A GEOMETRIC INTERPRETATION TO FIXED-POINT THEORY ON S_{b}-METRIC SPACES

H. AYTIMUR AND N. TAŞ

Abstract

In this paper we present some fixed-figure theorems as a geometric approach to the fixed-point theory when the number of fixed points of a self-mapping is more than one. To do this, we modify the Jleli-Samet type contraction and define new contractions on S_{b}-metric spaces. Also, we give some necessary examples to show the validity of our theoretical results.

1. Introduction and background

Classical fixed-point theory started with the Banach fixed-point theorem 3. This theory is one of the useful tool of mathematical studies and is an applicable area to topology, analysis, geometry, applied mathematics, engineering etc. Metric fixed-point theory has been studied and generalized with various aspects. One of these aspects is to generalize the used contractive condition (for example, see [5]). Another aspect is to generalize the used metric space such as, a b-metric space, an S-metric space and an S_{b}-metric space as follows:

Definition 1.1. 2] Let X be a nonempty set, $b \geq 1$ a given real number and $d: X \times X \rightarrow[0, \infty)$ a function satisfying the following conditions for all $x, y, z \in X:$
(b1) $d(x, y)=0$ if and only if $x=y$,
(b2) $d(x, y)=d(y, x)$,
(b3) $d(x, z) \leq b[d(x, y)+d(y, z)]$.
Then the function d is called a-metric on X and the pair (X, d) is called a b-metric space.

Definition 1.2. [20] Let X be a nonempty set and $S: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying the following conditions for all $x, y, z, a \in X$:
$(S 1) S(x, y, z)=0$ if and only if $x=y=z$,
(S2) $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$.
Then S is called an S-metric on X and the pair (X, S) is called an S-metric space.

[^0]Definition 1.3. 21] Let X be a nonempty set and $b \geq 1$ be a given real number. A function $S_{b}: X \times X \times X \rightarrow[0, \infty)$ is said to be S_{b}-metric if and only if for all $x, y, z, a \in X$ the following conditions are satisfied:
$\left(S_{b} 1\right) S_{b}(x, y, z)=0$ if and only if $x=y=z$,
$\left(S_{b} 2\right) S_{b}(x, y, z) \leq b\left[S_{b}(x, x, a)+S_{b}(y, y, a)+S_{b}(z, z, a)\right]$.
The pair $\left(X, S_{b}\right)$ is called an S_{b}-metric space.
An S_{b}-metric space is also a generalization of an S-metric space because every S-metric is an S_{b}-metric with $b=1$. But the converse of this statement is not always true as seen in the following example.

Example 1.1. 22] Let $X=\mathbb{R}$ and the function S_{b} be defined by

$$
S_{b}(x, y, z)=S(x, y, z)^{2}=\frac{1}{16}(|x-y|+|y-z|+|x-z|)^{2}
$$

for all $x, y, z \in \mathbb{R}$. Then the function S_{b} is an S_{b}-metric with $b=4$, but it is not an S-metric.

We see that the relationships between a b-metric and an S_{b}-metric as follows:
Lemma 1.1. [22] Let $\left(X, S_{b}\right)$ be an S_{b}-metric space, S_{b} be a symmetric S_{b}-metric with $b \geq 1$ and the function $d: X \times X \rightarrow[0, \infty)$ be defined by

$$
d(x, y)=S_{b}(x, x, y)
$$

for all $x, y \in X$. Then d is a b-metric on X.
Lemma 1.2. 22] Let (X, d) be a b-metric space with $b \geq 1$ and the function $S_{b}: X \times X \times X \rightarrow[0, \infty)$ be defined by

$$
S_{b}(x, y, z)=d(x, z)+d(y, z)
$$

for all $x, y, z \in X$. Then S_{b} is an S_{b}-metric on X.
Many authors have been studied various fixed-point results on different generalized metric spaces (for example, see [1, [7], 9] and the references therein).

Recently, as a geometric generalization of a fixed-point theory, fixed-circle problem has been studied. This problem was occurred in 12 and investigated some solutions to the this problem using different approaches (for example, see [8, [11], [12, [13, 14, 16, 17, 18, [23] and the references therein). Especially, this problem was studied on S_{b}-metric space in [13] and obtained some fixed-circle results using the following basic definitions.

Definition 1.4. [13] Let $\left(X, S_{b}\right)$ be an S_{b}-metric space with $b \geq 1$ and $x_{0} \in X$, $r \in(0, \infty)$. The circle centered at x_{0} with radius r is defined by

$$
C_{x_{0}, r}^{S_{b}}=\left\{x \in X: S_{b}\left(x, x, x_{0}\right)=r\right\}
$$

Definition 1.5. [13] Let $\left(X, S_{b}\right)$ be an S_{b}-metric space with $b \geq 1, C_{x_{0}, r}^{S_{b}}$ be a circle on X and $T: X \rightarrow X$ be a self-mapping. If $T x=x$ for all $x \in C_{x_{0}, r}^{S_{b}}$ then the circle $C_{x_{0}, r}^{S_{b}}$ is called as the fixed circle of T.

The notion of a fixed figure was defined as a generalization of the notions of a fixed circle and a fixed disc as follows:

A geometric figure \mathcal{F} (a circle, an ellipse, a hyperbola, a Cassini curve etc.) contained in the fixed point set $F i x(T)=\{x \in X: x=T x\}$ is called a fixed figure (a fixed circle, a fixed ellipse, a fixed hyperbola, a fixed Cassini curve, etc.) of
the self-mapping T (see [15]). For this purpose, some fixed-figure theorems were obtained using different aspects (see, 4], [6], [15] and [25] for more details).

By the above motivation, the main of this paper is to obtain some fixed-figure results on an S_{b}-metric space. To do this, we define new Jleli-Samet type contractions. Using these new contractions, we prove fixed-disc results, fixed-ellipse results, fixed-hyperbola results, fixed-Cassini curve results and fixed-Apollonius circle results on an S_{b}-metric space. Also, we give an example to show the validity of our obtained theorems.

2. Main Results

In this section, we present some fixed-figure results on an S_{b}-metric space. Before these results, we give the following definitions:

Definition 2.1. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space with $b \geq 1$ and $x_{0}, x_{1}, x_{2} \in X$, $r \in[0, \infty)$.
(1) The disc centered at x_{0} with radius r is defined by

$$
D_{x_{0}, r}^{S_{b}}=\left\{x \in X: S_{b}\left(x, x, x_{0}\right) \leq r\right\} .
$$

(2) The ellipse $E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ is defined by

$$
E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x \in X: S_{b}\left(x, x, x_{1}\right)+S_{b}\left(x, x, x_{2}\right)=r\right\}
$$

(3) The hyperbola $H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ is defined by

$$
H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x \in X:\left|S_{b}\left(x, x, x_{1}\right)-S_{b}\left(x, x, x_{2}\right)\right|=r\right\}
$$

(4) The Cassini curve $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ is defined by

$$
C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x \in X: S_{b}\left(x, x, x_{1}\right) S_{b}\left(x, x, x_{2}\right)=r\right\}
$$

(5) The Apollonius circle $A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ is defined by

$$
A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x \in X-\left\{x_{2}\right\}: \frac{S_{b}\left(x, x, x_{1}\right)}{S_{b}\left(x, x, x_{2}\right)}=r\right\}
$$

Now, we give the following example.
Example 2.1. Let (X, d) be a metric space and let us consider the S_{b}-metric space $\left(X, S_{b}\right)$ with the S_{b}-metric $S_{b}: X \times X \times X \rightarrow[0, \infty)$ defined as

$$
S_{b}(x, y, z)=[d(x, y)+d(y, z)+d(x, z)]^{p}
$$

for all $x, y, z \in X$ and $p>1$ [22]. Let us consider $X=\mathbb{R}^{3}$, the metric d be a usual metric with $d(x, y)=|x-y|$ and $p=3$. If we take $x_{0}=(1,1,1)$ and $r=40$, then we obtain the circle $C_{x_{0}, r}^{S_{b}}$ as

$$
\begin{aligned}
C_{x_{0}, r}^{S_{b}} & =\left\{x \in \mathbb{R}^{3}: S_{b}\left(x, x, x_{0}\right)=40\right\} \\
& =\left\{x \in \mathbb{R}^{3}:|x-1|^{3}+|y-1|^{3}+|z-1|^{3}=5\right\}
\end{aligned}
$$

and the disc $D_{x_{0}, r}^{S_{b}}$ as

$$
\begin{aligned}
D_{x_{0}, r}^{S_{b}} & =\left\{x \in \mathbb{R}^{3}: S_{b}\left(x, x, x_{0}\right) \leq 40\right\} \\
& =\left\{x \in \mathbb{R}^{3}:|x-1|^{3}+|y-1|^{3}+|z-1|^{3} \leq 5\right\}
\end{aligned}
$$

(A) The circle $C_{x_{0}, r}^{S_{b}}$

(B) The disc $D_{x_{0}, r}^{S_{b}}$

Figure 1. The geometric figures of the circle and the disc

Also, if we take $x_{1}=(1,1,1), x_{1}=(-1,-1,-1)$ and $r=400$, then we obtain the ellipse $E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ as

$$
\begin{aligned}
E_{r}^{S_{b}}\left(x_{1}, x_{2}\right) & =\left\{x \in \mathbb{R}^{3}: S_{b}\left(x, x, x_{1}\right)+S_{b}\left(x, x, x_{2}\right)=400\right\} \\
& =\left\{\begin{array}{c}
x \in \mathbb{R}^{3}:(|x-1|+|x+1|)^{3}+(|y-1|+|y+1|)^{3} \\
+(|z-1|+|z+1|)^{3} \leq 50
\end{array}\right\}
\end{aligned}
$$

Figure 2. The ellipse $E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$

If we take $x_{1}=(1,1,1), x_{1}=(-1,-1,-1)$ and $r=40$, then we obtain the hyperbola $H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ as
the Cassini curve $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ as

$$
\begin{aligned}
C_{r}^{S_{b}}\left(x_{1}, x_{2}\right) & =\left\{x \in \mathbb{R}^{3}: S_{b}\left(x, x, x_{1}\right) S_{b}\left(x, x, x_{2}\right)=40\right\} \\
& =\left\{\begin{array}{c}
x \in \mathbb{R}^{3}:(|x-1||x+1|)^{3}+(|y-1||y+1|)^{3} \\
+(|z-1||z+1|)^{3} \leq 5
\end{array}\right\}
\end{aligned}
$$

and the Apollonius circle $A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ as

$$
\begin{aligned}
A_{r}^{S_{b}}\left(x_{1}, x_{2}\right) & =\left\{x \in \mathbb{R}^{3}: \frac{S_{b}\left(x, x, x_{1}\right)}{S_{b}\left(x, x, x_{2}\right)}=40\right\} \\
& =\left\{x \in \mathbb{R}^{3}:\left(\frac{|x-1|}{|x+1|}\right)^{3}+\left(\frac{|y-1|}{|y+1|}\right)^{3}+\left(\frac{|z-1|}{|z+1|}\right)^{3} \leq 5\right\} .
\end{aligned}
$$

(A) The hyperbola $H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$

(B) The Cassini curve $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$

(c) The Apollonius circle $A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$

FIGURE 3. The geometric figures of the hyperbola, Cassini curve and Apollonius circle

We give the following definitions of new notions to obtain some fixed-figure results.

Definition 2.2. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space with $b \geq 1$ and $f: X \rightarrow X$ be a self-mapping. A geometric figure \mathcal{F} contained in the fixed point set Fix (f) is called a fixed figure of the self-mapping f.

Definition 2.3. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ a self mapping. If there exists $x_{0} \in X$ such that

$$
S_{b}(x, x, f x)>0 \Rightarrow \varphi\left(S_{b}(x, x, f x)\right) \leq\left[\varphi\left(S_{b}\left(x, x, x_{0}\right)\right)\right]^{\alpha}
$$

for all $x \in X$ where $\alpha \in(0,1)$ and the function $\varphi:(0, \infty) \rightarrow(1, \infty)$ is such that φ is non-decreasing, then f is called Jleli-Samet type $D_{x_{0}}-S_{b}$-contraction.

Theorem 2.1. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ Jleli-Samet type $D_{x_{0}}-S_{b}$-contraction with $x_{0} \in X$ and the number r defined as

$$
\begin{equation*}
r=\inf \left\{S_{b}(x, x, f x): x \neq f x, x \in X\right\} \tag{1}
\end{equation*}
$$

Then f fixes the disc $D_{x_{0}, r}^{S_{b}}$.
Proof. At first, we show $f x_{0}=x_{0}$. On the contrary, let $f x_{0} \neq x_{0}$. Using the Jleli-Samet type $D_{x_{0}}-S_{b}$-contraction hypothesis, we get

$$
\begin{aligned}
\varphi\left(S_{b}\left(x_{0}, x_{0}, f x_{0}\right)\right) & \leq\left[\varphi\left(S_{b}\left(x_{0}, x_{0}, x_{0}\right)\right)\right]^{\alpha} \\
& =[\varphi(0)]^{\alpha},
\end{aligned}
$$

a contradiction. So we get

$$
\begin{equation*}
f x_{0}=x_{0} . \tag{2}
\end{equation*}
$$

To show that f fixes the disc $D_{x_{0}, r}^{S_{b}}$, we consider the following cases:
Case 1: Let $r=0$. Then we have $D_{x_{0}, r}^{S_{b}}=\left\{x_{0}\right\}$ and by the equality [2], we get $f x_{0}=x_{0}$.

Case 2: Let $r>0$ and $x \in D_{x_{0}, r}^{S_{b}}$ be any point such that $x \neq f x$. Using the hypothesis, we obtain

$$
\begin{aligned}
\varphi\left(S_{b}(x, x, f x)\right) & \leq\left[\varphi\left(S_{b}\left(x, x, x_{0}\right)\right)\right]^{\alpha} \\
& \leq[\varphi(r)]^{\alpha} \\
& \leq\left[\varphi\left(S_{b}(x, x, f x)\right)\right]^{\alpha}
\end{aligned}
$$

a contradiction with $\alpha \in(0,1)$. Hence, it should be $f x=x$. Consequently f fixes the disc $D_{x_{0}, r}^{S_{b}}$.

Now we give the following corollary:
Corollary 2.1. If we take $b=1$, then we get Theorem 2.2 in [24].
Definition 2.4. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ a self mapping. If there exists $x_{1}, x_{2} \in X$ such that

$$
S_{b}(x, x, f x)>0 \Rightarrow \varphi\left(S_{b}(x, x, f x)\right) \leq\left[\varphi\left(S_{b}\left(x, x, x_{1}\right)+S_{b}\left(x, x, x_{2}\right)\right)\right]^{\alpha}
$$

for all $x \in X \backslash\left\{x_{1}, x_{2}\right\}$ where $\alpha \in(0,1)$ and the function $\varphi:(0, \infty) \rightarrow(1, \infty)$ is such that φ is non-decreasing, then f is called Jleli-Samet type $E_{x_{1}, x_{2}}-S_{b}$-contraction.

Theorem 2.2. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ Jleli-Samet type $E_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}, x_{2} \in X$ and the number r defined as (1). If $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$, then f fixes the ellipse $E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.
Proof. We consider the following cases:
Case 1: Let $r=0$. Then we have $x_{1}=x_{2}$ and $E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x_{1}\right\}=\left\{x_{2}\right\}$. Using the hypothesis we have $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$.

Case 2: Let $r>0$ and $x \in E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ be any point such that $x \neq f x$. Using the hypothesis we get

$$
\begin{aligned}
\varphi\left(S_{b}(x, x, f x)\right) & \leq\left[\varphi\left(S_{b}\left(x, x, x_{1}\right)+S_{b}\left(x, x, x_{2}\right)\right)\right]^{\alpha} \\
& \leq[\varphi(r)]^{\alpha} \\
& \leq\left[\varphi\left(S_{b}(x, x, f x)\right)\right]^{\alpha}
\end{aligned}
$$

a contradiction with $\alpha \in(0,1)$. Hence it should be $f x=x$. Consequently f fixes the ellipse $E_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Corollary 2.2. If we take $b=1$, then we get fixed ellipse results on an S-metric space.
Definition 2.5. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ a self mapping. If there exists $x_{1}, x_{2} \in X$ such that

$$
S_{b}(x, x, f x)>0 \Rightarrow \varphi\left(S_{b}(x, x, f x)\right) \leq\left[\varphi\left(\left|S_{b}\left(x, x, x_{1}\right)-S_{b}\left(x, x, x_{2}\right)\right|\right)\right]^{\alpha}
$$

for all $x \in X \backslash\left\{x_{1}, x_{2}\right\}$ where $\alpha \in(0,1)$ and the function $\varphi:(0, \infty) \rightarrow(1, \infty)$ is such that φ is non-decreasing, then f is called Jleli-Samet type $H_{x_{1}, x_{2}}-S_{b}$-contraction.
Theorem 2.3. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ Jleli-Samet type $H_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}, x_{2} \in X$ and the number r defined as (1). If $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$ and $r>0$, then f fixes the hyperbola $H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Proof. Let $x \in H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ be any point such that $x \neq f x$. Using the hypothesis we get

$$
\begin{aligned}
\varphi\left(S_{b}(x, x, f x)\right) & \leq\left[\varphi\left(\left|S_{b}\left(x, x, x_{1}\right)-S_{b}\left(x, x, x_{2}\right)\right|\right)\right]^{\alpha} \\
& \leq[\varphi(r)]^{\alpha} \\
& \leq\left[\varphi\left(S_{b}(x, x, f x)\right)\right]^{\alpha}
\end{aligned}
$$

a contradiction with $\alpha \in(0,1)$. Hence it should be $f x=x$. Consequently f fixes the hyperbola $H_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Corollary 2.3. If we take $b=1$, then we get fixed hyperbola results on an S-metric space

Definition 2.6. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ a self mapping. If there exists $x_{1}, x_{2} \in X$ such that

$$
S_{b}(x, x, f x)>0 \Rightarrow \varphi\left(S_{b}(x, x, f x)\right) \leq\left[\varphi\left(S_{b}\left(x, x, x_{1}\right) S_{b}\left(x, x, x_{2}\right)\right)\right]^{\alpha}
$$

for all $x \in X \backslash\left\{x_{1}, x_{2}\right\}$ where $\alpha \in(0,1)$ and the function $\varphi:(0, \infty) \rightarrow(1, \infty)$ is such that φ is non-decreasing, then f is called Jleli-Samet type $C_{x_{1}, x_{2}}-S_{b}$-contraction.

Theorem 2.4. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ Jleli-Samet type $C_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}, x_{2} \in X$ and the number r defined as (1). If $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$, then f fixes the Cassini curve $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Proof. We consider the following cases:
Case 1: Let $r=0$. Then we have $x_{1}=x_{2}$ and $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x_{1}\right\}=\left\{x_{2}\right\}$. Using the hypothesis we have $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$.

Case 2: Let $r>0$ and $x \in C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ be any point such that $x \neq f x$. Using the hypothesis we get

$$
\begin{aligned}
\varphi\left(S_{b}(x, x, f x)\right) & \leq\left[\varphi\left(S_{b}\left(x, x, x_{1}\right) S_{b}\left(x, x, x_{2}\right)\right)\right]^{\alpha} \\
& \leq[\varphi(r)]^{\alpha} \\
& \leq\left[\varphi\left(S_{b}(x, x, f x)\right)\right]^{\alpha}
\end{aligned}
$$

a contradiction with $\alpha \in(0,1)$. Hence it should be $f x=x$. Consequently f fixes the Cassini curve $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Corollary 2.4. If we take $b=1$, then we get fixed Cassini curve results on an S-metric space.

Definition 2.7. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ a self mapping. If there exists $x_{1}, x_{2} \in X$ such that

$$
S_{b}(x, x, f x)>0 \Rightarrow \varphi\left(S_{b}(x, x, f x)\right) \leq\left[\varphi\left(\frac{S_{b}\left(x, x, x_{1}\right)}{S_{b}\left(x, x, x_{2}\right)}\right)\right]^{\alpha}
$$

for all $x \in X \backslash\left\{x_{1}, x_{2}\right\}$ where $\alpha \in(0,1)$ and the function $\varphi:(0, \infty) \rightarrow(1, \infty)$ is such that φ is non-decreasing, then f is called Jleli-Samet type $A_{x_{1}, x_{2}}-S_{b}$-contraction.

Theorem 2.5. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $f: X \rightarrow X$ Jleli-Samet type $A_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}, x_{2} \in X$ and the number r defined as (1). If $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$, then f fixes the Apollonius circle $A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Proof. We consider the following cases:
Case 1: Let $r=0$. Then we have $x_{1}=x_{2}$ and $A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)=\left\{x_{1}\right\}=\left\{x_{2}\right\}$. Using the hypothesis we have $f x_{1}=x_{1}$ and $f x_{2}=x_{2}$.

Case 2: Let $r>0$ and $x \in A_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$ be any point such that $x \neq f x$. Using the hypothesis we get

$$
\begin{aligned}
\varphi\left(S_{b}(x, x, f x)\right) & \leq\left[\varphi\left(\frac{S_{b}\left(x, x, x_{1}\right)}{S_{b}\left(x, x, x_{2}\right)}\right)\right]^{\alpha} \\
& \leq[\varphi(r)]^{\alpha} \\
& \leq\left[\varphi\left(S_{b}(x, x, f x)\right)\right]^{\alpha}
\end{aligned}
$$

a contradiction with $\alpha \in(0,1)$. Hence it should be $f x=x$. Consequently f fixes the Apollonius circle $C_{r}^{S_{b}}\left(x_{1}, x_{2}\right)$.

Corollary 2.5. If we take $b=1$, then we get fixed Apollonius circle results on an S-metric space.

Finally we give the following illustrative example.
Example 2.2. Let $X=[-1,1] \cup\left\{-7,-\sqrt{2}, \sqrt{2}, \frac{7}{3}, 7,8,21\right\}$ and the S-metric defined as

$$
S(x, y, z)=|x-z|+|x+z-2 y|,
$$

for all $x, y, z \in \mathbb{R}[10]$. This S-metric is also an S_{b}-metric with $b=1$. Let us define the function $f: X \rightarrow X$ as

$$
f x=\left\{\begin{array}{ccc}
x & , \quad X-\{8\} \\
7 & , & x=8
\end{array}\right.
$$

for all $x \in X$ and the function $\varphi:(0, \infty) \rightarrow(1, \infty)$ as

$$
\varphi(t)=t+1
$$

for all $t>0$ with $r=2$. Then,
\triangleright The function f is Jleli-Samet type $D_{x_{0}}-S_{b}$-contraction with $\alpha=0.5, x_{0}=0$. Consequently, f fixes the disc $D_{0,2}^{S_{b}}=[-1,1]$.
\triangleright The function f is Jleli-Samet type $E_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}=-\frac{1}{2}, x_{2}=\frac{1}{2}$ and $\alpha=0.5$. Consequently, f fixes the ellipse $E_{2}^{S_{b}}\left(-\frac{1}{2}, \frac{1}{2}\right)=\left[-\frac{1}{2}, \frac{1}{2}\right]$.
\triangleright The function f is Jleli-Samet type $H_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}=-1, x_{2}=1$ and $\alpha=0.9$. Consequently, f fixes the hyperbola $H_{2}^{S_{b}}(-1,1)=\left\{-\frac{1}{2}, \frac{1}{2}\right\}$.
\triangleright The function f is Jleli-Samet type $C_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}=-1, x_{2}=1$ and $\alpha=0.5$. Consequently, f fixes the Cassini curve $C_{2}^{S_{b}}(-1,1)=\{-\sqrt{2}, 0, \sqrt{2}\}$.
\triangleright The function f is Jleli-Samet type $A_{x_{1}, x_{2}}-S_{b}$-contraction with $x_{1}=-7, x_{2}=7$ and $\alpha=0.5$. Consequently, f fixes the Apollonius circle $A_{2}^{S_{b}}(-7,7)=\left\{\frac{7}{3}, 21\right\}$.

3. Conclusion

In this paper, we present some new contractions and some fixed-figure results on an S_{b}-metric space. The obtained results can be considered as some geometric consequences of fixed-point theory. Using these approaches, new geometric generalizations of known fixed-point theorems can be studied on metric and generalized metric spaces.

4. Acknowledgment

The authors would like to thank the anonymous referees for their comments that helped us improve this article.

References

[1] A. S. Babu, T. Dosenovic, M. M. Ali, A. Radenovic and K. P. R. Rao, Some Presic type results in b-dislocated metric spaces, Constr. Math. Anal. 2, 1, 40-48, 2019.
[2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30, 26-37, 1989.
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math. 2, 133-181, 1922.
[4] G. Z. Erçınar, Some geometric properties of fixed points, Ph.D. Thesis, Eskişehir Osmangazi University, 2020.
[5] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014, 38, 1-8, 2014.
[6] M. Joshi, A. Tomar and S. K. Padaliya, Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Appl. Math. E-Notes 21, 225-237, 2021.
[7] E. Karapinar, A short survey on the recent fixed point results on b-metric spaces, Constr. Math. Anal. 1, 1, 15-44, 2018.
[8] N. Mlaiki, N. Özgür and N. Taş, New fixed-circle results related to $F_{c^{\prime}}$-contractive and $F_{c^{-}}$ expanding mappings on metric spaces, arXiv:2101.10770.
[9] M. Nazam, M. Arshad, C. Park, Ö. Acar, S. Yun and G. A. Anastassiou, On solution of a system of differential equations via fixed point theorem, J. Comput. Anal. Appl. 27, 3, 417-426, 2019.
[10] Özgür, N. Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci. (Springer), 11, 1, 7-16, 2017.
[11] N. Y. Özgür and N. Taş, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conference Proceedings 1926, 020048, 2018.
[12] N. Y. Özgür and N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, 4, 1433-1449, 2019.
[13] N. Y. Özgür and N. Taş, Generalizations of Metric Spaces: From the Fixed-Point Theory to the Fixed-Circle Theory, In: Rassias T. (eds) Applications of Nonlinear Analysis. Springer Optimization and Its Applications, vol 134, Springer, Cham, pp. 847-895, 2018.
[14] N. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43, 6, 2794-2805, 2019.
[15] N. Özgür and N. Taş, Geometric properties of fixed points and simulation functions, arXiv:2102.05417.
[16] R. P. Pant, N. Y. Özgür and N. Taş, Discontinuity at fixed points with applications, Bull. Belg. Math. Soc. - Simon Stevin 26, 571-589, 2019.
[17] R. P. Pant, N. Y. Özgür and N. Taş, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43, 499-517, 2020.
[18] R. P. Pant, N. Özgür, N. Taş, A. Pant and M. C. Joshi, New results on discontinuity at fixed point, J. Fixed Point Theory Appl. 22, 39, 2020.
[19] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl. 22, 21, 2020.
[20] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64, 3, 258-266, 2012.
[21] S. Sedghi, A. Gholidahneh, T. Došenović, J. Esfahani and S. Radenović, Common fixed point of four maps in S_{b}-metric spaces, J. Linear Topol. Algebra 5, 2, 93-104, 2016.
[22] N. Taş and N. Özgür, New generalized fixed point results on S_{b}-metric spaces, Konuralp J. Math. 9, 1, 24-32, 2021.
[23] N. Taş, Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turkish J. Math. 44, 4, 1330-1344, 2020.
[24] N. Taş, A contribution to the fixed-disc results on S-metric spaces. 7 th Ifs And Contemporary Mathematics Conference, May, 25-29, 2021, Turkey, 172-176.
[25] N. Taş and N. Özgür, New fixed-figure results on metric spaces, accepted in Fixed Point Theory and Fractional Calculus - Recent Advances and Applications.
H. Aytimur

Balikesir University, Department of Mathematics, 10145 Balikesir, Turkey
Email address: hulya.aytimur@balikesir.edu.tr
N. TAŞ

Balikesir University, Department of Mathematics, 10145 Balikesir, Turkey
Email address: nihaltas@balikesir.edu.tr

[^0]: 2010 Mathematics Subject Classification. 54H25, 47H09, 47H10.
 Key words and phrases. Fixed figure, fixed disc, fixed ellipse, fixed hyperbola, fixed Cassini curve, fixed Apollonius circle.

 Submitted Nov. 26, 2021.

