac{1}{2+i t-\delta_{a, \chi}}+O(\log t) \\
= & \left\{\sum_{\left|\gamma_{a, \chi}-t\right| \leq 1}+\sum_{\gamma_{a, \chi}>t+1}+\sum_{\gamma_{a, \chi}<t-1}\right\}\left(\frac{1}{s-\delta_{a, \chi}}-\frac{1}{2+i t-\delta_{a, \chi}}\right) \\
& +O(\log t) \\
:= & S_{1}+S_{2}+S_{3}+O(\log t)
\end{aligned}
$$

By Lemma 2.1,

$$
\begin{aligned}
S_{1} & =\sum_{\left|\gamma_{a, \chi}-t\right| \leq 1} \frac{1}{s-\delta_{a, \chi}}-\sum_{\left|\gamma_{a, \chi}-t\right| \leq 1} \frac{1}{2+i t-\delta_{a, \chi}} \\
& =\sum_{\left|\gamma_{a, \chi}-t\right| \leq 1} \frac{1}{s-\delta_{a, \chi}}+O_{a}\left(\sum_{\left|\gamma_{a, \chi}-t\right| \leq 1}\right) \\
& =\sum_{\left|\gamma_{a, \chi}-t\right| \leq 1} \frac{1}{s-\delta_{a, \chi}}+O_{a}(\log q t) .
\end{aligned}
$$

Moreover, for any positive integer n,

$$
\sum_{t+n<\gamma_{a, \chi} \leq t+n+1} \frac{1}{s-\delta_{a, \chi}}-\frac{1}{2+i t-\delta_{a, \chi}} \ll{ }_{a} \sum_{t+n<\gamma_{a, \chi} \leq t+n+1} \frac{1}{n^{2}} \lll a \frac{\log (t+n)}{n^{2}}
$$

This yields $S_{2}=O_{a}(\log t)$. By the same argument we can estimate the sum S_{3} using the same bounds. Then, Lemma 2.2 follows from estimates of S_{1}, S_{2} and S_{3}.

3. Proof of Theorem 1.1

The basic idea of the proof is to interpret the sum of $L\left(\eta+\delta_{a, \chi}, \chi\right)$ as a sum of residues. By Cauchy's theorem, we have

$$
\sum_{\substack{\delta_{a, \chi}: 0<\gamma_{a, \chi}<T \\ \beta_{a, \chi}>-1}} L\left(\eta+\delta_{a, \chi}, \chi\right)=\frac{1}{2 \pi i} \int_{\mathbf{R}} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} L(s, \chi) d s+O_{a}(1) .
$$

where the integration is taken over a rectangular contour in counterclockwise direction denoted by \mathbf{R} with vertices $1+\eta+\epsilon+i t_{a}, 1+\eta+\epsilon+i T,-\eta-\epsilon+i T$ and $-\eta-\epsilon+i t_{a}$. Hence,

$$
\begin{aligned}
& \sum_{\delta_{a, \chi}: 0<\gamma_{a, \chi}<T} L\left(\eta+\delta_{a, \chi}, \chi\right) \\
= & \frac{1}{2 \pi i} \int_{\mathbf{R}} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} L(\eta+s, \chi) d s+O_{a}(1) \\
= & \frac{1}{2 \pi i}\left\{\int_{-\eta-\epsilon+i t_{a}}^{1+\eta+\epsilon+i t_{a}}+\int_{1+\eta+\epsilon+i t_{a}}^{1+\eta+\epsilon+i T}+\int_{1+\eta+\epsilon+i T}^{-\eta-\epsilon+i T}+\int_{-\eta-\epsilon+i T}^{-\eta-\epsilon+i t_{a}}\right\} \frac{\Delta^{\prime}(s, \chi)}{\Delta(s, \chi)-a} L(\eta+s, \chi) d s \\
& +O_{a}(1) \\
:= & I_{1}+I_{2}+I_{3}+I_{4}+O_{a}(1) .
\end{aligned}
$$

The integral I_{1} is independent of T, so one has $I_{1}=O(1)$. Next, we consider I_{2}.
Using equation (8) and the fact that $L(s, \chi) \ll 1$, we get

$$
\begin{array}{rll}
I_{2} & \lll a \int_{t_{a}}^{T}(q t)^{\frac{-1}{2}-\eta-\epsilon} \log (q t) d t \\
& \ll a \quad(q T)^{-\frac{1}{2}-\eta-\epsilon} \log (q T) .
\end{array}
$$

From Lemma 2.2, we have

$$
I_{3}=\frac{1}{2 \pi i} \int_{1+\eta+\epsilon+i T}^{-\eta-\epsilon+i T} \sum_{\left|\gamma_{a, \chi}-T\right|<1} \frac{L(\eta+s, \chi)}{s-\delta_{a, \chi}} d s+O_{a}\left(\int_{1+\eta+\epsilon+i T}^{-\eta-\epsilon+i T} \log (q T) L(\eta+s, \chi) d s\right) .
$$

Now, we change the path of integration. If $\gamma_{a, \chi}<T$, we change the path to the upper semicircle with center $\delta_{a, \chi}$ and radius 1. If $\gamma_{a, \chi}>T$, we change the path to the lower semicircle with center $\delta_{a, \chi}$ and radius 1 . Then, we have

$$
\frac{1}{s-\delta_{a, \chi}} \ll 1
$$

on the new path. This estimate and the bound (6) yields

$$
I_{3}=O_{a}\left((q T)^{\frac{1}{2}+\epsilon} \sum_{\left|\gamma_{a, \chi}^{(k)}-T\right|<1} 1\right)+O_{a}\left((q T)^{\frac{1}{2}+\epsilon} \log q T\right)
$$

By Lemma 2.1, we obtain

$$
I_{3}=O_{a}\left((q T)^{\frac{1}{2}+\epsilon} \log q T\right)
$$

Finally, we estimate I_{4}. Using equation (9) and the fact that $\Delta(s, \chi) \Delta(1-s, \bar{\chi})=1$, we get

$$
\begin{aligned}
I_{4} & =-\frac{1}{2 \pi i} \int_{-\eta-\epsilon+i t_{a}}^{-\eta-\epsilon+i T} \frac{\Delta^{\prime}}{\Delta}(s, \chi)\left(1+\frac{a}{\Delta(s, \chi)}+\sum_{m \geq 2}\left(\frac{a}{\Delta(s, \chi)}\right)^{m}\right) L(\eta+s, \chi) d s \\
& =\frac{1}{2 \pi i} \int_{1+\eta+\epsilon-i t_{a}}^{1+\eta+\epsilon-i T} \frac{\Delta^{\prime}}{\Delta}(1-s, \chi)\left(1+a \Delta(s, \bar{\chi})+\sum_{m \geq 2}(a \Delta(s, \bar{\chi}))^{m}\right) L(1+\eta-s, \chi) d s \\
& :=J_{1}+J_{2}+J_{3}
\end{aligned}
$$

By equations (2) and (5), we obtain

$$
\begin{aligned}
\overline{J_{1}}= & -\frac{1}{2 \pi} \int_{t_{a}}^{T} \frac{\Delta^{\prime}}{\Delta}(-\eta-\epsilon-i t, \bar{\chi}) L(-\epsilon-i t, \bar{\chi}) d t \\
= & \frac{1}{2 \pi} \int_{t_{a}}^{T} \Delta(-\epsilon-i t, \bar{\chi}) \log \left(\frac{q T}{2 \pi}\right) L(1+\epsilon+i t, \chi) d t \\
& +\int_{t_{a}}^{T} O\left(\frac{\Delta(-\epsilon-i t, \bar{\chi}) L(1+\epsilon+i t, \chi)}{t}\right) d t .
\end{aligned}
$$

Using [3, Lemma 2.14], we get

$$
\overline{J_{1}}=\frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) e^{-\frac{2 \pi i n}{q}} \log (n)+O_{a}\left((q T)^{\frac{1}{2}+\epsilon} \log q T\right)
$$

Recall that (see [1, page 146])

$$
e^{-\frac{2 \pi i n}{q}}=\frac{1}{\phi(q)} \sum_{\chi^{\prime} \equiv q} \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-n)
$$

when $(n, q)=1$. The last formula yields to

$$
\begin{aligned}
\frac{\tau(\bar{\chi})}{q} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) e^{-\frac{2 \pi i n}{q}} \log n & =\frac{\tau(\bar{\chi})}{q \phi(q)} \sum_{\chi^{\prime} \equiv q} \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-1) \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) \chi^{\prime}(n) \log n \\
& =\sum_{\chi^{\prime} \neq \bar{\chi}} \frac{\tau(\bar{\chi}) \tau\left(\overline{\chi^{\prime}}\right) \chi^{\prime}(-1)}{q \phi(q)} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi(n) \chi^{\prime}(n) \log n \\
& +\frac{\tau(\bar{\chi}) \tau(\chi) \overline{\chi(-1)}}{q \phi(q)} \sum_{1 \leq n \leq \frac{q T}{2 \pi}} \chi_{0}(n) \log n \\
& =K_{1}+K_{2}
\end{aligned}
$$

Using Pólya-Vinogradov inequality

$$
\sum_{n \leq x} \chi(n) \ll 2 \sqrt{q} \log q
$$

for every non principal character modulo q and partial summation, we obtain $K_{1} \ll$ $\log (q T)$. By the Eratosthenes-Legendre sieve [5, Theorem 3.1], we know that

$$
\sum_{k \leq x} \chi_{0}(k)=\frac{\phi(q)}{q} x+O\left(q^{\epsilon}\right)
$$

Then, partial summation gives

$$
\begin{aligned}
\sum_{k \leq x} \chi_{0}(k) \log k & =\log x\left(\sum_{k \leq x} \chi_{0}(k)\right)-\int_{1}^{x}\left(\sum_{k \leq t} \chi_{0}(k)\right) \frac{1}{t} d t \\
& =\frac{\phi(q)}{q} x(\log x)-\frac{\phi(q)}{q} x+O\left(q^{\epsilon} \log x\right)
\end{aligned}
$$

Using last estimate and that

$$
\tau(\bar{\chi}) \tau(\chi) \overline{\chi(-1)}=|\tau(\chi)|^{2}=q
$$

we get

$$
K_{2}=\frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi}\right)-\frac{T}{2 \pi}+O(\log (q T))
$$

Combining K_{1} and K_{2}, we obtain

$$
J_{1}=\frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi}\right)-\frac{T}{2 \pi}+O\left((q T)^{\frac{1}{2}+\epsilon} \log q T\right)
$$

From equations (4) and (5), we obtain for J_{2}

$$
\begin{aligned}
\overline{J_{2}}= & -\frac{a}{2 \pi i} \int_{1+\eta+\epsilon+i t_{a}}^{1+\eta+\epsilon+i T} \frac{\Delta^{\prime}}{\Delta}(1-s, \bar{\chi}) \frac{\Delta(s, \chi)}{\Delta(s-\eta, \bar{\chi})} L(s-\eta, \bar{\chi}) d s \\
= & \frac{a}{2 \pi} \int_{t_{a}}^{T}\left(\log \left(\frac{q t}{2 \pi}\right)+O\left(\frac{1}{t}\right)\right)\left(\left(\frac{q t}{2 \pi}\right)^{-\eta}+O\left(\frac{1}{t}\right)\right) \sum_{n \geq 1} \frac{\bar{\chi}(n)}{n^{1+\epsilon+i t}} d t \\
= & \frac{a}{2 \pi} \int_{t_{a}}^{T}\left(\frac{q t}{2 \pi}\right)^{-\eta} \log \left(\frac{q t}{2 \pi}\right) d t \\
& +O\left(\sum_{n \geq 2} \frac{\bar{\chi}(n)}{n^{1+\epsilon}} \int_{t_{a}}^{T}\left(\frac{q t}{2 \pi}\right)^{-\eta} \log \left(\frac{q t}{2 \pi}\right) \exp (-i t \log n) d t\right) .
\end{aligned}
$$

From [9, Lemma 4.3], we deduce that the error term is $\ll a_{a} 1$. Then, we have

$$
J_{2}=\frac{a}{q(1-\eta)}\left(\frac{q T}{2 \pi}\right)^{1-\eta} \log \left(\frac{q T}{2 \pi}\right)-\frac{a}{q(1-\eta)^{2}}\left(\frac{q T}{2 \pi}\right)^{1-\eta}+O_{a}(1)
$$

Now, using equations (4) and (6), we get

$$
J_{3} \ll a \int_{t_{a}}^{T} \log (q t) \sum_{m \geq 2}(q t)^{-m\left(\frac{1}{2}+\eta+\epsilon\right)}(q t)^{\frac{1}{2}+\epsilon} \ll a(q T)^{\frac{1}{2}+\epsilon} \log (q T)
$$

Combining J_{1}, J_{2} and J_{3}, we obtain

$$
\begin{aligned}
I_{4}= & \frac{T}{2 \pi} \log \left(\frac{q T}{2 \pi e}\right)+\frac{a}{q(1-\eta)}\left(\frac{q T}{2 \pi}\right)^{1-\eta} \log \left(\frac{q T}{2 \pi}\right)-\frac{a}{q(1-\eta)^{2}}\left(\frac{q T}{2 \pi}\right)^{1-\eta} \\
& +O_{a}\left((q T)^{\frac{1}{2}+\epsilon} \log (q T)\right)
\end{aligned}
$$

Finally, Theorem 1.1 follows from estimates of I_{1}, I_{2}, I_{3} and I_{4}.

4. Concluding remarks

The Selberg class \mathcal{S} has been introduced by Selberg [6]. It consists of Dirichlet series

$$
F(s)=\sum_{n=1}^{+\infty} \frac{a(n)}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

satisfying

- Ramanujan hypothesis: $a(n)=O\left(n^{\epsilon}\right)$.
- Euler product: for s with sufficiently large real part,

$$
F(s)=\prod_{p} \exp \left(\sum_{k=1}^{+\infty} \frac{b\left(p^{k}\right)}{p^{k s}}\right)
$$

with suitable coefficients $b\left(p^{k}\right)$ satisfying $b\left(p^{k}\right)=O\left(p^{k \theta}\right)$ for some $\theta<\frac{1}{2}$.

- Analytic continuation: there exists a non-negative integer m such that $(s-1)^{m} F(s)$ is an entire function of finite order (and in the sequel m_{F} denotes the smallest integer m with this property).
- Functional equation: for $1 \leq j \leq r$, there exist positive real numbers Q_{F}, λ_{j}, and complex numbers μ_{j}, ω with $\operatorname{Re}\left(\mu_{j}\right) \geq 0$ and $|\omega|=1$, such that

$$
\phi_{F}(s)=\omega \overline{\phi_{F}(1-\bar{s})}
$$

where

$$
\phi_{F}(s)=F(s) Q_{F}^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right)
$$

The degree of $F \in \mathcal{S}$ is defined by

$$
d_{F}=2 \sum_{j=1}^{r} \lambda_{j}
$$

The logarithmic derivative of $F(s)$ has a Dirichlet series expansion

$$
-\frac{F^{\prime}}{F}(s)=\sum_{n=1}^{+\infty} \Lambda_{F}(n) n^{-s} \quad \operatorname{Re}(s)>1
$$

where $\Lambda_{F}(n)=b(n) \log n$ is the generalized von Mangoldt function (supported on the prime powers). In view of our investigations the functional equation is of special interest. We rewrite the functional equation as

$$
F(s)=\Delta_{F}(s) \overline{F(1-\bar{s})},
$$

where

$$
\Delta_{F}(s)=\omega Q^{1-2 s} \prod_{j=1}^{r} \frac{\Gamma\left(\lambda_{j}(1-s)+\overline{\mu_{j}}\right)}{\Gamma\left(\lambda_{j} s+\mu_{j}\right)} .
$$

It is an interesting question to extend Theorem 1.1 to other class of Dirichlet L-functions (the Selberg class with some further condition). This problem will be considered in a sequel to this paper.

Acknowledgements. The authors thanks the anonymous referee for the careful reading of the manuscript.

References

1. H. Davenport, Multiplicative number theory, Springer 1980, 2nd ed. revised by H. L. Montgomery.
2. D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions II, Q. J. Math. 31 (1980), 157-16.
3. D.A. Kaptan, Some mean values related to Dirichlet L-functions, M.Sc. Thesis, Bog̃aziçi University, 2009, http://seyhan.library.boun.edu.tr/record=b1558882 S5.
4. Y. Karabulut, Some mean value problems concerning the Riemann Zeta function, M.Sc. Thesis, Bog̃aziçi University, (2009) (http://seyhan.library.boun.edu.tr/record=b1558899 S5).
5. Montgomery, H. L. and R. Vaughan, Multiplicative number theory, I. Classical theory, Cambridge (2007).
6. A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proceedings of the Amalfi Conference on Analytic Number Theory, Maiori 1989, E. Bombieri et al. (eds.), Università di Salerno (1992), 367-385.
7. J. Steuding, Value-Distribution of L-Functions, Lecture Notes in Mathematics, vol. 1877. Springer, Berlin (2007).
8. J. Steuding and A. I. Suriajaya, Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines, Comput. Methods Funct. Theory (2020). https://doi.org/10.1007/s40315-020-00316-x
9. E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed, revised by D. R. HeathBrown, Oxford University Press, Oxford, 1986.

Kamel Mazhouda
Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia
E-mail address: kamel.mazhouda@fsm.rnu.tn
Mohammed Mekkaoui
École Supérieure de commerce, Kolea, Tipaza, Algeria
E-mail address: m_mekkaoui@esc-alger.dz

[^0]: 2010 Mathematics Subject Classification. 11M06,11M26, 11M36.
 Key words and phrases. Dirichlet L-function, a-points, value-distribution.
 Submitted Sep. 1, 2021.

