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D- GAUSSIAN JACOBSTHAL, D- GAUSSIAN JACOBSTHAL-

LUCAS POLYNOMIALS AND THEIR MATRIX

REPRESENTATIONS

E. ÖZKAN, M. UYSAL

Abstract. In this paper, we define d− Gaussian Jacobsthal polynomials and
d−Gaussian Jacobsthal-Lucas polynomials. We present the sum, generating

functions and Binet formulas of these polynomials. We give the matrix repre-

sentations of them. We present these matrices as binary representation accord-
ing to the Riordan group matrix representation. By using Riordan method,

we give factorizations of Pascal matrix involving d−Gaussian Jacobsthal poly-

nomials and d−Gaussian Jacobsthal-Lucas polynomials. We give the inverse
of matrices of these polynomials.

1. Introduction

Fibonacci numbers, which emerged with the solution of the famous rabbit prob-
lem, have been made many generalizations until today and still find application in
many scientific fields [8, 9, 10, 11, 15]. Many generalizations of number sequences
were then described and studied. One of the most well-known number sequences is
the Jacobsthal numbers [4, 15, 19]. One of the most important of these generaliza-

tions is those about Gaussian [13, 14, 16, 18]. Özkan et al. defined Gauss Fibonacci
polynomials, Gauss Lucas polynomials and gave their applications in [12].

Asci et al. defined the Gaussian Jacobsthal and the Gaussian Jacobsthal Lucas
sequences [1] and the Gaussian Jacobsthal Polynomials and the Gaussian Jacobsthal
Lucas Polynomials sequences [2].

Shapiro et al. described Riordan matrices and the Riordan group as a set of
matrices M = (mij) , i, j ≥ 0 whose elements are complex numbers [20].

One of the latest works in this area is [17] where it is introduced d−Fibonacci
and d−Lucas polynomials.

In this work, we give d− Gaussian Jacobsthal polynomials and d−Gaussian
Jacobsthal-Lucas polynomials. We find the matrix representations, the sum, gener-
ating functions and Binet formulas of these polynomials. By using Riordan method,
we introduce the factorizations of Pascal matrix involving d−Gaussian Jacobsthal
polynomials and d−Gaussian Jacobsthal-Lucas polynomials. We also give the in-
verse of matrices of these polynomials. Now, let us give some basic definitions for
this paper in this section.
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Definition 1.1. The Jacobsthal numbers Jn are defined by

Jn+2 = Jn+1 + 2Jn

for n ≥ 0 with J0 = 0 and J1 = 1. [5] Similarly, the Jacobsthal-Lucas numbers jn,

jn+2 = jn+1 + 2jn

for n ≥ 0 with j0 = 2 and j1 = 1. [5]

Definition 1.2. k − Jacobsthal numbers are defined by

jk,n+1 = kjk,n + 2jk,n−1

for n ≥ 2 with jk,0 = 2 and jk,1 = k. [7]

Similarly, k− Jacobsthal-Lucas numbers have been introduced in [3] and given
some properties.

Definition 1.3. Jacobsthal polynomials were studied in [6] by Horodam and defined
by the following recurrence relation,

Jn+2(x) = Jn+1(x) + 2xJn(x)

for n ≥ 2 with J0(x) = 0 and J1(x) = 1.

Definition 1.4. Jacobsthal-Lucas Polynomials have been defined in [6] by Horodam
following the recurrence relation,

jn+2(x) = jn+1(x) + 2xjn(x)

for n ≥ 2 with j0(x) = 2 and j1(x) = 1.

Definition 1.5. Let pi(x) be a real coefficient for i = 1, ... , d + 1. Then d−
Fibonacci polynomials are defined by

Fn+1 (x) = p1 (x)Fn (x) + p2 (x)Fn−1 (x) + · · ·+ pd+1 (x)Fn−d (x)

with Fn (x) = 0 for n ≤ 0 and F1 (x) = 1. [17]

2. Generalization of Gaussian Jacobsthal and Gaussian
Jacobsthal-Lucas Polynomials

2.1. Generalization of Gaussian Jacobsthal Polynomials.
We introduce a new generalization of Gaussian Jacobsthal polynomials. Let pi(x)
be a real polynomial for i = 1, ... , d + 1. Then d− Gaussian Jacobsthal
polynomials are defined by

GJn (x) = p1 (x)GJn−1 (x) + p2 (x)GJn−2 (x) + · · ·+ pd+1 (x)GJn−d−1 (x) (1)

with GJn (x) =
i
2 and GJn (x) = 0 for n < 0. We give a few terms of d−Gaussian

Jacobsthal polynomials in Table 1.
From Equation (1), the characteristic equation of d−Gaussian Jacobsthal poly-

nomials is given by

rd+1 − p1 (x) r
d − p2 (x) r

d−1 − · · · − pd+1 (x) = 0.

The roots of this equation are {α1 (x) , α2 (x) , . . . , αd+1 (x) } . Thus, we give the
Generating function of these polynomials as follows.
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Table 1. Some values of d−Gaussian Jacobsthal polynomials

n GJn (x)

0 i
2

1 p1 (x)
i
2

2 p1
2 (x) i

2 + i
2p2 (x)

3 p1
3 (x) i

2 + p1 (x) p2 (x) i+ p3 (x)
i
2

4 p1
4 (x) i

2 + 3
2p1

2 (x) p2 (x) i + +p1 (x) p3 (x) i +

p1
2 (x) i

2 + p4 (x)
i
2

Theorem 2.1. Generating function of GJn (x) is given as follows

G (x, t) =

∞∑
n=0

GJn (x) t
n =

i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
.

Proof. We have

G (x, t) = GJ0 (x) +GJ1 (x) t+GJ2 (x) t
2 + · · ·+GJn (x) t

n + . . . (2)

Let us multiply Equation (2) by p1 (x) t, p2 (x) t
2, . . . , pd+1 (x) t

d+1, respectively.
So, the following equations are obtained.

G (x, t) = GJ0 (x) +GJ1 (x) t+GJ2 (x) t
2 + · · ·+GJn (x) t

n + . . .

p1 (x) tG (x, t) = p1 (x) tGJ0 (x) + p1 (x) t
2GJ1 (x) + p1 (x) t

3GJ2 (x) + . . .

p2 (x) t
2G (x, t) = p2 (x) t

2GJ0 (x) + p2 (x) t
3GJ1 (x) + p2 (x) t

4GJ2 (x) + . . .
...

pd+1 (x) t
d+1G (x, t) = pd+1 (x)GJ0 (x)+pd+1 (x) t

d+2GJ1 (x)+pd+1 (x) t
d+3GJ2 (x)+. . .

If we take the necessary calculations to take advantage of the recurrence relation,
we obtain the following equation,

G (x, t)
(
1−p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1
)
= GJ0 (x)+GJ1 (x) t−p1 (x) tGJ0 (x)

G (x, t) =
i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
.

In this case, the desired formula is obtained. □

Binet formula of GJn (x) has the following form

GJn (x) =

d+1∑
i=1

Di(x)[αi(x) ]
n
.

Let’s write the following equations for some values of n for the equation.

GJ0 (x) =

d+1∑
i=1

Di(x),

GJ1 (x) =

d+1∑
i=1

Di(x)αi(x),

GJ2 (x) =

d+1∑
i=1

Di(x)[αi(x)]
2
,
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GJ3 (x) =

d+1∑
i=1

Di(x)[αi(x)]
3
,

...

GJn (x) =

d+1∑
i=1

Di(x)[αi(x)]
n
.

If we multiply both sides of these equations by the coefficients of tn,

GJ0 (x) =

d+1∑
i=1

Di(x),

tGJ1 (x) =

d+1∑
i=1

Di(x)αi(x)t,

t2GJ2 (x) =

d+1∑
i=1

Di(x)[αi(x)]
2
t2,

...

tnGJn (x) =

d+1∑
i=1

Di(x)[αi(x)]
n
tn.

If we add up the left side of the equation, we have,

∞∑
n=0

GJn (x) t
n =

i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
.

If we add up the right side of the equation,

d+1∑
i=1

Di (x)(1 + αi (x) t+ [αi(x)]
2
t2 + . . . ) =

d+1∑
i=1

Di (x)

(
1

1− αi (x) t

)
.

So, we get the following equation

i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
=

d+1∑
i=1

(
Di (x)

1− αi (x) t

)
.

More precisely, the coefficients allow us to give the explicit form of d -Gaussian
Jacobsthal polynomials. Actually

Theorem 2.2. For n ≥ 0, the following equality is true.

GJn (x) =
i

2

∑
n1,n2,..., nd+1

1+n1+2n2+···+(d+1)nd+1=n

[(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
p1

n1 (x) p2
n2 (x) . . . pd+1

nd+1(x)

]
tn.
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Proof. Let’s use the generating function for proof.

∞∑
n=0

GJn (x)t
n =

i
2

(1− p1(x)− p2(x)t2 − · · · − pd+1td+1)

=
i

2

∞∑
n=0

(
p1 (x) t+ p2 (x) t

2 + · · ·+ pd+1 (x) t
d+1
)n

=
i

2

∞∑
n1+n2+···+ nd+1=n

[(
n

n1, n2, . . . , nd+1

)
p1

n1 (x) p2
n2 (x) . . . pd+1

nd+1(x)

]
tn1+2n2+···+(d+1)nd+1

=
i

2

∑
n1,n2,..., nd+1

n1+2n2+···+(d+1)nd+1=n

[(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
p1

n1 (x) p2
n2 (x) . . . pd+1

nd+1(x)

]
tn.

Now if we substitute n− 1 for n we get what we want.

GJn (x) =
i

2

∑
n1,n2,..., nd+1

1+n1+2n2+···+(d+1)nd+1=n

[(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
p1

n1 (x) p2
n2 (x) . . . pd+1

nd+1(x)

]
tn.

□

Theorem 2.3. Let SGJn (x) be sum of the d−Gaussian Jacobsthal polynomials.
Then we have

SGJn (x) =

∞∑
n=0

GJn (x) =
i
2

1− p1 (x)− p2 (x)− · · · − pd+1 (x)
.

Proof. We get the following equation

SGJn (x) =

∞∑
n=0

GJn (x) =GJ0 (x) +GJ1 (x) +GJ2 (x) + . . . GJn (x) + . . .

If we multiply the last equation byp1 (x) , p2 (x) , . . . , pd+1 (x) respectively then
we obtain

p1 (x) SGJn (x) = p1 (x)GJ1 (x) + p1 (x)GJ2 (x) + . . .+p1 (x)GJn (x) + . . .

p2 (x)SGJn (x) = p2 (x)GJ1 (x) + p2 (x)GJ2 (x) + · · ·+ p2 (x)GJn (x) + . . .

...

pd+1 (x)SGJn (x) = pd+1 (x)GJ1 (x)+pd+1 (x)GJ2 (x)+· · ·+pd+1 (x)GJn (x)+. . .

If the necessary mathematical operations are done, we get

SGJn (x) (1−p1 (x)− p2 (x)− · · · − pd+1 (x)) =
i

2
.

Thus, we have

SGJn (x) =

∞∑
n=0

GJn (x) =
i
2

1− p1 (x)− p2 (x)− · · · − pd+1 (x)
.

□
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From [9], we know that the d− Fibonacci polynomials matrix Qd is given by

Qd =



p1(x) p2(x) · · · pd+1(x)
1 0 0

0
. . .

. . .

0 0 1 0

 (3)

where detQd = (−1)
d
pd+1 (x). Now, we can give matrix representation for

GJn (x) in the next theorem.

Theorem 2.4. The representation for GJn (x) has the form
GJn(x) p2(x)GJn−1(x) + · · ·+ pd+1(x)GJn−d(x) · · · pd+1(x)GJn−1(x)

GJn−1(x) p2(x)GJn−2(x) + · · ·+ pd+1(x)GJn−d−1(x) · · · pd+1(x)GJn−2(x)
...

... · · ·
...

GJn−d(x) p2(x)GJn−d−1(x) + · · ·+ pd+1(x)GJn−2d(x) · · · pd+1(x)GJn−d−1(x)

 (4)

Proof. To prove the theorem, let’s use mathematical induction over n. Since
GJ0 (x) = 0 for n ≤ 0, when n = 1, we get

i

2
Qd =

i

2



p1(x) p2(x) · · · pd+1(x)
1 0

0
. . .

. . .

0 0 1 0



=



p1(x)
i
2 p2(x)

i
2 · · · pd+1(x)

i
2

i
2 0

0
. . .

. . .

0 0 i
2 0

 (5)

For n = 1 on the right side of (1), we get the following matrix

GJ1(x) p2(x)GJ0(x) · · · pd+1(x)GJ0(x)
GJ0(x) 0 0

0 p2(x)GJn−3(x) + · · ·+ pd+1(x)GJn−d−2(x) 0
0 0
...

...
...

0 0
. . . 0


(6)

GJn (x) = p1 (x)GJn−1 (x) + p2 (x)GJn−2 (x) + · · ·+ pd+1 (x)GJn−d−1 (x)

The following equation is obtained from the recurrence relation

p2 (x)GJn−3 (x) + · · ·+ pd+1 (x)GJn−d−2 (x)=GJn (x)− p1 (x)GJn−1 (x)

For n = 1, from (1), we obtain

p2 (x)GJn−3 (x) + · · ·+ pd+1 (x)GJn−d−2 (x) = GJ1 (x) = p1 (x)
i

2

p3 (x)GJn−3 (x) + · · ·+ pd+1 (x)GJn−d−1 (x) = GJ1 (x) = p1 (x)
i

2



130 E. ÖZKAN, M. UYSAL EJMAA-2022/10(2)

and if it continues like this then it will be seen that the matrices in (5) and (6) are
equal. Now assume the matrix (5) satisfy for n. That is, we have

i

2
Qd

n = GJn(x) p2(x)GJn−1(x) + · · ·+ pd+1(x)GJn−d(x) · · · pd+1(x)GJn−1(x)
GJn−1(x) p2(x)GJn−2(x) + · · ·+ pd+1(x)GJn−d−1(x) · · · pd+1(x)GJn−2(x)

...
...

...
...

GJn−d(x) p2(x)GJn−d−1(x) + · · ·+ pd+1(x)GJn−2d(x) · · · pd+1(x)GJn−d−1(x)


Let show that it is true for n+ 1. We know that

i

2
Qn+1

d =
i

2
Qn

dQd =
GJn(x) p2(x)GJn−1(x) + · · ·+ pd+1(x)GJn−d(x) · · · pd+1(x)GJn−1(x)

GJn−1(x) p2(x)GJn−2(x) + · · ·+ pd+1(x)GJn−d−1(x) · · · pd+1(x)GJn−2(x)
...

...
...

...
GJn−d(x) p2(x)GJn−d−1(x) + · · ·+ pd+1(x)GJn−2d(x) · · · pd+1(x)GJn−d−1(x)




p1(x) p2(x) · · · pd+1(x)
1 0

0
. . .

. . .

0 0 1 0



=


GJn+1(x) p2(x)GJn(x) + · · ·+ pd+1(x)GJn−d+1(x) · · · pd+1(x)GJn(x)
GJn(x) p2(x)GJn−1(x) + · · ·+ pd+1(x)GJn−d(x) · · · pd+1(x)GJn−1(x)

...
...

...
...

GJn−d+1(x) p2(x)GJn−d(x) + · · ·+ pd+1(x)GJn−2d+1(x) · · · pd+1(x)GJn−d(x)


□

Corollary 2.1. For n,m ≥ 0, the following equality is provided.

i

2
GJn+m (x) =GJn+1 (x)GJm+1 (x) + p2 (x) (GJn−1 (x)GJm−1 (x))

+ · · ·+ pd+1 (x)
(
GJn−d+1 (x)GFm−1 (x)

+ · · ·+GJn−1 (x)GJm−d (x)
)

Proof. For proof, we will use the product of matrices i
2Q

n
d and i

2Q
m
d . For this,

writing
i

2
Qn

d

i

2
Qm

d =
i

2
Qn+m

d .

The result is the first row and the first column of matrix i
2Q

n+m
d . □

Corollary 2.2. For n ≥ 1 the following equality is true,

GJn−1(x) = Fn(x)(p1(x) + i).

and here the Fn(x) polynomials are d− Fibonacci polynomials.

Proof. The proof can be easily seen on n by induction. □
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2.2. Generalization of Gaussian Jacobsthal-Lucas Polynomials.
Now, we present a new generalization of Gaussian Jacobsthal-Lucas polynomials.
d− Gaussian Jacobsthal-Lucas polynomials are defined by

GJLn (x) = p1 (x)GJLn−1 (x) + p2 (x)GJLn−2 (x) + · · ·+ pd+1 (x)GJLn−d−1 (x)
(7)

with GJLn (x) = 2 − i
2 and GJLn (x) = 0 for n < 0. We give a few terms of

d−Gaussian Jacobsthal-Lucas polynomials in Table 2.

Table 2. Some values of d−Gaussian Jacobsthal-Lucas polynomials

n GJLn (x)

0 2− i
2

1 p1 (x)
(
2− i

2

)
2 p1

2 (x)
(
2− i

2

)
+ p2 (x)

(
2− i

2

)
3 p1

3 (x)
(
2− i

2

)
+ 2p1

2 (x) + p1 (x) p2 (x) (2− i) + p3 (x)
(
2− i

2

)
4 p1

4 (x)
(
2− i

2

)
+ 2p1

3 (x) + p1
2 (x) p2 (x)

(
4− 3i

2

)
+

p1 (x) p3 (x) (4− i) + p1
2 (x)

(
2− i

2

)
+ p4 (x)

(
2− i

2

)
Theorem 2.5. Generating function of GJLn (x) is given as follows

G (x, t) =

∞∑
n=0

GJLn (x) t
n =

(
2− i

2

)
(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)

.

Proof. It is like that of Theorem 2.1 □

Binet formula of GJLn (x) has the following form.

GJLn (x) =

d+1∑
i=1

Ei(x)[αi(x)]
n
.

If operations similar to section 2.1 are carried out, we have the following equations(
2− i

2

)
(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)

=

d+1∑
i=1

(
Ei(x)

1− αi (x) t

)
.

More precisely, the coefficients allow us to give the explicit form of d− Gaussian
Jacobsthal- Lucas polynomials. Actually,

Theorem 2.6. For n ≥ 0 the following equality is true.

GJLn (x) =

(
2− i

2

)∑
n1,n2,..., nd+1

1+n1+2n2+···+(d+1)nd+1=n

[(
n1 + n2 + · · ·+ nd+1

n1, n2, . . . , nd+1

)
p1

n1 (x) p2
n2 (x) . . . pd+1

nd+1(x)

]
tn.

Proof. The proof is like that of Theorem 2.2 □

Theorem 2.7. Let SGJLn (x) be sum of the d−Gaussian Jacobsthal-Lucas poly-
nomials. Then we have

SGJLn (x) =

∞∑
n=0

GJLn (x) =

(
2− i

2

)
1− p1 (x)− p2 (x)− · · · − pd+1 (x)

.

Proof. The proof is done similar to the proof of Theorem 2.3 □
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Theorem 2.8. We have the following representation for GJLn (x) as follows.(
2− i

2

)
Qn

d =


GJLn(x) p2(x)GJLn−1(x) + · · ·+ pd+1(x)GJLn−d(x) · · · pd+1(x)GJLn−1(x)

GJLn−1(x) p2(x)GJLn−−2(x) + · · ·+ pd+1(x)GJLn−d−1(x) · · · pd+1(x)GJLn−2(x)
...

...
...

...
GJLn−d(x) p2(x)GJLn−d−1(x) + · · ·+ pd+1(x)GJLn−2d(x) · · · pd+1(x)GJLn−d−1(x)


Proof. Like the proof of Theorem 2.4, it is easily demonstrated by induction over
n. □

Corollary 2.3. For n,m ≥ 0, the following equality is provided.(
2− i

2

)
GJLn+m (x) =GJLn+1 (x)GJLm+1 (x) + p2 (x)

(
GJLn−1 (x)GFLm−1 (x)

)
+ · · ·+ pd+1 (x)

(
GJLn−d+1 (x)GJLm−1 (x)

+ · · ·+GJLn−1 (x)GJLm−d (x)
)

Proof. Proof is done similar to the proof of Corollary 2.1. □

Corollary 2.4. For n ≥ 1 the following equality is true.

GJLn−1(x ) = Fn(x)

(
2− i

2

)
.

and here the Fn(x) polynomials are d –Fibonacci polynomials.

Proof. The proof can be easily seen on n by induction. □

Lemma 2.9. For n ≥ 1 the following equality is true.

GJn (x) +GJLn(x ) = 2Fn(x).

and here the Fn(x) polynomials are d− Fibonacci polynomials.

Proof. The proof can be easily seen on n by induction. □

3. The Infinite d−Gaussian Jacobsthal and The Infinite d− Gaussian
Jacobsthal- Lucas Polynomials Matrix

3.1. The Infinite d− Gaussian Jacobsthal Polynomials Matrix. The d−
Gaussian Jacobsthal matrix polynomials is denoted byGJ (x) = [GJ P1,P2,...,Pd+1,i,j(x)]
and defined as follows.

GJ (x) =



i
2 0 0 · · ·

p1(x)
(
2− i

2

)
i
2 0

...

p21(x)
i
2 + p2(x)

i
2 p1(x)

i
2

i
2

...
k1(x) k2(x) p1(x)

i
2

i
2

... · · · · · ·
. . .


= (gGJ (x) (t) , fGJ (x) (t)),

where k1 (x) = p1
3 (x) + ip1

2 (x) + p1 (x) p2 (x) + ip2 (x) and k2 (x) = p1
2 (x) i

2 +

p2 (x)
i
2 .
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We can write the d−Gaussian Jacobsthal polynomial matrix as follows,

GJ (x) =


GJ0(x) 0 0 · · ·
GJ1(x) GJ0(x) 0 · · ·
GJ2(x) GJ1(x) GJ0(x) · · ·

...
...

...
. . .

 .

Theorem 3.1. The first column of GJ (x)matrix has the form(
i

2
, p1 (x)

i

2
, p1

2 (x)
i

2
+ p2 (x)

i

2
, k1 (x) , . . .

)T

.

The generator function of the first column is as follows,

gGJ (x) (t) =

∞∑
n=0

GJ P1,P2,...,Pd+1,i,j(x)t
n =

i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
.

Proof. Let’s write Generating functions of the first column of GJ (x) matrix as
follow,

i

2
+

(
p1 (x)

i

2

)
t+

(
p1

2 (x)
i

2
+ p2 (x)

i

2

)
t2 + . . .

= GJ0 (x) +GJ1 (x) t+GJ2 (x) t
2 + . . .

From the generator function of GJn (x)

G (x, t) = GJ0 (x) +GJ1 (x) t+GJ2 (x) t
2 + · · ·+GJn (x) t

n + . . .

=
i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
.

Thus, the desired expression is obtained. So,

gGJ (x) (t) =

∞∑
n=0

GJ P1,P2,...,Pd+1,i,j(x)t
n =

i
2

(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)
.

□

From the Riordan matrix, we have

fGJ (x) (t) = t.

Then we write GJ (x) as following.

GJ (x) =
(
gGJ (x) (t) , fGJ (x) (t)

)
=

(
i
2

1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1
, t

)
.

If this Gaussian Jacobsthal polynomial matrix GJ (x) is finite, then the matrix
is

GJf (x) =


GJ0 (x) 0 0 · · ·
GJ1 (x) GJ0 (x) 0 · · ·
GJ2 (x) GJ1 (x) GJ0 (x) · · ·

...
...

. . .
...

GJn (x) GJn−1 (x) · · · GJ0 (x)


and

detGJf (x) = |GJf (x)| = (GJ0 (x))
n
=

(
i

2

)n

.
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We present two factorization of Pascal matrix including the d−Gaussian Jacobsthal
polynomials matrix. For that, let’s define an infinite C(x) as follows.

C(x)

=



2
i 0 0 · · ·

2(1−p1(x))
i

2
i 0 · · ·

2(1−p1(x)−p2(x))
i

2(2−p1(x))
i

2
i · · ·

2(1−p1(x)−p2(x)−p3(x))
i

2(3−2p1(x)−p2(x))
i

2(3−p1(x))
i

. . .
...

... 2(6−3p1(x)−p2(x))
i · · ·

c1(x) c3(x) · · · · · ·
c2(x) c4(x) · · · · · ·
...

...
...

...


(8)

where c1 (x) =
2(1−p1(x)−p2(x)−···−pd(x))

i , c2 (x) =
2(d−(d−1)p1(x)−(d−2)p2(x)−···−pd−1(x))

i ,

c3 (x) =
2(1−p1(x)−p2(x)−···−pd+1(x))

i and c4 (x) =
2((d+1)−dp1(x)−(d−1)p2(x)−···−pd(x))

i .
By using the infinite d− Gaussian Jacobsthal matrix and the infinite C(x) matrix
as in(8), we present the first factorization of the infinite Pascal matrix with the
following theorem.

Theorem 3.2. The factorization of the infinite Pascal matrix is as follows

P (x) = GJ (x) ∗ C (x)

Proof. We get the following generator function from the first column of matrix C(x)

gC(x) (t) =
2

i

(
1− p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1

1− t

)
.

From the Riordan matrix definition, we write fC(x) (t) =
t

1−t

Then we write matrix C (x) as follow,

C (x) =
(
gC(x) (t) , fC(x) (t)

)
=

(
2(1− p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1)

i(1− t)
,

t

1− t

)
.

By using the definition of infinite Pascal matrix and the infinite d−Gaussian
Jacobsthal polynomials matrix, we obtain the Riordan representation as follows

P =

(
1

1− t
,

t

1− t

)
, GJ (x) =

(
i
2

1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1
, t

)
.

Finally, we write C∗(x) and GJ (x) matrices instead of the desired equation by
using the definition of Riordan Group matrix multiplication. Thus, the proof is
completed. □
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Now, we present other factorization of the Pascal matrix including the d−Gaussian
Jacobsthal Polynomials matrix. For that, let’s define an infinite D∗(x) as follows

D∗(x)

=



2
i 0 0 · · ·

2(1−p1(x))
i

2
i 0

...

2(1−2p1(x)−p2(x))
i

2(2−p1(x))
i

2
i

...

2(1−3p1(x)−3p2(x)−p3(x))
i

2(3−2p1(x)−p2(x))
i

2(3−p1(x))
i

...
...

... 2(6−3p1(x)−p2(x))
i

. . .

d1(x) d3(x) · · ·
. . .

d2(x) d4(x) · · ·
. . .

...
...

...
. . .



=
2

i



1 0 0 · · ·

(1− p1(x)) 1 0
...

(1− 2p1(x)− p2(x)) (2− p1(x)) 1

(1− 3p1(x)− 3p2(x)− p3(x)) (3− 2p1(x)− p2(x)) (3− p1(x))
...

...
... (6− 3p1(x)− p2(x))

. . .

d1(x) d3(x) · · ·
. . .

d2(x) d4(x) · · ·
. . .

...
...

...
. . .


(9)

where d1 (x) =
2(1−dp1(x)−

d(d−1)
2! p

2
(x)−···−pd(x))

i , d2 (x) =
2(d−(d−1)p1(x)−(d−2)p2(x)−···−pd−1(x))

i

d3 (x) =
2(1−(d+1)p1(x)−

d(d+1)
2! p

2
(x)−···−pd(x))

i and d4 (x) =
2((d+1)−dp1(x)−(d−1)p2(x)−···−pd(x))

i .
From the infinite d− Gaussian Jacobsthal polynomials matrix and the infinite

D(x) matrix as in (9), we introduce the second factorization of the infinite Pascal
matrix with the following theorem.

Theorem 3.3. The factorization of the infinite Pascal matrix is as follows,

P (x) = GJ (x) ∗D (x) .

Proof. The proof is like that of Theorem 3.1.2 □

Now, we can find the inverse of d−Gaussian Jacobsthal polynomials matrix the
using the definition of reverse element Riordan group in [20].

Corollary 3.1. The inverse of d− Gaussian Jacobsthal polynomial is given by the
following.

GJ−1 (x) =

(
1− p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1

2/i
, t

)
.

3.2. The Infinite d− Gaussian Jacobsthal-Lucas Polynomials Matrix.
The d−Gaussian Fibonacci matrix polynomials is denoted by

GJL (x) = [GJLP1,P2,...,Pd+1,i,j(x)]
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and defined as follows

GJL (x)

=



(
2− i

2

)
0 0 · · ·

p1(x)
(
2− i

2

) (
2− i

2

)
0 · · ·

p21(x)
(
2− i

2

)
+ p2(x)

(
2− i

2

)
p1(x)

(
2− i

2

) (
2− i

2

)
· · ·

l1(x) l2(x) p1(x)
(
2− i

2

) . . .
...

...
...

...


= (gGJL(x) (t) , fGJL(x) (t)),

where

l1 (x) = p1
3 (x)

(
2− i

2

)
+ 2p1

2 (x) + p1 (x) p2 (x) (2− i) + p3 (x)

(
2− i

2

)
and

l2 (x) = p1
2 (x)

(
2− i

2

)
+ p2 (x)

(
2− i

2

)
.

This d− Gaussian Jacobsthal-Lucas polynomial matrix can also be written as,

GJL (x) =


GJL0 (x) 0 0 · · ·
GJL1 (x) GJL0 (x) 0 · · ·

GJL2 (x) GJL1 (x) GJL0 (x)
...

...
...

...
. . .


Note that GJL (x)is a Riordan matrix.

Theorem 3.4. The first column of GJL (x) matrix is,((
2− i

2

)
, p1 (x)

(
2− i

2

)
, p1

2 (x)

(
2− i

2

)
+ p2 (x)

(
2− i

2

)
, l1 (x) , . . .

)T

.

According to the Riordan group theory, the generator function of the first column
is as follows.

gGJL(x) (t) =

∞∑
n=0

GJLP1,P2,...,Pd+1,i,j(x)t
n =

(
2− i

2

)
(1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1)

.

Proof. The proof is done analogously to that of Theorem 3.1 □

Then we write GJL (x) as following.

GJL (x) =
(
gGJL(x) (t) , fGJL(x) (t)

)
=

( (
2− i

2

)
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

, t

)
.

If this Gaussian Jacobsthal-Lucas polynomial matrix GJL (x) is finite, then the
matrix is
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GJLf (x) =



GJL0 (x) 0 0 · · ·
GJL1 (x) GJL0 (x) 0 · · ·

GJL2 (x) GJL1 (x) GJL0 (x)
...

...
...

...
...

GJLn (x) GJLn−1 (x) · · ·
. . .


and

detGJLf (x) = |GJLf (x)| = (GjL0 (x))
n
=

(
2− i

2

)n

Now we give two factorization of Pascal matrix including the d−Gaussian Jacobsthal-
Lucas polynomials matrix. For that, let’s define an infinite C∗ (x) as follows.

C∗ (x) =

2
4−i 0 0 · · ·

2(1−p1(x))
4−i

2
4−i 0 · · ·

2(1−p1(x)−p2(x))
4−i

2(2−p1(x))
4−i

2
4−i · · ·

2(1−p1(x)−p2(x)−p3(x))
4−i

2(3−2p1(x)−p2(x))
4−i

2(3−p1(x))
4−i

. . .
...

... 2(6−2p1(x)−p2(x))
4−i · · ·

k1(x) k3(x) · · · · · ·
k2(x) k4(x) · · · · · ·

...
...

...
...


(10)

where k1 (x) =
2(1−p1(x)−p2(x)−···−pd(x))

4−i , k2 (x) =
2(d−(d−1)p1(x)−(d−2)p2(x)−···−pd−1(x))

4−i ,

k3 (x) =
2(1−p1(x)−p2(x)−···−pd+1(x))

4−i and k4 (x) =
2((d+1)−dp1(x)−(d−1)p2(x)−···−pd(x))

4−i .

By using the infinite d−Gaussian Jacobsthal-Lucas matrix and the infinite C∗(x)
matrix as in(10), we introduce the first factorization of the infinite Pascal matrix
with the following theorem

Theorem 3.5. The factorization of the infinite Pascal matrix is as follows P (x) =
GJL (x) ∗ C∗ (x).

Proof. We get the following generator function from the first column of matrix
C∗ (x),

gC∗(x) (t) =

(
2

4− i

)(
1− p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1

1− t

)
.

According to the Riordan matrix definition, we write fC∗(x) (t) =
t

1−t .

Then we write matrix C∗ (x) as follow,

C∗ (x) =
(
gC∗(x) (t) , fC∗(x) (t)

)
=

(
2(1− p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1)

(4− i) (1− t)
,

t

1− t

)
.

From the definition of infinite Pascal matrix and the infinite d−Gaussian Jacobsthal-
Lucas polynomials matrix, we have the following Riordan representation

P =

(
1

1− t
,

t

1− t

)
, GJL (x) =

( (
2− i

2

)
1− p1 (x) t− p2 (x) t2 − · · · − pd+1 (x) td+1

, t

)
.
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Finally, we write C∗ (x) and GJL (x) matrices instead of the desired equation by
using the definition of Riordan Group matrix multiplication. Thus, the proof is
completed. □

Now we give other factorization of Pascal matrix including the d− Gaussian
Jacobsthal- Lucas polynomials matrix. For that, let’s define an infinite D∗ (x) as
follows

D∗ (x) =



2
4−i 0 0 · · ·

2(1−p1(x))
4−i

2
4−i 0 · · ·

2(1−2p1(x)−p2(x))
4−i

2(2−p1(x))
4−i

2
4−i · · ·

2(1−3p1(x)−3p2(x)−p3(x))
4−i

2(3−2p1(x)−p2(x))
4−i

2(3−p1(x))
4−i

. . .

· · ·
... 2(6−2p1(x)−p2(x))

4−i · · ·
l1(x) l3(x) · · · · · ·
l2(x) l4(x) · · · · · ·
...

...
...

...



=

(
2

4− i

)


1 0 0 · · ·
(1− p1(x)) 1 0 · · ·

(1− 2p1(x)− p2(x)) (2− p1(x)) 1 · · ·

(1− 3p1(x)− 3p2(x)− p3(x)) (3− 2p1(x)− p2(x)) (3− p1(x))
. . .

...
... (6− 2p1(x)− p2(x)) · · ·

l1(x) l3(x) · · · · · ·
l2(x) l4(x) · · · · · ·
...

...
...

...


(11)

where l1 (x) =
2(1−dp1(x)−

d(d−1)
2! p

2
(x)−···−pd(x))

4−i , l2 (x) =
2(d−(d−1)p1(x)−(d−2)p2(x)−···−pd−1(x))

4−i ,

l3 (x) =
2(1−(d+1)p1(x)−

d(d−1)
2! p

2
(x)−···−pd(x))

4−i and l4 (x) =
2((d+1)−dp1(x)−(d−1)p2(x)−···−pd(x))

4−i .
From the infinite d−Gaussian Jacobsthal- Lucas polynomials matrix and the

infinite D∗(x) matrix as in (11), we present the second factorization of the infinite
Pascal matrix with the following theorem

Theorem 3.6. The factorization of the infinite Pascal matrix is as follows

P (x) = GJL (x) ∗D∗ (x) .

Proof. The proof is similar to that of Theorem 3.2 □

Now, we can find the inverse of d−Gaussian Jacobsthal- Lucas polynomials ma-
trix by using from the definition of reverse element Riordan group in [20].

Corollary 3.2. The inverse of d−Gaussian Jacobsthal-Lucas polynomial is given
by the following.

GJL−1 (x) =

(
1− p1 (x) t− p2 (x) t

2 − · · · − pd+1 (x) t
d+1(

2− i
2

) , t

)
.
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4. Conclusions

New generalized Gaussian Jacobsthal polynomials and Gaussian Jacobsthal-
Lucas polynomials have been introduction and studied. We gave the matrix rep-
resentations of d− Gaussian Jacobsthal and d- Gaussian Jacobsthal - Lucas poly-
nomials. Also, we introduced these matrices as binary representations according
to the Riordan group matrix representation. Using the Riordan method, we found
the factorizations of the Pascal matrix involving these polynomials. Also, we gave
the inverse of matrices of these polynomials.
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[12] E. Özkan, M. Taştan, On Gauss Fibonacci polynomials, on Gauss Lucas polynomials and
their applications, Communications in Algebra, 48,3,952-960, 2020.
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