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STABILITY OF COPULAS UNDER SURVIVAL TRANSFORM

MOHAMED EL MAAZOUZ AND AHMED SANI

Abstract. It is useful in the literature to consider that the survival copula

Ĉ(., .) associated to a given archimedean one C(., .) is also an archimedean
copula. Here we study deeply survival copulas, give a corrigendum for this
misconception and discuss conditions under which a suitable conclusion is pos-

sible. Stability of some classical families of copulas under survival transform
is also discussed. An application to homogeneous copulas is detailed.

1. Introduction

Over the past five decades, statisticians and other researchers often use copulas as
an efficient tool to study scale-free measures of dependence. Copulas are mobilized
also to construct families of multivariate copulas using some adequate methods
such as compatibility with bivariate copulas. For a simple and understandable
presentation showing interest of copulas in several areas of statistics and economic
studies, it is recommendable to see [4] or browse the introduction of [9] where
are cited some bridges between our topic and some classical problems in economy
and sociology such as Arrow’s impossibility theorem [1] or [2] mainly when ordering
problems are raised. Historically, the word copula is attributed to Sklar who was the
first to use it in the statistical sense [8] meaning the manner to join the multivariate
distribution to its mono-dimensional marginal distribution functions. For more
precision, we recall a version of this revolutionary theorem which gave the bridge
between theoretical probability and statistical applications:

Theorem 1 (Sklar’s theorem). Let H be two-dimensional distribution function on
a probability space (Ω, p) with continuous marginal distribution functions F and G.
Then there exists unique copula C such that

H(x, y) = C(F (x), G(y)). (1)

It is almost impossible to deal with copulas without evoking masterpiece Nelsen’s
book [4]. Therein, pages 32-36 were devoted to survival copulas which describe the
probability of pair (U, V ) to live or survive beyond times (u, v)(i.e P (U > u, V >
v)). But recently many researches have extensively used survival copulas to study
and make clearer several notions associated with copulas. We cite a list of references,
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far being exhaustive, as a familiarizing tool with this concept [5],[6],[7],[13]...etc.
The interest of survival copulas consists on one hand in their use for exponential
models and on the other hand in its characterization of the initial copulas. Indeed,
as we restrict ourselves here to the bivariate case, a given copula is related to its

survival one by the well known identity: Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v).

Hence, as explained in [4, page 42], a perfect knowledge of Ĉ allows to simulate
the associated copula C thanks to a relatively simple algorithm. Furthermore, for

particular cases, C and Ĉ characterize some geometrical properties such as radial
symmetry stated in [4, Theorem 2.7.3].
The framework of current paper is archimedean copulas in association with their
correspondent survival ones. We focus on the generators of latter copulas and ex-
hibit relations between the analytic properties of copulas and regularity of their
generators.
In the literature, many of papers treating survival copulas of archimedean ones try

to express and characterize the generator of Ĉ without taking care of its existence.

In other words, they assume that the corresponding survival copula Ĉ is automat-
ically archimedean. It turns out that this likely hypothesis is far from being true.
We explain the result in an elementary way, and give some sufficient conditions to
ensure the archimedean character of a given survival copula...
This paper is organized as follows: after this current brief introduction, we recall in
section 2 fundamental results on copulas, mainly in the bivariate case, and define
suitably survival copulas. After dealing with archimedean copulas we explain the
interest and role of generator in a big reduction of concordance and dependence
ratios and measurement, like Kendall-τ and ρ-coefficient of Spearman, we pursue
to emphasize, via an appropriate example, the corrigendum of the misconception
on automatic archimedean property of the survival copula when the initial one is
archimedean. We refer mainly and remarkably to [6] and [7] where the examined
copulas arise from a utility functions. The third and last section is devoted to dis-
cuss some hypothesis of automatic existence of survival copula generator although
the archimedean character of the associate one by invoking the general theory of
associative functions. At last, we discuss stability of some classical parametrized
families of copulas under the survival transform. We close by a synthetic application
to homogeneous copulas.

2. Preliminaries: Copulas and survival copulas

As mentioned above, the framework is restricted to the bivariate case. It is
not a loss of generality but it is a nice field to introduce results susceptible to be
generalized with some further cautions to higher dimensions. Let I2 = [0, 1]× [0, 1]
be the unit closed square.

Definition 1. A copula C is a bifunction on I2 into I = [0, 1] which satisfies the
following conditions for all u, v, u1, v1, u2, v2 in I such that u1 ≤ u2 and v1 ≤ v2:

(1) Vanishing property on borders: C(0, v) = C(u, 0) = 0.
(2) Uniform margins: C(1, v) = v and C(u, 1) = u.
(3) the 2-increasing property: C(u2, v2)−C(u2, v1)−C(u1, v2)+C(u1, v1) ≥ 0.

It is well known that all bivariate copulas are framed between two bifunctions
denoted W and M given by W (u, v) = max(u+ v − 1, 0) and M(u, v) = min(u, v).



EJMAA-2022/10(2) ON THE FRACTIONAL-ORDER GAMES 117

Precisely, we have

∀(x, y) ∈ I2 : W (x, y) ≤ C(x, y) ≤ M(x, y).

In the literature, the bifunctions W and M are called respectively the lower and
upper Fréchet-Hoeftding bounds of the set of all copulas. It is worth to recall that
the fact W is a copula characterize uniquely bivariate copulas since for all n ≥ 3,
the third item in definition 1 fails in general. In a probabilistic and statistical points
of view, Fréchet-Hoeftding bound M models the co-monotonicity of random or em-
pirical variables X and Y ”coupled” by M while the lower bound W models anti-
monotonicity of X and Y . At the middle point, the copula Π : (x, y) ∈ I2 7→ xy
models the complete independence between the two variables. For soft indepen-
dence cases, one may consider small perturbations of Π as treated partially at the
end of section 2 of the current paper and detailed in [16].

Many copulas may be associated to a given one, among others co-copula, trans-
pose copula, scaled copula...etc. We are concerned here with survival copula. Let us
make precise this latter notion which will be the hard core of the current paper

Definition 2. Let (X,Y ) be a random vector with copula C, joint distribution
function H and with marginal distribution functions F , G, respectively. The mar-
ginal survival functions F̄ , Ḡ and joint survival function H̄ of the vector (X,Y )
are given by F̄ (x) = P [X > x], Ḡ(y) = P [Y > y] and H̄(x, y) = P [X > x, Y > y]

respectively. The function Ĉ which joins (or couples) H̄ to its survival marginal
functions F̄ and Ḡ is called the survival copula associated to the initial copula C.

It is not hard to prove that Ĉ is indeed a copula. In addition C and Ĉ satisfy

∀(u, v) ∈ I2 : Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

The aim of this paper is to study some properties of the survival copula. In partic-
ular, a big care and attention will be devoted to generators of such copulas when
they are archimedean.

Definition 3. An Archimedean copula is a function C from I2 to I given by
C(u, v) = φ(−1) (φ(u) + φ(v)), where φ (the generator of C) is a continuous strictly
decreasing convex function from I to [0,+∞] such that φ(1) = 0, and where φ(−1)

denotes the ”pseudo-inverse” of φ{
φ(−1)(t) = φ−1(t) for t ∈ [0, φ(0)]

φ(−1)(t) = 0 for t ≥ φ(0)

When φ(0) = ∞, φ and C are said to be strict (and φ(−1) = φ−1); when
φ(0) < ∞, φ and C are said non-strict.

The nomenclature goes back to a classical result which looks like the known
archimedean property in real analysis stated in [4, Theorem 4.3.1].
Before giving a characterization of this important class of copulas, we explain briefly
the benefit to have at its disposal the generator ϕ in terms of ratios which sum-
marize and describe the dependence between copula margins. We allude here to
τ of Kendall and ρ of Spearman coefficients known to be the two most common
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measures of dependence. For a continuous and analytically smooth copula C, these
coefficients may be written in terms of the copula as follows:

τ = 4

∫∫
I2

C(u, v)dC(u, v)− 1,

and

ρ = 12

∫∫
I2

uvdC(u, v)− 3 = 12

∫∫
I2

C(u, v)dudv − 3

We give here, as illustration of the importance of archimedean property the follow-
ing classical and technical tool to determine Kendall’s τ coefficient:

Proposition 1. For random variables X and Y with an Archimedean copula C
generated by ϕ. The population version τC of Kendall’s τ for X and Y is given by

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

Now we characterize the archimedean property in the following proposition:

Proposition 2. An archimedean copula C satisfies the following statements:

(1) C is associative meaning (∀u, v, w ∈ I, C (C(u, v), w) = C (u,C(v, w)).
(2) ∀u ∈ (0, 1), δC(u) < u where δC(u) = C(u, u).

Remark 1. (1) Consider the Farlie-Gumbel-Morgenstern parametrized copu-
las Kθ = uv+ θuv(1− u)(1− v). To highlight the importance of associativ-
ity, it is enough to mention that family of copulas Kθ is not archimedean,
except for θ = 0 for which Kθ = Π. The lack of associativity is an easy
efficient tool to establish the result as done in [4, Page 131].

(2) The survival copula of an archimedean one satisfies the property 2 since it
is itself a copula but it is not in general associative.Thus the property of
being archimedean is not necessary preserved by the survival copula.

(3) If a copula is associative and satisfies the second item in Proposition 2 then
it is an archimedean one. For the proof see [10].

The last point in the remark above is crucial since it seems to be a source of
confusion in the literature. For example, Spreuw in his paper entitled ”Archimedean
copulas derived from utility functions” (see [7]) tried to determine the survival
copula generator regardless of its existence. He considers any survival archimedean
copula as also an archimedean one. It turns out that this result which seems obvious
is far for being true as an immediate consequence of the following purposes:

Let C be an archimedean copula with the generator φ then for u ∈ (0, 1) we
have

δĈ(u) = 2u− 1 + δC(u)
< 2u− 1 + 1− u
< u.

So the first condition in the converse statement of Proposition 2 is always satisfied
for all survival copula which are different from the upper bound M . Unfortunately,
the second item is not so trivial. In fact, we establish the following result as a
corrigendum

Proposition 3. The copula Π∑
−Π : (u, v) 7→ uv

u+v−uv is archimedean but its sur-

vival copula is not.
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Proof. The fact that copula C = Π∑
−Π is archimedean is easy to verify since the

function φ(t) = 1
t − 1 serves as an obvious generator of C.

The survival copula of C is given by

Ĉ(u) = u+ v − C(1− u, 1− v)

= u+ v − 1− (1−u)(1−v)
1−u+1−v−(1−u)(1−v)

= uv(2−u−v)
1−uv .

We have

Ĉ

(
1

2
,
1

3

)
=

2− 5
6

5
=

7

30

Then

Ĉ

(
Ĉ

(
1

2
,
1

3

)
,
1

4

)
= Ĉ

(
7

30
,
1

4

)
=

637

6780

On the other hand

Ĉ

(
1

3
,
1

4

)
=

2− 7
12

11
=

17

132

Ĉ

(
1

2
, Ĉ

(
1

3
,
1

4

))
= Ĉ

(
1

2
,
17

132

)
=

3077

32604

So

Ĉ

(
Ĉ

(
1

2
,
1

3

)
,
1

4

)
̸= Ĉ

(
1

2
, Ĉ

(
1

3
,
1

4

))
Thus the copula Ĉ is not associative hence it is not archimedean.

�

3. Main result

Results in previous section lead to two natural questions:

Question 1. What are archimedean copulas for which the survival copulas remain
archimedean?

and

Question 2. If a copula C is a member of a parameterized family Cα, is it the
same for its survival copula?

We start by treating the first question. Taking profit of the converse prop-
erty stated by Ling [10] and taken up by Kraus [11] and [12] which restricts the
archimedean property to a simple question of associativity, Alsina et.al in [13] char-
acterize copulas which are simultaneously, with their survival ones, associative. let
us make more precise this important result. To this end, it will be fruitful to locate
the notion of archimedean copulas in a general framework of associative functions.
The natural bridge is the well known Aczel’s Theorem for which we recall an adapted
version

Theorem 2 (Aczel’s representation theorem). Let I = [0, 1] and consider the
function C : I2 −→ J which is associative, continuous in each argument (ie x 7→
C(x, y) and y 7→ C(x, y) are continuous), and cancellative on I2 if and only if it
admits the representation

C(x, y) = ϕ−1(ϕ(x) + ϕ(y)),
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where ϕ : I −→ R is continuous and strictly monotonic.

For an original and complete version of Aczel’s representation theorem, one may see
[13, Theorem 2.7.1, page 82]. It is worth to mention that a bifunction is cancellative
means simply that fixing an argument, the partial mono-argument is injective.
Precisely

C is cancellative ⇐⇒ the mappings x 7→ C(x, y) and y 7→ C(x, y) are injective.

The transcription of cancellability in terms of archimedean copulas is equivalent to
existence of a strict generator. When this hypothesis is satisfied, the key to ensure
archimedean property of a given copula is the associativity. This yields a simple
characterization of copulas C answering the question 1, ie for which we have:

C is archimedean ⇐⇒ Ĉ is archimedean.

At this state, it is enough to recall the following theorem (see [13, Theorem 3.1.2,
page 104]).

Theorem 3. A copula C and its survival copula Ĉ are simultaneously associative
if and only if C is a member of the family Cα below or an ordinal sum of members
of this family.

The family Cα is defined for all real α ̸= 0 by

Cα(x, y) = − 1

α
ln[1 +

(e−αx − 1)(e−αy − 1)

(e−α − 1)
]

and the comprehensive limits (see [4]) for extremal values of the parameter α:

C−∞ = W C0 = π C+∞ = M.

The theorem above gives a satisfying answer to the question 1 since archimedean
copulas are exactly those which are associative with diagonal entirely under the first
bisector. This explains especially the counter example given above. In fact, it is
easy to verify that the copula Π∑

−Π does not belong to Cα family.

Comment 1. Mc Neil and J. Neslehovà in their attempt to characterize multi-
variate archimedean copulas have proved that this class of copulas coincides exactly
with the class of survival copulas of d−dimensional l1−norm symmetric distribu-
tions that does not affect any weight to the origin. This latter type of distributions
is known to be simplex distributions. For more information and developments, one
may see [14] and [15].

Let us now come back to question 2. To make a first idea on survival copula
expression, we present a list, far to be exhaustive, of copulas and their survival
distributions

The family of Ali Mikhael Haq

C(u, v) =
uv

1− θ(1− u)(1− v)
θ ∈ [−1, 1]

and its survival copula is

Ĉ(u, v) = u+ v − 1 +
(1− u)(1− v)

1− θuv
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• The Gumbel-Hougaard family

C(u, v) = exp
[
−
(
(− lnu)θ + (− ln v)θ

) 1
θ

]
and its survival

Ĉ(u, v) = u+ v − 1 + exp
[
−
(
(− ln(1− u))θ + (− ln(1− v))θ

) 1
θ

]
The Frank family

C(u, v) = −1

θ

(
ln(1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1
)

)
Its survival is

Ĉ(u, v) = u+ v − 1− 1

θ

(
ln(1 +

(e−θ(1−u) − 1)(e−θ(1−v) − 1)

e−θ − 1
)

)

These examples show that, in general, the copula and its survival distribution does
not belong to the same family.
Although this negative answer to question 2, there are parametrized classes of cop-
ulas which are stable under the survival transform. A wide class of a particular
interest is the one of Π− perturbed copulas. For details and more general expound-
ing on bivariate copulas generated by perturbations, we refer to [16].
For our purpose, we consider just the perturbations of Π−copula in the partic-
ular form Cα(x, y) = Π(x, y) + αf(x)f(y) = xy + αf(x)f(y). To highlight the
role of perturbation function f , Cα is denoted Πf . In the literature, this family is
known to be Amblard-Girard copulas (see among others [17]). It is easy to prove
that for every member of this family, the corresponding survival copula remains of
Amblard-Girard type. The following calculation shows this statement

Ĉ(x, y) = x+ y + C(1− x, 1− y)
= x+ y − 1 + (1− x)(1− y) + αf(1− x)f(1− y))

= Π(x, y) + αf̂(x)f̂(y).

where we have put f̂(t) = f(1 − t). So the survival copula belongs to Amblard-

Girard and Ĉ = Πf̂ .

Question 2 is a kind of global stability of a given family of copulas under survival
transform. Let us now examine the punctual stability. Let S denote the set of all

copula C satisfying C = Ĉ. We postpone the determination elements of S in details
to a future work. We give instead a topological property of S

Theorem 4. The set S of all 2-copulas which equal to their survival ones is closed
and convex.

Proof. Let (Cn) be a sequence of elements of S which converges uniformly
to a 2-copulas C.

Using the expression Ĉn(u, v) = u+ v − 1 + Cn(1− u, 1− v) we have that

(Ĉn) converges to Ĉ. The uniqueness of the limit gives Ĉ = C. Thus C ∈ S
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For the convexity, let (Ck)1≤k≤p be a finite family of elements of S and
(αk)1≤k≤n be a family of strictly positive reals such that

∑n
k=1 αk = 1.

Then n̂∑
k=1

αkCk

 (u, v) = u+ v − 1 +
n∑

k=1

αkCk(1− u, 1− v) =
n∑

k=1

αkĈk(u, v)

�

Corollary 1. All members of a family of Frchet-Mardia are in S.

Proof. It is enough to recall that Frchet-Mardia family consists on convex combi-
nations of the three copulas W ,Π and M which are in S and conclude with theorem
4 above. �

4. Application

Here we give an application to homogeneous copulas. Let us first recall the
definition as adopted in [4].

Definition 4. Let λ a strictly positive number and α ≥ 0. A copula C is homoge-
neous of degree α if for all (x, y) ∈ I2, and all λ ∈ I we have C(λx, λy) = λαC(x, y).

The definition is a particular case of homogeneous several entries functions. It is
then possible to characterize homogeneous smooth (differentiable) copulas via the
following classical Euler’s equivalence

C is a homogeneous copula ⇐⇒ ∀(x, y) ∈ I2 : x
∂C

∂x
(x, y) + y

∂C

∂y
= αC(x, y).

Unfortunately such attempts become less interesting after this important theorem
which states that Cuadras-Augé family is the unique class homogeneous copulas

Theorem 5. [4, Theorem 3.4.2] A copula C is homogeneous of degree α if and only
if C is a member of the θ−parametrized Cuadras-Augé family

Cθ(x, y) = Mθ(x, y)Π1−θ(x, y) = [min(x, y)]θ(xy)1−θ.

More precise statement consists in saying that the degree is exactly α = 2 − θ.
Thus the degree of homogeneity satisfies 1 ≤ α ≤ 2. This remarkable result is a
main tool to characterize homogeneous copulas stable with survival transform. In-
deed a combination of Theorem 3 and Theorem 5 leads to the main characterization

Proposition 4. Except the independence copula Π, there is no archimedean homo-
geneous copula which coincides with its survival copula.

Proof. Let C be such copula. From theorem 4, there is a parameter θ such that C
is a θ−geometric mean of M and Π. That means for each (x, y) ∈ I2, C(x, y) =
Mθ(x, y)Π1−θ(x, y). To conclude, it will be enough to prove that this latter copula
differs from its survival one for all θ ∈ [0, 1[. Assume the converse. So since on the
diagonal we will have for all x ∈ I :

δĈ(x) = 2x− 1 + (1− x)2−θ,

then

δĈ(x) = δC(x) is equivalent to x2−θ = 2x− 1 + (1− x)2−θ.
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It is elementary to verify that this equivalence is false except for extreme values of
θ (i.e θ = 0 or θ = 1). But for θ = 1, Cθ = M which is not archimedean and for
θ = 0 one retrieves easily the independence copula Π. This shows the claim. �
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