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A GEOMETRIC INTERPRETATION TO FIXED-POINT THEORY

ON Sb-METRIC SPACES

H. AYTIMUR AND N. TAŞ

Abstract. In this paper we present some fixed-figure theorems as a geomet-

ric approach to the fixed-point theory when the number of fixed points of a
self-mapping is more than one. To do this, we modify the Jleli-Samet type

contraction and define new contractions on Sb-metric spaces. Also, we give

some necessary examples to show the validity of our theoretical results.

1. Introduction and background

Classical fixed-point theory started with the Banach fixed-point theorem [3].
This theory is one of the useful tool of mathematical studies and is an applicable
area to topology, analysis, geometry, applied mathematics, engineering etc. Metric
fixed-point theory has been studied and generalized with various aspects. One of
these aspects is to generalize the used contractive condition (for example, see [5]).
Another aspect is to generalize the used metric space such as, a b-metric space, an
S-metric space and an Sb-metric space as follows:

Definition 1.1. [2] Let X be a nonempty set, b ≥ 1 a given real number and
d : X×X → [0,∞) a function satisfying the following conditions for all x, y, z ∈ X :

(b1) d(x, y) = 0 if and only if x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ b[d(x, y) + d(y, z)].
Then the function d is called a b-metric on X and the pair (X, d) is called a

b-metric space.

Definition 1.2. [20] Let X be a nonempty set and S : X ×X ×X → [0,∞) be a
function satisfying the following conditions for all x, y, z, a ∈ X :

(S1) S(x, y, z) = 0 if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then S is called an S-metric on X and the pair (X,S) is called an S-metric

space.
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Definition 1.3. [21] Let X be a nonempty set and b ≥ 1 be a given real number.
A function Sb : X ×X ×X → [0,∞) is said to be Sb-metric if and only if for all
x, y, z, a ∈ X the following conditions are satisfied:

(Sb1) Sb(x, y, z) = 0 if and only if x = y = z,
(Sb2) Sb(x, y, z) ≤ b[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)].
The pair (X,Sb) is called an Sb-metric space.

An Sb-metric space is also a generalization of an S-metric space because every
S-metric is an Sb-metric with b = 1. But the converse of this statement is not
always true as seen in the following example.

Example 1.1. [22] Let X = R and the function Sb be defined by

Sb(x, y, z) = S(x, y, z)2 =
1

16
(|x− y|+ |y − z|+ |x− z|)2,

for all x, y, z ∈ R. Then the function Sb is an Sb-metric with b = 4, but it is not
an S-metric.

We see that the relationships between a b-metric and an Sb-metric as follows:

Lemma 1.1. [22] Let (X,Sb) be an Sb-metric space, Sb be a symmetric Sb-metric
with b ≥ 1 and the function d : X ×X → [0,∞) be defined by

d(x, y) = Sb(x, x, y),

for all x, y ∈ X. Then d is a b-metric on X.

Lemma 1.2. [22] Let (X, d) be a b-metric space with b ≥ 1 and the function
Sb : X ×X ×X → [0,∞) be defined by

Sb(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ X. Then Sb is an Sb-metric on X.

Many authors have been studied various fixed-point results on different general-
ized metric spaces (for example, see [1], [7], [9] and the references therein).

Recently, as a geometric generalization of a fixed-point theory, fixed-circle prob-
lem has been studied. This problem was occurred in [12] and investigated some
solutions to the this problem using different approaches (for example, see [8], [11],
[12], [13], [14], [16], [17], [18], [23] and the references therein). Especially, this prob-
lem was studied on Sb-metric space in [13] and obtained some fixed-circle results
using the following basic definitions.

Definition 1.4. [13] Let (X,Sb) be an Sb-metric space with b ≥ 1 and x0 ∈ X,
r ∈ (0,∞). The circle centered at x0 with radius r is defined by

CSb
x0,r = {x ∈ X : Sb(x, x, x0) = r} .

Definition 1.5. [13] Let (X,Sb) be an Sb-metric space with b ≥ 1, CSb
x0,r be a circle

on X and T : X → X be a self-mapping. If Tx = x for all x ∈ CSb
x0,r then the circle

CSb
x0,r is called as the fixed circle of T .

The notion of a fixed figure was defined as a generalization of the notions of a
fixed circle and a fixed disc as follows:

A geometric figure F (a circle, an ellipse, a hyperbola, a Cassini curve etc.)
contained in the fixed point set Fix (T ) = {x ∈ X : x = Tx} is called a fixed figure
(a fixed circle, a fixed ellipse, a fixed hyperbola, a fixed Cassini curve, etc.) of
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the self-mapping T (see [15]). For this purpose, some fixed-figure theorems were
obtained using different aspects (see, [4], [6], [15] and [25] for more details).

By the above motivation, the main of this paper is to obtain some fixed-figure
results on an Sb-metric space. To do this, we define new Jleli-Samet type con-
tractions. Using these new contractions, we prove fixed-disc results, fixed-ellipse
results, fixed-hyperbola results, fixed-Cassini curve results and fixed-Apollonius cir-
cle results on an Sb-metric space. Also, we give an example to show the validity of
our obtained theorems.

2. Main results

In this section, we present some fixed-figure results on an Sb-metric space. Before
these results, we give the following definitions:

Definition 2.1. Let (X,Sb) be an Sb-metric space with b ≥ 1 and x0, x1, x2 ∈ X,
r ∈ [0,∞).

(1) The disc centered at x0 with radius r is defined by

DSb
x0,r = {x ∈ X : Sb(x, x, x0) ≤ r} .

(2) The ellipse ESb
r (x1, x2) is defined by

ESb
r (x1, x2) = {x ∈ X : Sb (x, x, x1) + Sb (x, x, x2) = r} .

(3) The hyperbola HSb
r (x1, x2) is defined by

HSb
r (x1, x2) = {x ∈ X : |Sb (x, x, x1)− Sb (x, x, x2)| = r} .

(4) The Cassini curve CSb
r (x1, x2) is defined by

CSb
r (x1, x2) = {x ∈ X : Sb (x, x, x1)Sb (x, x, x2) = r} .

(5) The Apollonius circle ASb
r (x1, x2) is defined by

ASb
r (x1, x2) =

{
x ∈ X − {x2} :

Sb (x, x, x1)

Sb (x, x, x2)
= r

}
.

Now, we give the following example.

Example 2.1. Let (X, d) be a metric space and let us consider the Sb-metric space
(X,Sb) with the Sb-metric Sb : X ×X ×X → [0,∞) defined as

Sb(x, y, z) = [d(x, y) + d(y, z) + d(x, z)]
p

,

for all x, y, z ∈ X and p > 1 [22]. Let us consider X = R3, the metric d be a usual
metric with d(x, y) = |x− y| and p = 3. If we take x0 = (1, 1, 1) and r = 40, then
we obtain the circle CSb

x0,r as

CSb
x0,r =

{
x ∈ R3 : Sb(x, x, x0) = 40

}
=

{
x ∈ R3 : |x− 1|3 + |y − 1|3 + |z − 1|3 = 5

}
and the disc DSb

x0,r as

DSb
x0,r =

{
x ∈ R3 : Sb(x, x, x0) ≤ 40

}
=

{
x ∈ R3 : |x− 1|3 + |y − 1|3 + |z − 1|3 ≤ 5

}
.
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(a) The circle C
Sb
x0,r (b) The disc D

Sb
x0,r

Figure 1. The geometric figures of the circle and the disc

Also, if we take x1 = (1, 1, 1), x1 = (−1,−1,−1) and r = 400, then we obtain
the ellipse ESb

r (x1, x2) as

ESb
r (x1, x2) =

{
x ∈ R3 : Sb (x, x, x1) + Sb (x, x, x2) = 400

}
=

{
x ∈ R3 : (|x− 1|+ |x+ 1|)3

+ (|y − 1|+ |y + 1|)3

+ (|z − 1|+ |z + 1|)3 ≤ 50

}
.

Figure 2. The ellipse E
Sb
r (x1, x2)

If we take x1 = (1, 1, 1), x1 = (−1,−1,−1) and r = 40, then we obtain the
hyperbola HSb

r (x1, x2) as

HSb
r (x1, x2) =

{
x ∈ R3 : |Sb (x, x, x1)− Sb (x, x, x2)| = 40

}
=

{
x ∈ R3 : ||x− 1| − |x+ 1||3 + ||y − 1| − |y + 1||3

+ ||z − 1| − |z + 1||3 ≤ 5

}
,

the Cassini curve CSb
r (x1, x2) as

CSb
r (x1, x2) =

{
x ∈ R3 : Sb (x, x, x1)Sb (x, x, x2) = 40

}
=

{
x ∈ R3 : (|x− 1| |x+ 1|)3

+ (|y − 1| |y + 1|)3

+ (|z − 1| |z + 1|)3 ≤ 5

}
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and the Apollonius circle ASb
r (x1, x2) as

ASb
r (x1, x2) =

{
x ∈ R3 :

Sb (x, x, x1)

Sb (x, x, x2)
= 40

}
=

{
x ∈ R3 :

(
|x− 1|
|x+ 1|

)3

+

(
|y − 1|
|y + 1|

)3

+

(
|z − 1|
|z + 1|

)3

≤ 5

}
.

(a) The hyperbola H
Sb
r (x1, x2)

(b) The Cassini curve C
Sb
r (x1, x2)

(c) The Apollonius circle A
Sb
r (x1, x2)

Figure 3. The geometric figures of the hyperbola, Cassini curve and Apol-
lonius circle

We give the following definitions of new notions to obtain some fixed-figure
results.

Definition 2.2. Let (X,Sb) be an Sb-metric space with b ≥ 1 and f : X → X be a
self-mapping. A geometric figure F contained in the fixed point set Fix (f) is called
a fixed figure of the self-mapping f .

Definition 2.3. Let (X,Sb) be an Sb-metric space and f : X → X a self mapping.
If there exists x0 ∈ X such that

Sb (x, x, fx) > 0⇒ ϕ (Sb (x, x, fx)) ≤ [ϕ (Sb (x, x, x0))]
α

for all x ∈ X where α ∈ (0, 1) and the function ϕ : (0,∞)→ (1,∞) is such that
ϕ is non-decreasing, then f is called Jleli-Samet type Dx0

-Sb-contraction.

Theorem 2.1. Let (X,Sb) be an Sb-metric space and f : X → X Jleli-Samet type
Dx0-Sb-contraction with x0 ∈ X and the number r defined as

r = inf {Sb (x, x, fx) : x 6= fx, x ∈ X} . (1)

Then f fixes the disc DSb
x0,r.

Proof. At first, we show fx0 = x0. On the contrary, let fx0 6= x0. Using the
Jleli-Samet type Dx0-Sb-contraction hypothesis, we get

ϕ (Sb (x0, x0, fx0)) ≤ [ϕ (Sb (x0, x0, x0))]
α

= [ϕ (0)]
α
,

a contradiction. So we get
fx0 = x0. (2)
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To show that f fixes the disc DSb
x0,r, we consider the following cases:

Case 1: Let r = 0. Then we have DSb
x0,r = {x0} and by the equality (2), we get

fx0 = x0.
Case 2: Let r > 0 and x ∈ DSb

x0,r be any point such that x 6= fx. Using the
hypothesis, we obtain

ϕ (Sb (x, x, fx)) ≤ [ϕ (Sb (x, x, x0))]
α

≤ [ϕ (r)]
α

≤ [ϕ (Sb (x, x, fx))]
α

a contradiction with α ∈ (0, 1) . Hence, it should be fx = x. Consequently f
fixes the disc DSb

x0,r . �

Now we give the following corollary:

Corollary 2.1. If we take b = 1, then we get Theorem 2.2 in [24].

Definition 2.4. Let (X,Sb) be an Sb-metric space and f : X → X a self mapping.
If there exists x1, x2 ∈ X such that

Sb (x, x, fx) > 0⇒ ϕ (Sb (x, x, fx)) ≤ [ϕ (Sb (x, x, x1) + Sb (x, x, x2))]
α

for all x ∈ X\ {x1, x2} where α ∈ (0, 1) and the function ϕ : (0,∞)→ (1,∞) is
such that ϕ is non-decreasing, then f is called Jleli-Samet type Ex1,x2

-Sb-contraction.

Theorem 2.2. Let (X,Sb) be an Sb-metric space and f : X → X Jleli-Samet
type Ex1,x2

-Sb-contraction with x1, x2 ∈ X and the number r defined as (1). If
fx1 = x1 and fx2 = x2, then f fixes the ellipse ESb

r (x1, x2) .

Proof. We consider the following cases:
Case 1: Let r = 0. Then we have x1 = x2 and ESb

r (x1, x2) = {x1} = {x2} .
Using the hypothesis we have fx1 = x1 and fx2 = x2.

Case 2: Let r > 0 and x ∈ ESb
r (x1, x2) be any point such that x 6= fx. Using

the hypothesis we get

ϕ (Sb (x, x, fx)) ≤ [ϕ (Sb (x, x, x1) + Sb (x, x, x2))]
α

≤ [ϕ (r)]
α

≤ [ϕ (Sb (x, x, fx))]
α

a contradiction with α ∈ (0, 1) . Hence it should be fx = x. Consequently f fixes
the ellipse ESb

r (x1, x2) .
�

Corollary 2.2. If we take b = 1, then we get fixed ellipse results on an S-metric
space.

Definition 2.5. Let (X,Sb) be an Sb-metric space and f : X → X a self mapping.
If there exists x1, x2 ∈ X such that

Sb (x, x, fx) > 0⇒ ϕ (Sb (x, x, fx)) ≤ [ϕ (|Sb (x, x, x1)− Sb (x, x, x2)|)]α

for all x ∈ X\ {x1, x2} where α ∈ (0, 1) and the function ϕ : (0,∞)→ (1,∞) is
such that ϕ is non-decreasing, then f is called Jleli-Samet type Hx1,x2-Sb-contraction.

Theorem 2.3. Let (X,Sb) be an Sb-metric space and f : X → X Jleli-Samet
type Hx1,x2

-Sb-contraction with x1, x2 ∈ X and the number r defined as (1). If
fx1 = x1 and fx2 = x2 and r > 0, then f fixes the hyperbola HSb

r (x1, x2) .
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Proof. Let x ∈ HSb
r (x1, x2) be any point such that x 6= fx. Using the hypothesis

we get

ϕ (Sb (x, x, fx)) ≤ [ϕ (|Sb (x, x, x1)− Sb (x, x, x2)|)]α

≤ [ϕ (r)]
α

≤ [ϕ (Sb (x, x, fx))]
α

a contradiction with α ∈ (0, 1) . Hence it should be fx = x. Consequently f fixes
the hyperbola HSb

r (x1, x2) . �

Corollary 2.3. If we take b = 1, then we get fixed hyperbola results on an S-metric
space

Definition 2.6. Let (X,Sb) be an Sb-metric space and f : X → X a self mapping.
If there exists x1, x2 ∈ X such that

Sb (x, x, fx) > 0⇒ ϕ (Sb (x, x, fx)) ≤ [ϕ (Sb (x, x, x1)Sb (x, x, x2))]
α

for all x ∈ X\ {x1, x2} where α ∈ (0, 1) and the function ϕ : (0,∞)→ (1,∞) is
such that ϕ is non-decreasing, then f is called Jleli-Samet type Cx1,x2

-Sb-contraction.

Theorem 2.4. Let (X,Sb) be an Sb-metric space and f : X → X Jleli-Samet type
Cx1,x2-Sb-contraction with x1, x2 ∈ X and the number r defined as (1). If fx1 = x1

and fx2 = x2, then f fixes the Cassini curve CSb
r (x1, x2) .

Proof. We consider the following cases:
Case 1: Let r = 0. Then we have x1 = x2 and CSb

r (x1, x2) = {x1} = {x2} .
Using the hypothesis we have fx1 = x1 and fx2 = x2.

Case 2: Let r > 0 and x ∈ CSb
r (x1, x2) be any point such that x 6= fx. Using

the hypothesis we get

ϕ (Sb (x, x, fx)) ≤ [ϕ (Sb (x, x, x1)Sb (x, x, x2))]
α

≤ [ϕ (r)]
α

≤ [ϕ (Sb (x, x, fx))]
α

a contradiction with α ∈ (0, 1) . Hence it should be fx = x. Consequently f fixes
the Cassini curve CSb

r (x1, x2) . �

Corollary 2.4. If we take b = 1, then we get fixed Cassini curve results on an
S-metric space.

Definition 2.7. Let (X,Sb) be an Sb-metric space and f : X → X a self mapping.
If there exists x1, x2 ∈ X such that

Sb (x, x, fx) > 0⇒ ϕ (Sb (x, x, fx)) ≤
[
ϕ

(
Sb (x, x, x1)

Sb (x, x, x2)

)]α
for all x ∈ X\ {x1, x2} where α ∈ (0, 1) and the function ϕ : (0,∞)→ (1,∞) is

such that ϕ is non-decreasing, then f is called Jleli-Samet type Ax1,x2-Sb-contraction.

Theorem 2.5. Let (X,Sb) be an Sb-metric space and f : X → X Jleli-Samet
type Ax1,x2

-Sb-contraction with x1, x2 ∈ X and the number r defined as (1). If
fx1 = x1 and fx2 = x2, then f fixes the Apollonius circle ASb

r (x1, x2) .
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Proof. We consider the following cases:
Case 1: Let r = 0. Then we have x1 = x2 and ASb

r (x1, x2) = {x1} = {x2} .
Using the hypothesis we have fx1 = x1 and fx2 = x2.

Case 2: Let r > 0 and x ∈ ASb
r (x1, x2) be any point such that x 6= fx. Using

the hypothesis we get

ϕ (Sb (x, x, fx)) ≤
[
ϕ

(
Sb (x, x, x1)

Sb (x, x, x2)

)]α
≤ [ϕ (r)]

α

≤ [ϕ (Sb (x, x, fx))]
α

a contradiction with α ∈ (0, 1) . Hence it should be fx = x. Consequently f fixes
the Apollonius circle CSb

r (x1, x2) . �

Corollary 2.5. If we take b = 1, then we get fixed Apollonius circle results on an
S-metric space.

Finally we give the following illustrative example.

Example 2.2. Let X = [−1, 1] ∪
{
−7,−

√
2,
√

2, 7
3 , 7, 8, 21

}
and the S-metric de-

fined as

S(x, y, z) = |x− z|+ |x+ z − 2y| ,
for all x, y, z ∈ R [10]. This S-metric is also an Sb-metric with b = 1. Let us define
the function f : X → X as

fx =

{
x , X − {8}
7 , x = 8

,

for all x ∈ X and the function ϕ : (0,∞)→ (1,∞) as

ϕ(t) = t+ 1,

for all t > 0 with r = 2. Then,
. The function f is Jleli-Samet type Dx0

-Sb-contraction with α = 0.5, x0 = 0.

Consequently, f fixes the disc DSb
0,2 = [−1, 1] .

. The function f is Jleli-Samet type Ex1,x2-Sb-contraction with x1 = − 1
2 , x2 = 1

2

and α = 0.5. Consequently, f fixes the ellipse ESb
2

(
− 1

2 ,
1
2

)
=
[
− 1

2 ,
1
2

]
.

. The function f is Jleli-Samet type Hx1,x2
-Sb-contraction with x1 = −1, x2 = 1

and α = 0.9. Consequently, f fixes the hyperbola HSb
2 (−1, 1) =

{
− 1

2 ,
1
2

}
.

. The function f is Jleli-Samet type Cx1,x2
-Sb-contraction with x1 = −1, x2 = 1

and α = 0.5. Consequently, f fixes the Cassini curve CSb
2 (−1, 1) =

{
−
√

2, 0,
√

2
}
.

. The function f is Jleli-Samet type Ax1,x2
-Sb-contraction with x1 = −7, x2 = 7

and α = 0.5. Consequently, f fixes the Apollonius circle ASb
2 (−7, 7) =

{
7
3 , 21

}
.

3. Conclusion

In this paper, we present some new contractions and some fixed-figure results
on an Sb-metric space. The obtained results can be considered as some geometric
consequences of fixed-point theory. Using these approaches, new geometric gener-
alizations of known fixed-point theorems can be studied on metric and generalized
metric spaces.
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