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GRAPHS IN AUTOMATA

M. DUTTA, S. KALITA, H. K. SAIKIA

Abstract. A graph consists of some points and lines called vertices and edges.

It is a mathematical representation of a network in which edges represent the
existence of a particular relation among the vertices. Automata is a five tu-

ple consisting of a set of states, inputs, outputs, one transition function, and

one output function between these three sets. In this paper, an attempt is
made to study automata with the help of the properties of graphs. For two

given automation, with the help of the operations, viz. addition, union, inter-
section, complement, ring sum, product, and composition of graphs, another

automaton is derived. The objective is to identify and analyze the automaton

obtained. In the study, some connections are observed between various au-
tomata produced as well as between the adjacency matrix of the graph, and

outputs of the automaton.

1. Introduction

An automaton is a system that spontaneously gives an output from an input.
The input may be energy, information, materials, etc. The system works without
the intervention of man. Simply, an automaton (plural: automata or automatons)
is a self-operating machine. Its synonym is ROBOT. The term “automation” was
invented by an engineer named D.S. Harder, in the automobile industry, in about
1946 to describe the increased use of automatic devices and controls in mechanized
production lines. The term is used widely in the context of manufacturing. It is
also used in which there is a significant substitution of mechanical, electrical, or
computerized action for human effort and intelligence. Finite state automata are
significant in many different areas, including Electrical Engineering, Linguistics,
Computer Science, Philosophy, Biology, Mathematics, and Logic.[6,7] In computer
science, finite state machines are widely used in modelling application behavior,
designing hardware digital systems, software engineering, compilers, network pro-
tocols, and the study of computation and language. The number of possible states
of the automaton, and hence the amount of information it implicitly stores, is finite.
Therefore, the automaton is a finite-state automaton. In this paper, the objective
is to relate graphs and automata and to study some uses of graphical properties on
automata.

2010 Mathematics Subject Classification. 05C30, 05C76, 03D05.
Key words and phrases. Automata; Graph; Input; Output; Graph Operations.
Submitted Apr. 26, 2021.

105



106 M. DUTTA, S. KALITA, H. K. SAIKIA EJMAA-2022/10(2)

2. Preliminaries

A finite state automaton consists of a finite set of states and a set of transitions
from state to state that occur on input symbols from a set of alphabets. An
alphabet is a finite, non-empty set of symbols denoted by A, e.g. A = {0, 1}, the
set of binary alphabets. A string (or word) is a finite sequence of symbols chosen
from the set A, e.g. 01101, 01, 1, 0 are some strings over an alphabet A = {0, 1}.
An automata is a quintuples of the type Σ = (Q,A,B, F,G), where Q is a finite set
of states, A is a finite set of inputs, B is a finite set of outputs, F : Q × A → Q
and G : Q × Q → B are functions usually known as state transition function and
output function respectively.[2,5]

A graph G(V,E) consists of a non-empty set of objects V called set of ver-
tices/nodes and a set E called set of —it edges/arcs whose elements belong to the
set V × V . If (u, v) ∈ E, then we say that u and v are adjacent in G. If each edge
of a graph G has a direction then the graph is called directed graph. If each edge
of the graph G has no direction, the graph is said to be —it undirected graph. A
loop is an edge (vi, vi). A graph without loops and multiple edges is called a simple
graph. A graph with a finite number of vertices as well as a finite number of edges
is called a finite graph; otherwise, it is called an infinite graph.[1]

A graph that contains only an isolated node is called a null graph. The number
of edges that are incident on the vertex is called the degree of the vertex. In a
graph, if all vertices have the same degree, then it is called a regular graph. A
simple graph, G is said to be complete if every vertex in G is connected with every
other vertex. A walk is defined as a finite alternative sequence of vertices and edges.
An open walk in which no vertex appears more than once is called a simple path.
The cycle Cn, n ≤ 3, is a closed path of n vertices and n edges. A matrix A = [aij ]
of a labeled graph G with p points is the n × n matrix is called adjacency matrix
in which aij = 1 if vi is adjacent with vj and aij = 0 otherwise.[1]

The complement G of G is defined as a simple graph with the same vertex set
as G and where two vertices u and v adjacent only when they are not adjacent in
G. Let G1 = G(V1, E1) and G2 = G(V2, E2) be two graphs. Union of graphs G1

and G2 denoted by G1 ∪ G2 is a graph G = G(V,E) such that V = V1 ∪ V2 and
E = E1∪E2. Intersection of graphs G1 and G2 with at least one vertex in common,
denoted by G1∩G2 is a graph G = G(V,E) such that V = V1∩V2 and E = E1∩E2.
Sum of graphs G1 and G2, denoted by G1 + G2 is a graph G = G(V,E) such that
V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {(u, v) : u ∈ V1, v ∈ V2}. The ring sum of G1

and G2, denoted by G1 ⊕G2 is the graph G = G(V,E) such that V = V1 ∪ V2 and
E = E1 ∪ E2 − E1 ∩ E2. The product G1 × G2 of graphs G1 and G2 is a graph
G = G(V,E), where any two points u = (u1, u2) and v = (v1, v2) in V = V1 × V2

are adjacent in G1×G2 whenever [u1 = v1 and u2adj.v2] or [u2 = v2 and u1adj.v1].
The composition G1 [G2] also has V = V1 × V2 and u = (u1, u2) and v = (v1, v2) in
V = V1 × V2 are adjacent whenever u1adj.v1 or (u1 = v1 and u2adj.v2).[1]

3. Main Work (Graph operations on Automaton)

Let G1 = G(V1, E1) and G2 = G(V2, E2) be two graphs. Applying automata
theory to these two graphs, G1 and G2 and using graph operations viz. addition,
union, intersection, complement, ring sum, product and composition of graphs on
two automata, another automaton is derived.
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Illustration: In this section, the impact of some graph operations on some
automatons are studied. Two automata are considered for two cycles C3 and C4

and an effort is made to define a new automata using some graphical operations and
the effect of these operations are studied on the derivation of the new automata.[3,8]

Automaton on C4:

Fig. 1: Cycle C4

Let us consider the finite state machine [2,5] for the above cycle C4 is given by
Σ1 = (Q1, A1, B1, F1, G1, a) where Q1 = {a, b, c, d}, A1 = {1, 2, 3, 4}, B1 = {0, 1},
a is the initial state,
the transition map F1 : Q1 ×A1 → Q1 is defined by

F1(a, 1) = b, F1(a, 2) = c, F1(a, 3) = −, F1(a, 4) = −, F1(b, 1) = a, F1(b, 2) =
−,
F1(b, 3) = −, F1(b, 4) = d, F1(c, 1) = −, F1(c, 2) = a, F1(c, 3) = d, F1(c, 4) = −,
F1(d, 1) = −, F1(d, 2) = −, F1(d, 3) = c F1(d, 4) = b
and the output function G1 : Q1 ×Q1 → B1 defined by

G1(a, a) = 0, G1(a, b) = 1, G1(a, c) = 1, G1(a, d) = 0, G1(b, a) = 1, G1(b, b) =
0,
G1(b, c) = 0, G1(b, d) = 1 G1(c, a) = 1, G1(c, b) = 0, G1(c, c) = 0, G1(c, d) = 1,
G1(d, a) = 0, G1(d, b) = 1, G1(d, c) = 1, G1(d, d) = 0
where 1 indicates that there is a path between the states and 0 indicates that there
is no path between the states.

Table 1 : Transition table and Output table of C4

F1 1 2 3 4

a b c - -

b a - - d

c - a d -

d - - c b

G1 a b c d

a 0 1 1 0

b 1 0 0 1

c 1 0 0 1

d 0 1 1 0

Fig. 2: State diagram of C4
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Automaton on C3:

Fig. 3: State diagram of C3

Let us consider the finite state machine for the above cycle C3 is given by Σ2 =
(Q2, A2, B2, F2, G2, e) where Q2 = {b, d, e}, A2 = {4, 5, 6}, B2 = {0, 1} , e is the
initial state,
the transition map F2 : Q2 ×A2 → Q2 is defined by

F2(b, 4) = d, F2(d, 4) = b, F2(e, 4) = −, F2(b, 5) = −, F2(d, 5) = e, F2(e, 5) =
d, F2(b, 6) = e, F2(d, 6) = −, F2(e, 6) = b
the output function G2 : Q2 ×Q2 → B2 defined by

G2(b, b) = 0, G2(d, b) = 1, G2(e, b) = 1, G2(b, d) = 1, G2(d, d) = 0, G2(e, d) =
1, G2(b, e) = 1, G2(d, e) = 1, G2(e, e) = 0

where 1 indicates that there is a path between the states and 0 indicates that
there is no path.

Table 2 : Transition table and Output table of C3

F2 4 5 6

b d - e

d b e -

e - d b

G2 b d e

b 0 1 1

d 1 0 1

e 1 1 0

Fig. 4: State diagram of C3

Automaton on C4 ∪ C3:
The finite automata C4 ∪ C3 can be obtained by using the union operation of

graphs.
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Fig. 5: State diagram of C4 ∪ C3

Table 3 : Transition table and Output table of C4 ∪ C3

F 1 2 3 4 5 6

a b c - - - -

b a - - d - e

c - a d - - -

d - - c b e

e - - - - d b

G a b c d e

a 0 1 1 0 0

b 1 0 0 1 1

c 1 0 0 1 0

d 0 1 1 0 1

e 0 1 0 1 0

Automaton on C4 ∩ C3:
The finite automata C4∩C3 can be obtained by using the intersection operation

of graphs.

Fig. 6: State diagram of C4 ∩ C3

Table 4 : Transition table and Output table of C4 ∩ C3

F 1 2 3 4 5 6

a - - - - - -

b - - - d - -

c - - - - - -

d - - - b - -

e - - - - - -

G a b c d e

a 0 0 0 0 0

b 0 0 0 1 0

c 0 0 0 0 0

d 0 1 0 0 0

e 0 0 0 0 0

Automaton on C3 :
The finite automata C3 can be obtained by using the complement operation of

graphs as follows
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Fig. 7: State diagram of C3

Table 5 : Transition table and Output table of C3

F 4 5 6

b b - -

d - d -

e - - e

G b d e

b 1 0 0

d 0 1 0

e 0 0 1

Automaton on C3 ∪ C3 :
The finite automata of C3 ∪ C3 is given by

Fig. 8: State diagram of C3 ∪ C3

Table 6 : Transition table and Output table of C3 ∪ C3

F 4 5 6

b d, b - e

d b e, d -

e - d b, e

G b d e

b 1 1 1

d 1 1 1

e 1 1 1

Automaton on C4 ∪ C4 :
The finite automata of C4 ∪C4 can be obtained by using the union operation of

graphs.
Automaton on C4 + C3 :
The finite automata C4 +C3 can be obtained by using the addition operation of

graphs.

Fig. 9 : State diagram of C4 + C3
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Table 7 : Transition table and Output table of C4 + C3

F 1 2 3 4 5 6

a b c e - - -

b a - - d - e

c e a d - - -

d - - c b e -

e c - a - d b

G a b c d e

a 0 1 1 0 1

b 1 0 0 1 1

c 1 0 0 1 1

d 0 1 1 0 1

e 1 1 1 1 0

Automaton on C4 ⊕ C3 :
The finite automata C4 ⊕ C3 can be obtained by using the ring sum operation

of graphs.

Fig. 10: State diagram of C4 ⊕ C3

Table 8 : Transition table and Output table of C4 ⊕ C3

F 1 2 3 4 5 6

a b c - - - -

b a - - - - e

c - a d - - -

d - - c - e -

e - - - - d b

G a b c d e

a 0 1 1 0 0

b 1 0 0 0 1

c 1 0 0 1 0

d 0 0 1 0 1

e 0 1 0 1 0

Automaton on C4 × C3 :
The automata C4×C3 can be obtained by using the product operation of graphs

as follows

Fig. 11: State diagram of C4 × C3

Table 9 : Transition table of C4 × C3
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F 1 2 3 4 5 6

(a, b) (b, b) (c, b) - (a, d) - (a, e)
(a, d) (b, d) (c, d) - (a, b) (a, e) -
(a, e) (b, e) (c, e) - - (a, d) (a, b)
(b, b) (a, b) - - (b, d), (d, b) - (b, e)
(b, d) (a, d) - - (b, b), (d, d) (b, e) -
(b, e) (a, e) - - (d, e) (b, d) (b, b)
(c, b) - (a, b) (d, b) (c, d) - (c, e)
(c, d) - (a, d) (d, d) (c, b) (c, e) -
(c, e) - (a, e) (d, e) - (c, d) (c, b)
(d, b) - - (c, b) (b, b), (d, d) - (d, e)
(d, d) - - (c, d) (d, b), (b, d) (d, e) -
(d, e) - - (c, e) (b, e) (d, d) (d, b)

Table 10 : Output table of C4 × C3
G (a, b) (a, d) (a, e) (b, b) (b, d) (b, e) (c, b) (c, d) (c, e) (d, b) (d, d) (d, e)

(a, b) 0 1 1 1 0 0 1 0 0 0 0 0
(a, d) 1 0 1 0 1 0 0 1 0 0 0 0
(a, e) 1 1 0 0 0 1 0 0 1 0 0 0
(b, b) 1 0 0 0 1 1 0 0 0 1 0 0
(b, d) 0 1 0 1 0 1 0 0 0 0 1 0
(b, e) 0 0 1 1 1 0 0 0 0 0 0 1
(c, b) 1 0 0 0 0 0 0 1 1 1 0 0
(c, d) 0 1 0 0 0 0 1 0 1 0 1 0
(c, e) 0 0 1 0 0 0 1 1 0 0 0 1
(d, b) 0 0 0 1 0 0 1 0 0 0 1 1
(d, d) 0 0 0 0 1 0 0 1 0 1 0 1
(d, e) 0 0 0 0 0 1 0 0 1 1 1 0

Automaton on C4 [C3] :
The finite automata C4 [C3] can be obtained by using the composition operation

of graphs.

Fig. 12: State diagram of C4 [C3]

Table 11 : Transition table of C4 [C3]
F 1 2 3 4 5 6

(a, b) (b, b), (b, d), (b, e) (c, b),(c, d), (c, e) - (a, d) - (a, e)
(a, d) (b, b), (b, d), (b, e) (c, b), (c, d), (c, e) - (a, b) (a, e) -
(a, e) (b, b), (b, d), (b, e) (c, b), (c, d), (c, e) - - (a, d) (a, b)
(b, b) (a, b), (a, d), (a, e) - - (b, d), (d, b), (d, d), (d, e) - (b, e)
(b, d) (a, b), (a, d), (a, e) - - (b, b), (d, b), (d, d)(d, e) (b, e) -
(b, e) (a, b), (a, d), (a, e) - - (b, b), (d, b), (d, d)(d, e) (b, d) (b, b)
(c, b) - (a, b), (a, d), (a, e) (d, b), (d, d), (d, e) (c, d) - (c, e)
(c, d) - (a, b), (a, d), (a, e) (d, b), (d, d), (d, e) (c, b) (c, e) -
(c, e) - (a, b), (a, d), (a, e) (d, b), (d, d), (d, e) - (c, d) (c, b)
(d, b) - - (c, b), (c, d), (c, e) (b, b), (b, d), (b, e), (d, d) - (d, e)
(d, d) - - (c, b), (c, d), (c, e) (b, b), (b, d), (b, e), (d, b) (d, e) -
(d, e) - - (c, b), (c, d), (c, e) (b, b), (b, d), (b, e) (d, d) (d, b)

Table 12 : Output table of C4 [C3]
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G (a, b) (a, d) (a, e) (b, b) (b, d) (b, e) (c, b) (c, d) (c, e) (d, b) (d, d) (d, e)

(a, b) 0 1 1 1 1 1 1 1 1 0 0 0
(a, d) 1 0 1 1 1 1 1 1 1 0 0 0
(a, e) 1 1 0 1 1 1 1 1 1 0 0 0
(b, b) 1 1 1 0 1 1 0 0 0 1 1 1
(b, d) 1 1 1 1 0 1 0 0 0 1 1 1
(b, e) 1 1 1 1 1 0 0 0 0 1 1 1
(c, b) 1 1 1 0 0 0 0 1 1 1 1 1
(c, d) 1 1 1 0 0 0 1 0 1 1 1 1
(c, e) 1 1 1 0 0 0 1 1 0 1 1 1
(d, b) 0 0 0 1 1 1 1 1 1 0 1 1
(d, d) 0 0 0 1 1 1 1 1 1 1 0 1
(d, e) 0 0 0 1 1 1 1 1 1 1 1 0

4. Observations

From above, it is seen that the graph-theoretic properties are applicable to au-
tomata and are helpful in deriving new automatons from two known automata. It is
also observed that the graphical representation of the resultant automaton contains
the given automata as its subgraphs. From C4 ∪ C3 ⊆ C4 ⊕ C3 ⊆ C4 + C3, it is
noted that the automaton obtained from the union is contained by the automaton
obtained from the ring sum, and both of them are contained by the automaton
obtained from the sum of the graphs. The output table of the resulting automaton
can be obtained from the adjacency matrix of its graph.

5. Future Work and Discussion

From the above study, it is clear that there is a broad field of study on automata
with other properties of the graph. With the help of the adjacency matrix and its
eigenvalues, non-linear dynamical systems (automata) can be studied. A directed
graph, on the other hand, will help to understand the direction of the transition in
a finite automaton. So, there is a broad scope of study awaiting in this direction
that can bring automatons and graph theory together.[3,4]

6. Conclusion

Automata and graph theory both have great applications in different branches
of science, viz., computer science, networking, communication, transportation, ro-
botics, etc. So if a connection can be established between them, then it can be very
helpful in studying various topics with the help of each other in all those branches
where there are many applications. It is seen from the study that there is definitely
a connection between graph theory and automata, and further study will bring out
more fruitful results.
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