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DYNAMICAL BEHAVIOR AND SOLUTIONS OF NONLINEAR

DIFFERENCE EQUATIONS OF TWENTIETH ORDER

LAMA SH. ALJOUFI AND M. B. ALMATRAFI

Abstract. Most natural phenomena arising in nonlinear sciences can be often

described using difference equations. This work aims to extract some new
analytic solutions for some rational difference equations of twentieth order.

We also investigate local and global stability, periodic behavior, oscillation,
and boundedness of the constructed solutions. The solutions are obtained

using the iteration method and the modulus operator. Moreover, the obtained

results are confirmed with some numerical examples which have been plotted
with the help of MATLAB software. The proposed approaches can be simply

applied for other high-order difference equations.

1. Introduction

Difference equations usually model the evolution of a specific real life problem
over the course of time. Several natural phenomena can be simply described on a
discrete time. Therefore, difference equations play a significant role in mathemat-
ics. Many scholars have successfully used difference equations to investigate some
biological, physical, economical, and engineering problems. For example, Elaydi
[1] used difference equations to study various phenomena such as the drug in the
blood system, the size of a population, the pricing of a certain commodity, the
Fibonacci Sequence, the propagation of annual plants, the transmission of infor-
mation, and others. Furthermore, difference equations have been well utilized to
solve differential equations numerically. In other words, when we discretize a given
differential equation, we obtain a corresponding difference equation. For instance,
Euler method, which is used to solve a first order differential equations numerically,
is the discretization of a first order differential equation.
A massive number of researchers have widely discussed the solutions, stability,
boundedness and other properties of difference equations. We mention some of
them. Sanbo and Elsayed [2] studied the local and global behavior, periodicity,
boundedness and some solutions of a fifth order recursive equation. Alayachi et
al. [3] discussed the stability, periodicity and the solutions of a sixth order recur-
sive equation. Almatrafi and Alzubaidi [4] presented an extensive study about the
equilibrium points, stability, periodic nature, and the exact solutions of an eighth
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order recursive relation. In [5], the authors explored the structures of the analytic
solutions of a rational recursive equation. Furthermore, Elsayed [6] discussed the
qualitative behaviors and the solutions of a nonlinear recursive equation. Ahmed
et al. [7], introduced some new forms and dynamical analysis for the solutions of
some nonlinear difference relations of fifteenth order. Finally, Kara and Yazlik [8]
solved a (k+ l)-order difference equation and presented the asymptotic approach of
the obtained solutions of the equation when k = 3, and l = k. More results about
such equations can be simply obtained in refs. [9–21].
The essential purpose of this article is to discuss and present some qualitative be-
haviors such as the equilibrium points, local and global approaches, boundedness,
and the analytic solutions of the nonlinear difference equations

un+1 =
un−19

±1±Π4
i=0un−(4i+3)

, n = 0, 1, 2, ...,

where the initial data u−19, u−18, ..., u0 are arbitrary non-zero real numbers. In
addition, some 2D figures are depicted with the help of MATLAB to validate the
constructed results.
In this article, we let mod (k, 4) = k− 4

[
k
4

]
, where [x] is defined to be the greatest

integer less than or equal to the real number x.

2. The Difference Equation un+1 =
un−19

1 + un−3un−7un−11un−15un−19

This section is devoted to introduce some new forms of solutions to the following
equation:

un+1 =
un−19

1 + un−3un−7un−11un−15un−19
, n = 0, 1, 2, ..., (1)

where the conditions u−j , j = 0, 1, 2, ..., 19, are real numbers. In addition, the
stability analysis and bounded solutions are extensively investigated.

Theorem 1. Assume that {un}∞n=−19 is a solution to Eq. (1). Then, for n =
0, 1, 2, ...,

u20n−k = ak

n−1∏
i=0

(
1 + (5i+ µk − 1)Ψk

1 + (5i+ µk)Ψk

)
, (2)

where Ψk =
4∏

j=0

amod(k,4)+4j , µk = 5 −
[
k
4

]
and u−k = ak, with rΨk ̸= −1 such

that r ∈ {1, 2, 3, ...}, k = 0, 1, 2, ..., 19.

Proof. The results are true when n = 0. We then assume that the results hold
when n− 1, as follows:

u20n−20−k = ak

n−2∏
i=0

(
1 + (5i+ µk − 1)Ψk

1 + (5i+ µk)Ψk

)
. (3)
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Next, from Eq. (1) and Eq. (3), one obtains

u20n−19 =
u20n−39

1 + u20n−23u20n−27u20n−31u20n−35u20n−39

=
a19

∏n−2
i=0

(
1+(5i+M19−1)P19

1+(5i+M19)P19

)
1 +

∏4
j=0

(
a4j+3

∏n−2
i=0

(
1+(5i+M4j+3−1)P4j+3

1+(5i+M4j+3)P4j+3

))
=

a19
∏n−2

i=0

(
1+(5i)a3a7a11a15a19

1+(5i+1)a3a7a11a15a19

)
1 + a3a7a11a15a19

∏n−2
i=0

(
1+(5i)a3a7a11a15a19

1+(5i+5)a3a7a11a15a19

) = a19

n−1∏
i=0

(
1 + (5i)a3a7a11a15a19

1 + (5i+ 1) a3a7a11a15a19

)
.

Moreover, using Eq. (1) and Eq. (3) gives

u20n−18 =
u20n−38

1 + u20n−22u20n−26u20n−30u20n−34u20n−38

=
a18

∏n−2
i=0

(
1+(5i+M18−1)P18

1+(5i+M18)P18

)
1 +

∏4
j=0

(
a4j+2

∏n−2
i=0

(
1+(5i+M4j+2−1)P4j+2

1+(5i+M4j+2)P4j+2

))
=

a18
∏n−2

i=0

(
1+(5i)a2a6a10a14a18

1+(5i+1)a2a6a10a14a18

)
1 + a2a6a10a14a18

∏n−2
i=0

(
1+(5i)a2a6a10a14a18

1+(5i+5)a2a6a10a14a18

) = a18

n−1∏
i=0

(
1 + (5i)a2a6a10a14a18

1 + (5i+ 1) a2a6a10a14a18

)
.

Further, using Eq. (1) and Eq. (3), we have

u20n−17 =
u20n−37

1 + u20n−21u20n−25u20n−29u20n−33u20n−37

=
a17

∏n−2
i=0

(
1+(5i+M17−1)P17

1+(5i+M17)P17

)
1 +

∏4
j=0

(
a4j+1

∏n−2
i=0

(
1+(5i+M4j+1−1)P4j+1

1+(5i+M4j+1)P4j+1

))
=

a17
∏n−2

i=0

(
1+(5i)a1a5a9a13a17

1+(5i+1)a1a5a9a13a17

)
1 + a1a5a9a13a17

∏n−2
i=0

(
1+(5i)a1a5a9a13a17

1+(5i+5)a1a5a9a13a17

) = a17

n−1∏
i=0

(
1 + (5i)a1a5a9a13a17

1 + (5i+ 1) a1a5a9a13a17

)
.

We also use Eq. (1) and Eq. (3) to have

u20n−16 =
u20n−36

1 + u20n−20u20n−24u20n−28u20n−32u20n−36

=
a16

∏n−2
i=0

(
1+(5i+M16−1)P16

1+(5i+M16)P16

)
1 +

∏4
j=0

(
a4j

∏n−2
i=0

(
1+(5i+M4j−1)P4j

1+(5i+M4j)P4j

))
=

a16
∏n−2

i=0

(
1+(5i)a0a4a8a12a16

1+(5i+1)a0a4a8a12a16

)
1 + a0a4a8a12a16

∏n−2
i=0

(
1+(5i)a0a4a8a12a16

1+(5i+5)a0a4a8a12a16

) = a16

n−1∏
i=0

(
1 + (5i)a0a4a8a12a16

1 + (5i+ 1) a0a4a8a12a16

)
.

Similarly, we can straightforwardly extract other formulas.

Theorem 2. Assume that the initial values u−19, u−18, ..., u0 ∈ [0,∞), then every
solution of Eq. (1) is bounded.
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Proof. Suppose that {un}∞n=−19 is a solution to Eq. (1). Then, from Eq. (1), we
have

0 ≤ un+1 =
un−19

1 + un−3un−7un−11un−15un−19
≤ un−19 for all n ≥ 0.

Hence, the sequence {u20n−i}∞n=0 , i = 0, 1, ..., 19 is decreasing and bounded from
above by µ = max{u−19, u−18, ..., u0}.

Theorem 3. Equation (1) has only one equilibrium point which is u = 0.

Proof. Using Eq. (1), we have

u =
u

1 + u5 ,

which is

u+ u6 = u.

Therefore, u = 0.

Theorem 4. Let u−19, u−18, ..., u0 ∈ [0,∞), then the equilibrium point u = 0 of
Eq. (1) is locally stable.

Proof. Suppose that ϵ > 0, and assume that {un}∞n=−19 is a solution to Eq. (1)
with

19∑
j=0

|u−j | < ϵ.

It suffices to show that |u1| < ϵ. That is

0 < u1 =
u−19

1 + u−3u−7u−11u−15u−19
≤ u−19 < ϵ.

This completes the proof.

Theorem 5. Let u−19, u−18, ..., u0 ∈ [0,∞), then the equilibrium point u = 0 of
Eq. (1) is globally asymptotically stable.

Proof. In Theorem 4, we showed that the fixed point u = 0 is locally stable.
Suppose that {un}∞n=−19 is a positive solution to Eq. (1). Next, it is sufficient to
prove that limn→∞ un = u = 0. Theorem 2 leads to un+1 < un−19 for all n ≥ 0.
Hence, the sequences {u20n−i}∞n=0 , i = 0, 1, ..., 19 are decreasing and bounded which
imply that the sequences {u20n−i}∞n=0, i = 0, 1, ..., 19 converge to limit (say Li ≥ 0).
Thus,

L19 =
L19

1 + L3L7L11L15L19
, L18 =

L18

1 + L2L6L10L14L18
, ..., L0 =

L0

1 + L0L4L8L12L16
,

which imply that L0 = L1 = ... = L19 = 0.

3. The Difference Equation un+1 =
un−19

1− un−3un−7un−11un−15un−19

In this part, we give new forms of exact solutions for the following equation:

un+1 =
un−19

1− un−3un−7un−11un−15un−19
, n = 0, 1, 2, ..., (4)

where u−j , j = 0, 1, 2, ..., 19, are real numbers.
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Theorem 6. Let {un}∞n=−19 be a solution to Eq. (4). Then, for n = 0, 1, 2, ...

u20n−k = ak

n−1∏
i=0

(
−1 + (5i+ µk − 1)Ψk

−1 + (5i+ µk)Ψk

)
, (5)

where Ψk =
∏4

j=0 amod(k,4)+4j , µk = 5 −
[
k
4

]
and u−k = ak, with rΨk ̸= 1 such

that r ∈ {1, 2, 3, ...}, k = 0, 1, 2, ..., 19.

Proof. The solutions are true at n = 0. We now assume that they are true at n−1.
This gives

u20n−20−k = ak

n−2∏
i=0

(
−1 + (5i+ µk − 1)Ψk

−1 + (5i+ µk)Ψk

)
. (6)

From Eq. (4) and Eq. (6), we have

u20n−19 =
u20n−39

1− u20n−23u20n−27u20n−31u20n−35u20n−39

=
a19

∏n−2
i=0

(
−1+(5i+M19−1)P19

−1+(5i+M19)P19

)
1−

∏4
j=0

(
a4j+3

∏n−2
i=0

(
−1+(5i+M4j+3−1)P4j+3

−1+(5i+M4j+3)P4j+3

))
=

a19
∏n−2

i=0

(
−1+(5i)a3a7a11a15a19

−1+(5i+1)a3a7a11a15a19

)
1− a3a7a11a15a19

∏n−2
i=0

(
−1+(5i)a3a7a11a15a19

−1+(5i+5)a3a7a11a15a19

) = a19

n−1∏
i=0

(
−1 + (5i)a3a7a11a15a19

−1 + (5i+ 1) a3a7a11a15a19

)
.

Moreover, using Eq. (4) and Eq. (6) gives

u20n−18 =
u20n−38

1− u20n−22u20n−26u20n−30u20n−34u20n−38

=
a18

∏n−2
i=0

(
−1+(5i+M18−1)P18

−1+(5i+M18)P18

)
1−

∏4
j=0

(
a4j+2

∏n−2
i=0

(
−1+(5i+M4j+2−1)P4j+2

−1+(5i+M4j+2)P4j+2

))
=

a18
∏n−2

i=0

(
−1+(5i)a2a6a10a14a18

−1+(5i+1)a2a6a10a14a18

)
1− a2a6a10a14a18

∏n−2
i=0

(
−1+(5i)a2a6a10a14a18

−1+(5i+5)a2a6a10a14a18

) = a18

n−1∏
i=0

(
−1 + (5i)a2a6a10a14a18

−1 + (5i+ 1) a2a6a10a14a18

)
.

Eq. (4) and Eq. (6) also lead to

u20n−17 =
u20n−37

1− u20n−21u20n−25u20n−29u20n−33u20n−37

=
a17

∏n−2
i=0

(
−1+(5i+M17−1)P17

−1+(5i+M17)P17

)
1−

∏4
j=0

(
a4j+1

∏n−2
i=0

(
−1+(5i+M4j+1−1)P4j+1

−1+(5i+M4j+1)P4j+1

))
=

a17
∏n−2

i=0

(
1+(5i)a1a5a9a13a17

1+(5i+1)a1a5a9a13a17

)
1 + a1a5a9a13a17

∏n−2
i=0

(
−1+(5i)a1a5a9a13a17

−1+(5i+5)a1a5a9a13a17

) = a17

n−1∏
i=0

(
−1 + (5i)a1a5a9a13a17

−1 + (5i+ 1) a1a5a9a13a17

)
.
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In addition, using Eq. (4) and Eq. (6) yields

u20n−16 =
u20n−36

1− u20n−20u20n−24u20n−28u20n−32u20n−36

=
a16

∏n−2
i=0

(
−1+(5i+M16−1)P16

−1+(5i+M16)P16

)
1−

∏4
j=0

(
a4j

∏n−2
i=0

(
−1+(5i+M4j−1)P4j

−1+(5i+M4j)P4j

))
=

a16
∏n−2

i=0

(
−1+(5i)a0a4a8a12a16

−1+(5i+1)a0a4a8a12a16

)
1− a0a4a8a12a16

∏n−2
i=0

(
−1+(5i)a0a4a8a12a16

−1+(5i+5)a0a4a8a12a16

) = a16

n−1∏
i=0

(
−1 + (5i)a0a4a8a12a16

−1 + (5i+ 1) a0a4a8a12a16

)
.

In a similar way, one can prove the remaining relations.

Theorem 7. Equation (4) has a unique fixed point u = 0, which is non-hyperbolic.

Proof. Using Eq. (4), we obtain

u =
u

1− u5 ,

which can be easily rearranged as follows:

u− u6 = u,

or, u6 = 0. As a result, the unique fixed point of Eq. (4) is u = 0. Next, we define
a function

g(x, y, z, u, v) =
x

1− xyzuv
,

on I5 where I is a subset of R such that 0 ∈ I and g(I5) ⊆ I. Obviously, g is
continuously differentiable on I5. Therefore, we have

gx(x, y, z, u, v) =
1

(1− xyzuv)
2 , gy(x, y, z, u, v) =

x2zuv

(1− xyzuv)
2 ,

gz(x, y, z, u, v) =
x2yuv

(1− uyzuv)
2 , gu(x, y, z, u, v) =

x2yzv

(1− xyzuv)
2 ,

gv(x, y, z, u, v) =
x2yzu

(1− xyzuv)
2 .

Hence,

gx(u, u, u, u, u) = 1, gy(u, u, u, u, u) = gz(u, u, u, u, u) = gu(u, u, u, u, u) = gv(u, u, u, u, u) = 0.

Consequently, the linearized equation of Eq. (4) about the obtained equilibrium
point is

zn+1 = zn−19,

whose characteristic equation is λ20 − 1 = 0. This gives

|λi| = 1, i = 1, 2, ..., 20.

Hence, the equilibrium point is non-hyperbolic.
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4. The Difference Equation un+1 =
un−19

−1 + un−3un−7un−11un−15un−19

This section presents some new theorems and solutions for the following equation:

un+1 =
un−19

−1 + un−3un−7un−11un−15un−19
, n = 0, 1, 2, ..., (7)

where the initial data u−j , j = 0, 1, 2, ..., 19 are real. The oscillation and the
periodic nature are also investigated.

Theorem 8. Every solution of Eq. (7) is periodic with period 40.

Proof. Equation (7) leads to

un+40 =
un+20

−1 +
∏4

i=0 un+20+4i

. (8)

Since

−1 +

4∏
i=0

un+20+4i = −1 +

3∏
i=0

un+20+4i
un+16

−1 +
∏4

i=0 un+16+4i

=
1

−1 +
∏4

i=0 un+16+4i

,

where

−1 +

4∏
i=0

un+16+4i =
1

−1 +
∏4

i=0 un+12+4i

.

Then,

−1 +

4∏
i=0

un+20+4i = −1 +

4∏
i=0

un+12+4i.

Similarly,

−1 +

4∏
i=0

un+12+4i = −1 +

4∏
i=0

un+4+4i and − 1 +

4∏
i=0

un+4+4i =
1

−1 +
∏4

i=0 un+4i

,

Therefore, from Eq. (7) and Ed. (8), we have

un+40 =

(
un

−1+
∏4

i=0 un+4i

)
(

1
−1+

∏4
i=0 un+4i

) = un , n = 0, 1, 2, ... .

Theorem 9. The periodic solution of Eq. (7) takes the form

u40n−k =
ak−(q(k))(20)q(k)

(−1 + Ψk−20)α(k)q(k)
, k = 0, 1, ..., 39 and n = 1, 2, ...

Here, u−j = aj , Ψj =
∏4

i=0 amod(j,4)+4i, where Ψj ̸= 1, j = 0, 1, 2, ..., 19, Ψ−l =

0, l = 1, 2, ..., 20, q(k) = 1
2 ((−1)[

k
20 ]+1 + 1) and α(k) = (−1)[

k
4 ]+1.

Proof. The definition of q(k) gives

q(0) = q(1) = ... = q(19) = 0 and q(20) = q(21) = ... = q(39) = 1.

Further,

α(i+ 8r) = −1, α(i+ 4 + 8r) = 1, i = 0, 1, 2, 3 and r = 0, 1, 2, 3.
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Therefore,

u1 =
u−19

−1 + u−3u−7u−11u−15u−19
=

a19
−1 + a3a7a11a15a19

,

u2 =
u−18

−1 + u−2u−6u−10u−14u−18
=

a18
−1 + a2a6a10a14a18

,

u3 =
u−17

−1 + u−1u−5u−9u−13u−17
=

a17
−1 + a1a5a9a13a17

,

u4 =
u−16

−1 + u0u−4u−8u−12u−16
=

a16
−1 + a0a4a8a12a16

,

u5 =
u−15

−1 + u1u−3u−7u−11u−15
= a15(−1 + a3a7a11a15a19),

u6 =
u−14

−1 + u2u−2u−6u−10u−14
= a14(−1 + a2a6a10a14a18),

u7 =
u−13

−1 + u3u−1u−5u−9u−13
= a13(−1 + a1a5a9a13a17),

u8 =
u−12

−1 + u4u0u−4u−8u−12
= a12(−1 + a0a4a8a12a16),

u9 =
u−11

−1 + u5u1u−3u−7u−11
=

a11
−1 + a3a7a11a15a19

,

u10 =
u−10

−1 + u6u2u−2u−6u−10
=

a10
−1 + a2a6a10a14a18

,

u11 =
u−9

−1 + u7u3u−1u−5u−9
=

a9
−1 + a1a5a9a13a17

,

u12 =
u−8

−1 + u8u4u0u−4u−8
=

a8
−1 + a0a4a8a12a16

,

u13 =
u−7

−1 + u9u5u1u−3u−7
= a7(−1 + a3a7a11a15a19),

u14 =
u−6

−1 + u10u6u2u−2u−6
= a6(−1 + a2a6a10a14a18),

u15 =
u−5

−1 + u11u7u3u−1u−5
= a5(−1 + a1a5a9a13a17),

u16 =
u−4

−1 + u12u8u4u0u−4
= a4(−1 + a0a4a8a12a16),

u17 =
u−3

−1 + u13u9u5u1u−3
=

a3
−1 + a3a7a11a15a19

,

u18 =
u−2

−1 + u14u10u6u2u−2
=

a2
−1 + a2a6a10a14a18

,

u19 =
u−1

−1 + u15u11u7u3u−1
=

a1
−1 + a1a5a9a13a17

,

u20 =
u0

−1 + u16u12u8u4u0
=

a0
−1 + a0a4a8a12a16

,

u21 =
u1

−1 + u17u13u9u5u1
= a19, u22 =

u2

−1 + u18u14u10u6u2
= a18,

u23 =
u3

−1 + u19u15u11u7u3
= a17, u24 =

u4

−1 + u20u16u12u8u4
= a16,

u25 =
u5

−1 + u21u17u13u9u5
= a15, u26 =

u6

−1 + u22u18u14u10u6
= a14,
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u27 =
u7

−1 + u23u19u15u11u7
= a13, u28 =

u8

−1 + u24u20u16u12u8
= a12,

u29 =
u9

−1 + u25u21u17u13u9
= a11, u30 =

u10

−1 + u26u22u18u14u10
= a10,

u31 =
u11

−1 + u27u23u19u15u11
= a9, u32 =

u12

−1 + u28u24u20u16u12
= a8,

u33 =
u13

−1 + u29u25u21u17u13
= a7, u34 =

u14

−1 + u30u26u22u18u14
= a6,

u35 =
u15

−1 + u31u27u23u19u15
= a5, u36 =

u16

−1 + u32u28u24u20u16
= a4,

u37 =
u17

−1 + u33u29u25u21u17
= a3, u38 =

u18

−1 + u34u30u26u22u18
= a2,

u39 =
u19

−1 + u35u31u27u23u19
= a1, u40 =

u20

−1 + u36u32u28u24u20
= a0.

The results are demonstrated by induction.

Theorem 10. Equation (7) has two non-hyperbolic fixed points u = 0 and u = 5
√
2.

Proof. The proof is similar to the proof of Theorem 7, and will be omitted.

Theorem 11. Equation (7) is periodic of period 20 if and only if Ψk = 2, k =
0, 1, 2, 3 and the solutions have the form

u20n−k = ak, k = 0, 1, ..., 19 and n = 0, 1, 2, ... .

Proof. The proof can be easily done by using Theorem 9.

Theorem 12. Let a0, a1, ..., a19 ∈ (0, 1). Then, the solution {un}∞n=−19 oscillates
about the point u = 0, with positive semicycles of length 20, and negative semicycles
of length 20.

Proof. Theorem 9 leads to u1, u2, ..., u20 < 0 and u21, u22, ..., u40 > 0, and the
result is shown by induction.

5. The Difference Equation un+1 =
un−19

−1− un−3un−7un−11un−15un−19

This section introduces new exact solutions to the following equation:

un+1 =
un−19

−1− un−3un−7un−11un−15un−19
, n = 0, 1, 2, ..., (9)

where the initial values u−j , j = 0, 1, 2, ..., 19 are real numbers. Furthermore, we
present some relevant theorems for this equation.

Theorem 13. Every solution of Eq. (9) is periodic with period 40.

Proof. The proof is omitted.

Theorem 14. The periodic solution of Eq. (9) takes the form

u40n−k =
ak−(q(k))(20)q(k)

(−1−Ψk−20)α(k)q(k)
, k = 0, 1, ..., 39 and n = 1, 2, ...

Here, u−j = aj , Ψj =
∏4

i=0 amod(j,4)+4i, where Ψj ̸= 1, j = 0, 1, 2, ..., 19, Ψ−l =

0, l = 1, 2, ..., 20, q(k) = 1
2 ((−1)[

k
20 ]+1 + 1) and α(k) = (−1)[

k
4 ]+1.

Proof. The definition of q(k) gives

q(0) = q(1) = ... = q(19) = 0 and q(20) = q(21) = ... = q(39) = 1.
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Moreover,

α(i+ 8r) = −1, α(i+ 4 + 8r) = 1, i = 0, 1, 2, 3 and r = 0, 1, 2, 3.

Therefore,

u1 =
u−19

−1− u−3u−7u−11u−15u−19
= − a19

1 + a3a7a11a15a19
,

u2 =
u−18

−1− u−2u−6u−10u−14u−18
= − a18

1 + a2a6a10a14a18
,

u3 =
u−17

−1− u−1u−5u−9u−13u−17
= − a17

1 + a1a5a9a13a17
,

u4 =
u−16

−1− u0u−4u−8u−12u−16
= − a16

1 + a0a4a8a12a16
,

u5 =
u−15

−1− u1u−3u−7u−11u−15
= −a15(1 + a3a7a11a15a19),

u6 =
u−14

−1− u2u−2u−6u−10u−14
= −a14(1 + a2a6a10a14a18),

u7 =
u−13

−1− u3u−1u−5u−9u−13
= −a13(1 + a1a5a9a13a17),

u8 =
u−12

−1− u4u0u−4u−8u−12
= −a12(1 + a0a4a8a12a16),

u9 =
u−11

−1− u5u1u−3u−7u−11
= − a11

1 + a3a7a11a15a19
,

u10 =
u−10

−1− u6u2u−2u−6u−10
= − a10

1 + a2a6a10a14a18
,

u11 =
u−9

−1− u7u3u−1u−5u−9
= − a9

1 + a1a5a9a13a17
,

u12 =
u−8

−1− u8u4u0u−4u−8
= − a8

1 + a0a4a8a12a16
,

u13 =
u−7

−1− u9u5u1u−3u−7
= −a7(1 + a3a7a11a15a19),

u14 =
u−6

−1− u10u6u2u−2u−6
= −a6(1 + a2a6a10a14a18),

u15 =
u−5

−1− u11u7u3u−1u−5
= −a5(1 + a1a5a9a13a17),

u16 =
u−4

−1− u12u8u4u0u−4
= −a4(1 + a0a4a8a12a16),

u17 =
u−3

−1− u13u9u5u1u−3
= − a3

1 + a3a7a11a15a19
,

u18 =
u−2

−1− u14u10u6u2u−2
= − a2

1 + a2a6a10a14a18
,

u19 =
u−1

−1− u15u11u7u3u−1
= − a1

1 + a1a5a9a13a17
,

u20 =
u0

−1− u16u12u8u4u0
= − a0

1 + a0a4a8a12a16
,

u21 =
u1

−1− u17u13u9u5u1
= a19, u22 =

u2

−1− u18u14u10u6u2
= a18,
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u23 =
u3

−1− u19u15u11u7u3
= a17, u24 =

u4

−1− u20u16u12u8u4
= a16,

u25 =
u5

−1− u21u17u13u9u5
= a15, u26 =

u6

−1− u22u18u14u10u6
= a14,

u27 =
u7

−1− u23u19u15u11u7
= a13, u28 =

u8

−1− u24u20u16u12u8
= a12,

u29 =
u9

−1− u25u21u17u13u9
= a11, u30 =

u10

−1− u26u22u18u14u10
= a10,

u31 =
u11

−1− u27u23u19u15u11
= a9, u32 =

u12

−1− u28u24u20u16u12
= a8,

u33 =
u13

−1− u29u25u21u17u13
= a7, u34 =

u14

−1− u30u26u22u18u14
= a6,

u35 =
u15

−1− u31u27u23u19u15
= a5, u36 =

u16

−1− u32u28u24u20u16
= a4,

u37 =
u17

−1− u33u29u25u21u17
= a3, u38 =

u18

−1− u34u30u26u22u18
= a2,

u39 =
u19

−1− u35u31u27u23u19
= a1, u40 =

u20

−1− u36u32u28u24u20
= a0.

The result follows by induction.

Theorem 15. Equation (9) has two non-hyperbolic fixed points u = 0 and u =

− 5
√
2.

Proof. The proof is similar to the proof of Theorem 7, and will be omitted.

Theorem 16. Equation (9) is periodic of period 20 if and only if Ψk = −2,
k = 0, 1, 2, 3 and the solutions have the form

u20n−k = ak, k = 0, 1, ..., 19 and n = 0, 1, 2, ... .

Proof. It can be easily shown from Theorem 14.

Theorem 17. Let a0, a1, ..., a19 ∈ [0,∞). Then, the solution {un}∞n=−19 oscillates
about the point u = 0, with positive semicycles of length 20, and negative semicycles
of length 20.

Proof. Theorem 14 gives u1, u2, ..., u20 < 0 and u21, u22, ..., u40 > 0. Hence, the
result can be done by induction.

6. Numerical Examples

This section is added to verify the obtained theoretical results. We present some
2D figures plotted by using MATLAB for the stability, periodicity, and bounded
solutions of the proposed equations.
Example 1. The behavior of the solutions of Eq. (1) when u−19 = 0.5, u−18 = 0.7,
u−17 = 0.52, u−16 = −0.1, u−15 = 0.3, u−14 = 0.1, u−13 = 1, u−12 = 2.2, u−11 =
0.1, u−10 = 0.1, u−9 = −0.2, u−8 = 0.52, u−7 = −0.2, u−6 = 0.8, u−5 = 0.9,
u−4 = 0.3, u−3 = 0.2, u−2 = −0.5, u−1 = 0.1 and u0 = 0.2 is shown in Figure 1
(right).
Example 2. The behavior of the solutions of Eq. (4) is depicted in Figure 1 (left)
under the initial data u−19 = 0.1, u−18 = 0.2, u−17 = 0.2, u−16 = −0.1, u−15 =
0.3, u−14 = 0.3, u−13 = 0.1, u−12 = −1, u−11 = 2.2, u−10 = 0.1, u−9 = −0.2,
u−8 = 0.52, u−7 = 0.2, u−6 = 0.8, u−5 = 0.9, u−4 = 0.3, u−3 = 0.2, u−2 = −0.01,
u−1 = 0.3 and u0 = 0.1.
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Figure 1. The left graph demonstrates the periodicity of Eq. (1)
while the right graph illustrates the periodicity of Eq. (4).

Example 3. The solutions of Eq. (7) are shown in Figure 2 (left) when u−19 = 4,
u−18 = 0.5, u−17 = 0.2, u−16 = −5, u−15 = −2, u−14 = 2, u−13 = −3, u−12 = −10,
u−11 = 1, u−10 = −7, u−9 = −3.5, u−8 = 5, u−7 = 5, u−6 = −2, u−5 = −2,
u−4 = 0.8, u−3 = −0.2, u−2 = 0.1, u−1 = −8 and u0 = −3.
Example 4. Figure 2 (right) shows the behavior of the solutions of Eq. (9) under
the conditions u−19 = 4, u−18 = 0.5, u−17 = 0.2, u−16 = −5, u−15 = −2, u−14 = 2,
u−13 = −3, u−12 = −10, u−11 = 1, u−10 = −7, u−9 = −3.5, u−8 = 5, u−7 = −2,
u−6 = 1, u−5 = 8, u−4 = −4, u−3 = 1, u−2 = 1, u−1 = 8 and u0 = −3.

0 50 100 150 200 250 300

n

-250

-200

-150

-100

-50

0

50

100

150

200

250

u
(n

)

Periodicity

0 50 100 150 200 250 300

n

-500

-400

-300

-200

-100

0

100

200

u
(n

)

Periodicity

Figure 2. The left sketch presents the periodicity of Eq. (7) while
the right figure illustrates the periodicity of Eq. (9).

7. Conclusion

This article has discussed some new solutions and theorems for novel difference
equations. We have presented the obtained rational solutions using the modulus
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operator. The solutions of Eq. (1) are found bounded. Furthermore, the equilib-
rium point of Eq. (1) is locally and globally stable. In Theorem 7, we presented
that Eq. (4) has a unique non-hyperbolic fixed point u = 0, while Theorem 8 proves
that every solution of Eq. (7) is periodic with period 40. Moreover, we proved that
Eq. (7) is periodic of period 20 if and only if Ψk = 2. In Theorem 13, we showed
that every solution of Eq. (9) is periodic with period 40. Equation (9) is periodic
of period 20 if and only if Ψk = −2. Finally, we have confirmed the constructed
theoretical results in the presented figures. For example, Figure 2 (right) shows the
periodic solutions of Eq. (9). The used methods can be utilized to solve some high
order nonlinear equations.
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