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BLOW UP FOR A VISCOELASTIC WAVE EQUATION WITH

SPACE-TIME POTENTIAL IN Rn

P. A. OGBIYELE AND P. O. ARAWOMO

Abstract. In this paper, we consider the following wave equation:utt −
(
∆u−

∫ t

0

g(t− s)∆u(s)ds
)
+ b(t, x)ut = f(x, u), t > 0, x ∈ Rn

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

with space-time dependent potential, where the initial data have compact sup-

port. Under suitable assumptions on the nonlinear function f , the relaxation
function g and the damping potential b, we obtain blow up results using the
perturbed energy method.

1. Introduction

In this paper, we are concerned with blow-up result for solutions to nonlinear
wave equations of the formutt −

(
∆u−

∫ t

0

g(t− s)∆u(s)ds
)
+ b(t, x)ut = f(x, u), t > 0, x ∈ Rn,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

(1)

with space-time dependent potential b and relaxation function g, where the initial
data u0(x), u1(x) belong to appropriate spaces and u = u(t, x).

Recent works in the literature, see [9, 10, 27, 28] have shown that the behav-
ior of the problem (1) is influenced by the dissipation produced by b(t, x)ut with
b(t, x) > 0. An interesting question is whether or not this damping in unbounded
domains could prevent blow-up. In the case of nonlinear damping in bounded do-
mains, Georgiev and Todorova [5] considered the interaction between the source
and damping term in the nonlinear problem{

utt −∆u+ |ut|α−2ut = |u|p−2u x ∈ Ω, t > 0

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω u(x, t)|∂Ω = 0, t > 0,
(2)

when α > 2 and showed that for p > α, the solution with negative initial energy
cannot be global and is global for p ≤ α.
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There is an extensive literature on global existence and blow-up of weak solutions
to nonlinear wave equations of the form (2) on bounded smooth domains Ω ⊂ Rn.
More specifically, Yang in [29], obtained blow up of solutions to a nonlinear wave
problem of the formutt −∆ut − div

[
|∇u|γ∇u+ |∇ut|r∇ut

]
+ |ut|mut = |u|pu, x ∈ Ω, t > 0

u(x, t)|∂Ω = 0, t > 0 u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω,
(3)

under the condition p > max{γ,m} and where the blow up time depends on |Ω|. In
[15] Messaoudi and Said-Houari studied a class of nonlinear wave equations having
the form (3) and extended the blow up result of Yang [29] to the case where the
blow up result holds regardless of the size of Ω and for p > max{γ,m}, γ > r. The
case of (3) with positive initial energy solution and space dependent coefficients
was considered by Ogbiyele in [20].

Messaoudi [14], considered the nonlinear wave equation

utt −
(
∆u−

∫ t

0

g(t− s)∆u(s)ds
)
+ ut|ut|m−2 = u|u|p−2,

when p > m and obtained blow up results for positive initial energy solution. For a
review on recent results on global existence, energy decay and blow up of solutions
to nonlinear wave equations in bounded domains and their extensions to variable
exponents, see [1, 4, 16, 17] and for other relevant results on blow-up and global
existence for nonlinear wave equations in bounded smooth domains, the reader is
referred to [2, 6, 7, 11, 13, 18, 19, 21, 23, 26].

In the case of unbounded domains, Levine et al.[12] considered global existence
and blow-up of weak solutions to the Cauchy problem

utt − div(|∇u|γ−2∇u) + b(t, x)|ut|m−2ut = f(x, u), (4)

with γ = 2. They showed that when m, p satisfy the condition p < min{m, 2(n −
1)/(n− 2)}, the solutions are global. In addition to the condition p > {2,m} they
also gave the restriction p < max{2n/(n−2),mn/(n+1−m)} for which the solution
blows up when the initial energy is merely less than zero. In a related work, G.
Todorova [25], studied the Cauchy problem (1) where f(x, u) = −µ(x)u + u|u|p−2

and argued that for the case µ = 0, the additional restriction p < mn/(n−m+ 1)
is method driven.

More recently, Ogbiyele and Arawomo [22] obtained blow up of weak solutions
to the nonlinear Cauchy problem (4) and obtained blow up results under suitable
conditions on the damping potential b and the nonlinear function f . For other blow
up results of cauchy viscoelastic equation in unbounded domains, see [8, 31].

Motivated by the results in the literature, we consider the wave problem (1)
under suitable conditions on the damping coefficient b and the relaxation function
g and establish blow up results using a differential inequality similar to that in [22]
where the initial data u0, u1 are assumed to have compact support in a ball B(R) of
radius R about the origin and the solution satisfies the finite speed of propagation
property suppu(t) ∈ B(R+ t) for t ∈ (0,∞).

2. Preliminaries

In this section, we state some basic assumptions used in this paper. First, we
introduce the following notations. Lp(Rn), 1 ≤ p ≤ ∞, the Lebesgue space with
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norm ∥ · ∥p and W i,p(Rn) the Banach space of functions in Lp(Rn) with i(i ∈ N)
generalized derivatives and H1(Rn) = W 1,2(Rn). We denote by ⟨·, ·⟩ the inner
product in L2(Rn).

Definition 1. By a weak solution to (1), we mean a function u(t, x) satisfying the
following

(i) u ∈ L∞(
[0, T ];H1(Rn)

)
∩L∞(

[0, T ];Lp(Rn)
)
, ut ∈ L∞(

[0, T ];L2(Rn)
)
,

utt ∈ L2
(
[0, T ];H−1(Rn)

)
,

(ii)
∫ t

0

[
⟨utt, v⟩+⟨[∇u−

∫ t

0
g(t−s)∇u(s)ds],∇v⟩+⟨b(t, x)ut, v⟩−⟨f(x, u), v⟩

]
ds =

0,
for v ∈ C∞

0 ([0, T ]×Rn) and a.e. t ∈ [0, T ] such that u(0) ∈ H1(Rn), ut(0) ∈
L2(Rn).

Lemma 1. (Sobolev, Gagliardo, Nirenberg[3]) Suppose that 1 ≤ p < n. If u ∈
W 1,p(Rn), then u ∈ Lp∗

(Rn) with

1

p∗
=

1

p
− 1

n
.

Moreover, there is a constant k = k(n, p) such that

∥u∥p∗ ≤ k∥∇u∥p ∀u ∈ W 1,p(Rn).

Lemma 2. Let u be the solution of (1) for n ≥ 3, then there exists a positive
constant K such that ∫

|u|2dx ≤ K2(R+ t)2
∫

|∇u|2dx. (5)

Proof. This follows directly from Holder’s inequality, Lemma (1) and the finite
speed of propagation property, thus we have∫

Rn

|u|2dx ≤
[∫

Rn

|u|
2n

n−2 dx
]n−2

n
[∫

B(R+t)

dx
] 2

n ≤ k2[ωn(R+ t)n]2/n∥∇u∥22,

where K = K(k, n, ωn). �

Lemma 3. (Modified Gronwall inequality,[24]) Let ϕ(t) be a non-negative function
on [0,∞) satisfying

ϕ(t) ≤ B1 +B2

∫ t

0

ϕδ(s)ds,

where B1, B2 are positive constants, then ϕ(t) satisfy the inequality

ϕ(t) ≤ B1[1− (δ − 1)B2B
δ−1
1 t]

−1
δ−1 for δ > 1.

Lemma 4. [22] Let y(t) be a continuous non-negative C1 function on [0,∞] which
satisfies

y′(t) ≥ a(t)y(t) + c(t)yr(t), (6)

(i) if a(t) < 0, c(t) > 0 and r > 1, then y(t) satisfies the following inequality

y1−r(t) ≤ e(1−r)
∫ t
0
a(s)ds

[
y
−(r−1)
0 − (r − 1)

∫ t

0

c(s)e(r−1)
∫ s
0
a(τ)dτds

]
(7)
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(ii) and if a(t) ≥ 0, c(t) > 0 and r > 1. we have

y1−r(t) ≤ y1−r
0 − (r − 1)

∫ t

0

c(s)ds,

where y0 = y(0) > 0.

For the nonlinear function f , the damping potential b and the relaxation func-
tion g, we have the following:

(A1) The real valued function f(x, u) with f(x, 0) = 0 is continuous on Rn × R
and such that |f(x, u)| ≤ c1|u|p−1 for the constants c1 > 0 and p > 1.

(A2) The potential b(t, x), satisfy∫
B(R+t)

|b(t, x)|
−n

2−(n−2)(p−2) dx ∈ L∞
loc(JT ) and

∫
B(R+t)

|b(t, x)|n2 dx ∈ L∞
loc(JT )

where JT = (0,∞).

(A3) g is a differentiable function satisfying

g(s) ≥ 0, 1−
∫ ∞

0

g(s)ds = ℓ > 0 and g′(s) ≤ 0 for s ≥ 0.

We now define the modified energy functional E(t) associated to problem (1) by

E(t) : =
1

2
∥ut∥2 +

1

2

[
1−

∫ t

0

g(s)ds
]
∥∇u∥22 +

1

2
(g ◦ ∇u)−

∫
Rn

∫ u

0

f(·, y)dydx

(8)

and use the following notation for easy representation

(g ◦ ∇u) :=

∫ t

0

g(t− s)∥∇u(t)−∇u(s)∥22ds.

For the functional E(t), we state the following lemma.

Lemma 5. Suppose that the assumptions (A1) to (A3) hold. Let u be a solution of
the problem (1), then for t ≥ 0, the energy functional E(t) satisfies

E′(t) ≤ −
∫ t

0

b(t, x)|ut|2dx− 1

2
g(t)∥∇u∥22 +

1

2

(
g′ ◦ ∇u

)
. (9)

Moreover, we have
E(t) ≤ E(0). (10)

Proof. By multiplying (1) by ut and integrating over Rn, we obtain the estimate
(9) for any regular solution. Thus by using density arguments, we get the desired
result. �

3. Local Existence

In this section, we consider the existence of a weak solution to (1) in the maximal
interval [0, T ] for T < ∞, using the Galerkin approximation technique.

Theorem 1. Suppose that the assumptions (A1) - (A3) hold, and let 2 < p ≤ 2(n−1)
n−2

for n ≥ 3, then there exist a unique solution

u ∈ C([0, T );H1(Rn)) and ut ∈ C([0, T );L2(Rn)),

with initial data u0 ∈ H1(Rn) and u1 ∈ L2(Rn) having compact support for T small
enough.
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Proof. First, we assume the sequence of functions (wj)j∈N to be a basis in H1(Rn)
which is also orthonormal in L2(Rn) and consider weak solution of the form

un(t) =

n∑
j=1

ajn(t)wj , (11)

which satisfies the following approximate problem corresponding to (1):

⟨un
tt, wj⟩+ ⟨[∇un−

∫ t

0

g(t− s)∇un(s)ds],∇wj⟩+ ⟨b(t, ·)un
t , wj⟩− ⟨f(·, un), wj⟩ = 0,

(12)
for wj ∈ H1(Rn) with initial conditions

un(0) = un
0 ≡

n∑
j=1

djnwj → u0 strongly in H1(Rn) as n → ∞ (13)

and

un
t (0) = un

1 ≡
n∑

j=1

cjnwj → u1 strongly in L2(Rn) as n → ∞, (14)

where ajn(t) = ⟨un(t), wj⟩, djn = ⟨un
0 , wj⟩, and cjn = ⟨un

1 , wj⟩. Since the coeffi-
cients are continuous, then there exist a solution un(t) for the system (12) -(14)
and for some interval [0, tn) where 0 < tn < T . We use the a-priori estimates below
to show that the solution is bounded on the whole interval [0, T ].

Set wj = un
t (t) in (12) and using assumption (A1), the resulting equation is

d

dt

[1
2
∥un

t ∥2+
1

2

[
1−

∫ t

0

g(s)ds
]
∥∇un∥22 +

1

2
(g ◦ ∇un)

]
+

∫
Rn

b(t, ·)|un
t |2dx

≤ c1

∫
Rn

|un|p−1|un
t |dx− 1

2
g(t)∥∇un∥22 +

1

2

(
g′ ◦ ∇un

)
.

(15)

From assumption (A3), the second term and third term on the right hand side of
(15) are negative, and for the first term on the right hand side of (15), using Holder
and Young’s inequality, we obtain∫

Rn

|un|p−1|un
t |dx

≤
[∫

Rn

b(t, x)|un
t |2dx

] 1
2
[∫

Rn

b(t, x)−1|un|2(p−1)dx

] 1
2

≤
[∫

Rn

b(t, x)|un
t |2dx

] 1
2

[[∫
Rn

|un|
2n

n−2 dx
] (p−1)(n−2)

n
[ ∫

B(R+t)

|b(t, x)|
−n

2−(n−2)(p−2) dx
] 2−(n−2)(p−2)

n

] 1
2

≤ ϵ1

∫
Rn

b(t, x)|un
t |2dx+ C(ϵ1)k

2∥∇u∥2(p−1)
2

[∫
B(R+t)

|b(t, x)|
−n

2−(n−2)(p−2) dx
] 2−(n−2)(p−2)

n
,

(16)

where from assumption (A2), supt∈[0,T ]

[∫
B(R+t)

|b(t, x)|
−n

2−(n−2)(p−2) dx
] 2−(n−2)(p−2)

n ≤
K0. Therefore, employing the estimate (16) in (15), we obtain

d

dt

[1
2
∥un

t ∥2 +
1

2

[
1−

∫ t

0

g(s)ds
]
∥∇un∥22 +

1

2
(g ◦ ∇un)

]
+ (1− ϵ1)

∫
Rn

b(t, ·)|un
t |2dx ≤ c1K0C(ϵ1)∥∇u∥2(p−1)

2 ,

(17)
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where we choose ϵ1 < 1. Furthermore, integrating (17) over t for t ∈ [0, T ] and
setting

Hn(t) =
1

2
∥un

t ∥2 +
1

2

[
1−

∫ t

0

g(s)ds
]
∥∇un∥22 +

1

2
(g ◦ ∇un)

+ [1− ϵ1]

∫ t

0

∫
Rn

b(t, ·)|un
t |2dxds,

(18)

we have that there exists a positive constant K1 independent of n ∈ N such that
(17) yields

Hn(t) ≤ Hn(0) +K1

∫ t

0

Hp−1
n (s)ds, (19)

for t ∈ [0, T ]. And applying Lemma 3, we get

Hn(t) ≤ Hn(0)
[
1− (p− 2)K1Hp−2

n (0)t
] −1

p−2

, p > 2. (20)

Therefore, from (18) and (20), there exist a positive constant K2 independent of
n ∈ N such that the following estimates hold

∥un
t ∥2 ≤ K2, (21)

∥∇un∥22 ≤ K2, (22)

and ∫ t

0

∫
Rn

b(t, ·)|un
t |2dxds ≤ K2 (23)

Setting v = wj in (12), we have

|⟨un
tt, v⟩| ≤ |⟨[∇un+

∫ t

0

g(t−s)∇un(s)ds],∇v⟩|+|⟨b(t, ·)un
t , v⟩|+|⟨f(·, un), v⟩|. (24)

Now, for the last term on the right hand side of (24), using Holder’s inequality and
(22), we have

|⟨f(·, un), v⟩| ≤ ∥f(·, un(t))∥p′∥v∥p ≤ K3∥f(·, un(t))∥p′∥v∥1,2 (25)

and from (22) and assumption (A1), we get

∥f(·, un(t))∥p′ ≤ c2∥un(t)∥p−1
p ≤ K4∥∇un(t)∥p−1

2 ≤ K5 for t ∈ [0, T ]. (26)

For the second term on the right hand side of (24), using Hölder and Sobolev
inequalities, and assumption (A2), we have the estimate

|⟨b(t, ·)un
t , v⟩| ≤

[∫
Rn

b(t, ·)|un
t |2dx

] 1
2
[ ∫
B(R+t)

|b(t, x)|
n
2 dx

] 1
n ∥v∥ 2n

n−2

≤ K6

[∫
Rn

b(t, ·)|un
t |2dx

] 1
2 ∥v∥1,2.

(27)

Now, substituting the estimates (25), (27) in (24) and using Hölder’s inequality for
the first term on the right hand side of (24), we have the following estimate

|⟨un
tt, v⟩| ≤ K7

(
∥∇un(t)∥2 +

∫ t

0

g(t− s)∥∇un(s)∥2ds+ ∥f(·, un(t))∥p′

+
[∫

Rn

b(t, ·)|un
t |2dx

] 1
2
)
∥v∥1,2
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and thus, using the estimates (22) and (26), we obtain

∥un
tt(t)∥−1,2 ≤ K8

([∫
Rn

b(t, ·)|un
t |2dx

] 1
2

+

∫ t

0

g(t− s)∥∇un(s)∥2ds+ 1
)
.

By applying Hölder’s inequality, integrating the resulting estimate over t for t ∈
[0, T ] and employing the estimate (22), (23) and the assumption on g, we obtain∫ t

0

∥un
tt(t)∥2−1,2 dt ≤ K9

∫ t

0

(∫
Rn

b(t, ·)|un
t |2dx+ ∥∇un(t)∥22 + 1

)
dt ≤ K10,

for t ∈ [0, T ]. Therefore, for any T > 0 we have that the nonlinear terms are
uniformly bounded on [0, T ] and it follows that the solution un(t) of (12) exist on
[0, T ] for each n.

Hence from the estimates above, we can obtain a subsequence uk of un and pass
the limit in the approximate problem to obtain a weak solution satisfying

(b1) uk(t) → u(t) weakly-star in L∞(
[0, T ];H1(Rn)

)
(b2) uk

t (t) → ut(t) weakly in L∞(
[0, T ];L2(Rn)

)
(b3) uk

tt(t) → utt(t) weakly-star in L2
(
[0, T ];H1(Rn)

)
(b4) f(·, uk(t)) → ϕ(t) weakly-star in L∞(

[0, T ];Lp′
(Rn)

)
(b5) |b(t, ·)| 12uk

t → |b(t, ·)| 12ut weakly in L2
(
[0, T ]× Rn

)
,

Now, letting n → ∞ in (12) and using (b1) - (b5), we obtain∫ T

0

[(
utt, v

)
+
(
[∇u−

∫ t

0

g(t− s)∇u(s)ds],∇v
)
+
(
b(t, ·)ut, v

)
−

(
ϕ, v

)]
dt = 0,

for all v ∈ L2([0, T ];H1(Rn)). The proof for f(·, un) = ϕ is the same as in [30], so
we omit it. �

4. Blow up

In this section, we consider blow up of solution to (1) having negative initial
energy. Our technique follows the one in [22]. however we employ Lemma 4 in
obtaining the blow up estimate of solution to (1).

First, we define the function H(t) by

H(t) := −E(t), (28)

then from (8), we have

0 < H(0) ≤ H(t) ≤
∫
Rn

∫ u

0

f(·, y)dydx ≤ c1
p
∥u∥pp. (29)

Moreover, from (9) the derivative H ′(t) satisfy

H ′(t) =

∫ t

0

b(t, x)|ut|2dx+
1

2
g(t)∥∇u∥22 −

1

2

(
g′ ◦ ∇u

)
. (30)

Furthermore, for the Cauchy problem (1), we define the function L(t) by

L(t) := λ(t)H1−ϱ(t) + µβ(t)

∫
Rn

uutdx, (31)

for suitable choice of ϱ satisfying

0 < ϱ =
p− 2

2p
, (32)
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where λ and β are positive functions depending on the support radius R and sat-
isfying the following conditions:

l1 : λ′(t) ≥ 0

l21 : β(t)λ′(t)− λ(t)β′(t) ≥ 0 and β′(t)
β(t) < 0

or
l22 : β(t)λ′(t)− λ(t)β′(t) ≥ 0 and β′(t)

β(t) ≥ 0

l3 : λ(t) ≥ δR(t)β(t)
where

δ
R
(t) =

[ ∫
B(R+t)

|b(t, x)|
p

p−2 dx
] p−2

p

,

such that one of the following

l41 : D(t) :=
∫∞
0

ϕ(s)−1
[β(s)
λ(s)

] 2p
p+2 ds = ∞

or
l42 : D(t) :=

∫∞
0

β(s)
[
ϕ(s)λ(s)

2p
p+2

]−1
ds = ∞

l51 : D(t) :=
∫∞
0

ϕ(s)−1
[β(s)
λ(s)

] 2p
p+2 ds < ∞

or
l52 : D(t) :=

∫∞
0

β(s)
[
ϕ(s)λ(s)

2p
p+2

]−1
ds < ∞

is satisfied for ϕ(t) = max{1,
[
(R+ t)

n(p−2)
2p δ−1

R

] 1
1−ϱ }.

The weighted functions λ(t) and β(t) are used here to compensate for the lack
of L2 ↪→ Lp injection arising as a result of the unboundedness of the domain for
0 ≤ 2 < p.

Theorem 2. Let u(t, x) be a solution of the problem (1) with compact support
in the ball B(R) and suppose that the assumptions (l1), (l21), (l3) and (l41) are
satisfied. In addition, assume that f(·, u) satisfies
(B1)

∫
Rn uf(·, u)dx− q

∫
Rn

∫ u

0
f(·, y)dydx ≥ ρ0∥u∥pp,

(B2)
∫∞
0

g(s)ds ≤ q−2
q−1 ,

for positive constants ρ0 and q with q ∈ (2, p). Then no weak solution of (1) with
compact support and satisfying E(0) < 0 and

∫
B(R)

u0u1dx > 0 can exist on the

whole of [0,∞).

Proof. From (31), we have that the derivative of L(t) yields

L′(t) =λ′(t)H1−ϱ(t) + µβ′(t)

∫
Rn

uutdx+ λ(t)(1− ϱ)H−ϱ(t)H ′(t)

+ µβ(t)∥ut∥2 + µβ(t)

∫
Rn

uutt

(33)

and using the equation (1), we obtain

L′(t) = λ′(t)H1−ϱ(t) + µβ′(t)

∫
Rn

uutdx+ λ(t)(1− ϱ)H−ϱ(t)H ′(t)

+ µβ(t)∥ut∥2 − µβ(t)∥∇u∥2 + µβ(t)

∫
Rn

uf(·, u)dx

− µβ(t)

∫
Rn

b(t, x)utudx+ µβ(t)

∫ t

0

g(t− s)

∫
Rn

∇u(s)∇u(t)dxds.

(34)
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The second to the last term in (34), can be estimated using Holder’s inequality to
get

∫
Rn

b(t, x)utudx ≤
[ ∫

B(R+t)

|b(t, x)|
p

p−2 dx
] p−2

2p
[∫

Rn

b(t, x)|ut|2dx
] 1

2 ∥u∥p

≤
[
δR(t)

∫
Rn

b(t, x)|ut|2dx
] 1

2 ∥u∥
p
2
p ∥u∥

2−p
2

p .

Hence, using Young’s inequality and (29), it follows that∫
Rn

b(t, x)utudx ≤C(δ1)K11H
−ϱ(t)δR(t)

∫
Rn

b(t, x)|ut|2dx

+ δ1K11H
−ϱ(0)∥u∥pp,

(35)

where K11 = K11(c1, p, ϱ). For the last term on the right hand side of (34), using
Cauchy-Schwarz inequality we obtain

∫ t

0

g(t− s)

∫
Rn

∇u(s)∇u(t)dxds

= −
∫ t

0

g(t− s)

∫
Rn

|∇u(t)−∇u(s)|∇u(t)dxds+

∫ t

0

g(s)ds

∫
Rn

|∇u|2dx

≥ −1

2

∫ t

0

g(s)ds∥∇u∥22 −
1

2
(g ◦ ∇u) +

∫ t

0

g(s)ds∥∇u∥22.

(36)

Therefore, using the estimate (35) and (36) in (34), we obtain

L′(t) ≥λ′(t)H1−ϱ(t) + µβ′(t)

∫
Rn

uutdx+ λ(t)(1− ϱ)H−ϱ(t)H ′(t)

+ µβ(t)∥ut∥2 − µβ(t)
(
1− 1

2

∫ t

0

g(s)ds
)
∥∇u∥22 + µβ(t)

∫
Rn

uf(·, u)dx

− C(δ1)K11H
−ϱ(t)µβ(t)δR(t)

∫
Rn

b(t, x)|ut|2dx

− δ1K11H
−ϱ(0)µβ(t)∥u∥pp −

µβ(t)

2
(g ◦ ∇u).

(37)

From the energy identity,

q

∫
Rn

∫ u

0

f(·, y)dydx =
q

2
∥ut∥2 +

q

2

[
1−

∫ t

0

g(s)ds
]
∥∇u∥22 +

q

2
(g ◦ ∇u) + qH(t),

for 2 < q < p. Then, using assumption (B1), we obtain

∫
Rn

uf(·, u)dx ≥ q

2
∥ut∥2 +

q

2

[
1−

∫ t

0

g(s)ds
]
∥∇u∥22 +

q

2
(g ◦∇u) + qH(t) + ρ0∥u∥pp.

(38)
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Therefore, we have

L′(t) ≥ λ′(t)H1−ϱ(t) + µβ′(t)

∫
Rn

uutdx+ µβ(t)(1 + q
2
)∥ut∥2 + qµβ(t)H(t)

+ µβ(t)
[
ρ0 − δ1K11H

−ϱ(0)
]
∥u∥pp +

µβ(t)

2

[
(q − 2)− (q − 1)

∫ t

0

g(s)ds
]
∥∇u∥22

+
[
λ(t)(1− ϱ)− C(δ1)K11µβ(t)δR(t)

]
H−ϱ(t)

∫
Rn

b(t, x)|ut|2dx

+
µβ(t)[q − 1]

2
(g ◦ ∇u).

(39)

We choose µ small enough such that

λ(t)(1− ϱ) ≥ µC(δ1)K11β(t)δR
(t). (40)

Also, from the definition of L(t) and assumption (l21), we have that

µβ′(t)

∫
Rn

uutdx+ λ′(t)H1−ϱ(t)

=
[β′(t)

β(t)

]
L(t) + β(t)

[β(t)λ′(t)− λ(t)β′(t)

β2(t)

]
H1−ϱ(t)

≥
[β′(t)

β(t)

]
L(t).

(41)

Hence, using the estimate (40) - (41) and assumption (B2) in (39), we obtain

L′(t) ≥
[β′(t)

β(t)

]
L(t) + µβ(t)

[
ρ0 − δ1K11H

−ϱ(0)
]
∥u∥pp +

µβ(t)[q − 1]

2
(g ◦ ∇u)

+ µβ(t)(1 + q
2
)∥ut∥2 + qµβ(t)H(t).

(42)

Therefore, if we choose δ1 small enough such that ρ0 ≥ δ1K11H
−ϱ(0), then there

exist a positive constant Kµ such that (42) satisfies

L′(t)−
[β′(t)

β(t)

]
L(t) ≥ Kµβ(t)

[
∥ut∥2 + (g ◦ ∇u) + ∥u∥pp +H(t)

]
, (43)

where Kµ := µmin{q, [ρ0 − δ1K11H
−ϱ(0)], (1 + q

2 ),
(q−1)

2 }. Hence, since

L(0) = λ(0)H1−ϱ(0) + µβ(0)

∫
B(R)

u0u1dx > 0,

then from (43), we have that L(t) is an increasing function for t ≥ 0, satisfying

L(t) ≥ β(t)

β(0)
L(0) > 0, ∀t ≥ 0.

On the other hand

L
1

1−ϱ (t) =
[
λ(t)H1−ϱ(t) + µβ(t)

∫
Rn

uutdx
] 1

1−ϱ

≤2
1

1−ϱ

[[
λ(t)

] 1
1−ϱH(t) +

[
µβ(t)

] 1
1−ϱ

[∫
Rn

uutdx
] 1

1−ϱ
] (44)

and using Hölder inequality, we get∣∣∣∫
Rn

uutdx
∣∣∣ ≤ [ωn(R+ t)n]

(p−2)
2p ∥u∥p∥ut∥2,
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where ωn is the volume of the unit sphere in Rn. Then by Young’s inequality, we
have [

∥u∥p∥ut∥2
] 1

1−ϱ ≤ K12

[
∥u∥

ε
1−ϱ
p + ∥ut∥

θ
1−ϱ

]
, (45)

where K12 = K12(ε, θ, ϱ) and 1
ε + 1

θ = 1. Now choosing θ = 2(1 − ϱ) and setting
ε

1−ϱ = 2
1−2ϱ ≤ p, then (45) yields∣∣∣∫

Rn

uutdx
∣∣∣ 1
1−ϱ ≤ K13(R+ t)

n(p−2)
2p(1−ϱ)

[
∥u∥pp + ∥ut∥2

]
. (46)

Substituting (46) in (44), we have

L
1

1−ϱ (t) ≤2
1

1−ϱ

[[
λ(t)

] 1
1−ϱH(t) +K13

[
(R+ t)

n(p−2)
2p µβ(t)

] 1
1−ϱ

[
∥u∥pp + ∥ut∥2

]]
(47)

and from (40), the estimate (47) yields

L
1

1−ϱ (t) ≤
[
2λ(t)]

1
1−ϱ

[
H(t) +K14

[
(R+ t)

n(p−2)
2p δ−1

R

] 1
1−ϱ

[
∥u∥pp + ∥ut∥2

]]
, (48)

where K14 = K14(K13, K11, ϱ, µ, C(δ1), H(0)).

Define ϕ(t) := max{1, K14

[
(R+ t)

n(p−2)
2p δ−1

R

] 1
1−ϱ }, then we have from (48) that

L
1

1−ϱ (t) ≤
[
2λ(t)]

1
1−ϱϕ(t)

[
H(t) + ∥ut∥2 + ∥u∥pp

]
. (49)

Now combining (43) and (49), we have the following estimate

L′(t)− β′(t)[β(t)]−1L(t) ≥ K∗
µβ(t)

[[
λ(t)]

1
1−ϱϕ(t)

]−1
L

1
1−ϱ (t), (50)

where K∗
µ = 2−

1
1−ϱKµ. From Lemma 4, we have that (50) satisfies the following

inequality

L(t) ≥
[
β(t)

β0

]L− ϱ
1−ϱ

0 −
[
ϱK∗

µβ
− ϱ

1−ϱ

0

1− ϱ

] ∫ t

0

ϕ(s)−1
[
β(s)

λ(s)

] 1
1−ϱ

ds


−(1−ϱ)

ϱ

, (51)

with ϱ = p−2
2p . The desired result follows. �

Theorem 3. Let u(t, x) be a solution of the problem (1) and suppose that the
assumptions (l1), (l21), (l3) and (l51) are satisfied. In addition, assume that f(u)
satisfies

(B1)
∫
Rn uf(·, u)dx− q

∫
Rn

∫ u

0
f(·, y)dydx ≥ ρ0∥u∥pp,

(B2)
∫∞
0

g(s)ds ≤ q−2
q−1 ,

for positive constants q ∈ (2, p). Then, there exist a finite time T∗ satisfying

D(T∗) ≤
1− ϱ

ϱK∗
µ

[
β0/L0

] ϱ
1−ϱ

,

where D(t) is the function defined in (l51) and ϱ = p−2
2p such that the solution u of

(1) with compact support and satisfying E(0) < 0 and
∫
B(R)

u0u1dx > 0 blows up.

The proof follows from that of Theorem 2.

Theorem 4. Let u(t, x) be a solution of the problem (1) and suppose that the
assumptions l21 and l41 in Theorem 2 are replaced by l22 and l42 , then no weak
solution of (1) with compact support and satisfying E(0) < 0 and

∫
B(R)

u0u1dx > 0

can exist on the whole of [0,∞).
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In addition if the assumptions l21 and l51 in Theorem 3 are replaced by l22 and l52 ,
Then there exist a finite time T∗ such that the solution of (1) with compact support
and satisfying E(0) < 0 and

∫
B(R)

u0u1dx > 0 blows up.

The proof can be deduced from the proof of Theorem 2, where in this case, the
estimate for the blow up time is given by

L(t) ≥
[
L

−ϱ
1−ϱ

0 −
[ ϱK∗

µ

1− ϱ

] ∫ t

0

β(s)
[
ϕ(s)λ(s)

1
1−ϱ

]−1
ds

]−(1−ϱ)
ϱ

. (52)

5. Applications

For b(t, x) = (1+ t)k, k > 0, we have that δ
R
(t) = C(1+ t)k(R+ t)

n(p−2)
p . Then,

from assumption (l3), it follows that

λ(t)

β(t)
≈ C(1 + t)k(R+ t)

n(p−2)
p (53)

and the assumption (l1) is satisfied for a+ kp+n(p−2)
p > 1 where β(t) = (R+ t)a.

Moreover, for k > −n(p−2)
2p , max

[
1, K14

[
(R + t)

n(p−2)
2p δ−1

R
(t)

] 1
1−ϱ

]
= 1. Therefore

we have that ∫ t

0

ϕ(s)−1
[β(s)
λ(s)

] 1
1−ϱ ds = K15

∫ t

0

(1 + s)−
2[kp+n(p−2)]

p+2 ds (54)

The condition (l41) holds for p < 2(2n+1)
2(n+k)−1 , and the blow up to Theorem 2 holds in

the interval.
2n

n+ k + a
< p ≤ min

{ 2(2n+ 1)

2(n+ k)− 1
,

2n

n− 2

}
(55)

In addition, the condition (l51) holds for
2(2n+1)
2(n+k)−1 < p and the blow up Theorem 3

is satisfied for

max
{ 2n

n+ k + a
,

2(2n+ 1)

2(n+ k)− 1

}
< p ≤ 2n

n− 2
(56)

For the case k < −n(p−2)
2p , k < 0 and K14 large enough, that is K14 > 1 say, we

have that max
[
1, K14

[
(R + t)

n(p−2)
2p δ−1

R
(t)

] 1
1−ϱ

]
= K14

[
(R + t)

n(p−2)
2p δ−1

R
(t)

] 1
1−ϱ ≈

K16(1 + t)
−[n(p−2)+2kp]

p+2

Thus, we have that∫ t

0

ϕ(s)−1
[β(s)
λ(s)

] 1
1−ϱ ds = K17

∫ t

0

(1 + s)
−n(p−2)]

p+2 ds (57)

The condition (l41) holds for p < 2(n+1)
n−1 , and the blow up to Theorem 2 holds in

the interval.
2n

n+ k + a
< p ≤ min

{2(n+ 1)

n− 1
,

2n

n− 2

}
(58)

In addition, the condition (l51) holds for
2(n+1)
n−1 < p and the blow up Theorem 3 is

satisfied for

max
{ 2n

n+ k + a
,
2(n+ 1)

n− 1

}
< p ≤ 2n

n− 2
(59)
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Note that for β(t) = 1, the estimates (55) - (59) hold with a = 0

For b(t, x) = C(1 + t)k|x|q, we have that

δ
R
(t) =C(1 + t)k

[∫
B(R+t)

|x|
qp

p−2 dx
] p−2

p

=C(1 + t)k+q(R+ t)
n(p−2)

p

(60)

and the argument follows as before with k replaced by k + q.
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