SOME INEQUALITIES FOR THE RATIONAL FUNCTIONS WITH PRESCRIBED POLES AND RESTRICTED ZEROS

M. H. GULZAR, B. A. ZARGAR AND RUBIA AKHTER

Abstract

Let $r(z)$ be a rational function with at most n poles $a_{1}, a_{2}, \ldots, a_{n}$ where $\left|a_{j}\right|>1, \quad 1 \leq j \leq n$. This paper investigates the modulus of a derivative of a rational function $r(z)$ on the unit circle where $r(z)=\left(z-z_{0}\right)^{\nu} u(z)$. we establish an upper bound when $r(z)$ has ν zeros at z_{0} where $\left|z_{0}\right|<1$ and remaining zeros are outside the unit disc and a lower bound when $r(z)$ has ν zeros outside the disc $\{|z| \leq k, \quad k \leq 1\}$ and remaing zeros inside the disk $\{|z| \leq k, \quad k \leq 1\}$.

1. Introduction

Let \mathcal{P}_{n} be the class of polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree at most n. Let D_{k-} denotes the region inside the circle $T_{k}=\{z ;|z|=k>0\}$ and D_{k+} the region outside T_{k}. For $a_{j} \in \mathbb{C}$ with $j=1,2, \ldots, n$, we write
$W(z)=\prod_{j=1}^{n}\left(z-a_{j}\right) \quad ; \quad B(z)=\prod_{j=1}^{n}\left(\frac{1-\overline{a_{j}} z_{j}}{z-a_{j}}\right)$
and
$\mathcal{R}_{n}=\mathcal{R}_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left\{\frac{P(z)}{W(z)}: P \in \mathcal{P}_{n}\right\}$,
then \mathcal{R}_{n} is the set of all rational functions with poles $a_{1}, a_{2}, \ldots, a_{n}$ at most and with finite limit at infinity.We observe that $B(z) \in \mathcal{R}_{n}$. For f defined on T_{k} in the complex plane, we set

$$
\max _{z \in T_{k}}|f(z)|=\sup _{z \in T_{k}}|f(z)|
$$

Throughout this paper, we also assume that all poles $a_{1}, a_{2}, \ldots, a_{n}$ are in D_{1+}.
The following famous result is due to Bernstein[7]
Theorem 1.1 If $P \in \mathcal{P}_{n}$ then $\max _{z \in T_{1}}\left|P^{\prime}(z)\right| \leq n \max _{z \in T_{1}}|P(z)|$.
The following result was conjectured by Erdös and later proved by Lax [10]
Theorem 1.2 If $P \in \mathcal{P}_{n}$ and all the zeros of $P(z)$ lie in $T_{1} \cup D_{1+}$ then for $z \in T_{1}$

[^0]we have
\[

$$
\begin{equation*}
\max _{z \in T_{1}}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{z \in T_{1}}|P(z)| \tag{1}
\end{equation*}
$$

\]

Equality in (1) holds for $P(z)=\alpha z^{n}+\beta$ with $|\alpha|=|\beta|$.
Li, Mohapatra and Rodriguez [13] have proved Bernstein-type inequalities similar to Theorem 1.1 and Theorem 1.2 for rational functions with prescribed poles where they replaced z^{n} by Blaschkes product $B(z)$.Among other things they proved the following generalisation of Theorem 1.2:

Theorem 1.3 Suppose $r \in \mathcal{R}_{n}$ and all zeros of r lie in $T_{1} \cup D_{1+}$, then for $z \in T_{1}$, we have

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left|B^{\prime}(z)\right| \max _{z \in T_{1}}|r(z)| \tag{2}
\end{equation*}
$$

Equality in (2) holds for $r(z)=\alpha B(z)+\beta$ with $|\alpha|=|\beta|=1$.
Theorem 1.4 Suppose $r \in \mathcal{R}_{n}$, where r has exactly n poles at $a_{1}, a_{2}, \ldots, a_{n}$ and all the zeros of r lie in $T_{1} \cup D_{1-}$, then for $z \in T_{1}$,

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|-(n-m)\right\}|r(z)| \tag{3}
\end{equation*}
$$

where m is number of zeros of r.
Aziz and Shah [5] considered a class of rational functions \mathcal{R}_{n} not vanishing in $T_{k} \cup D_{k+}$ where $k \leq 1$ and proved the following generalisation of Theorem 1.4.

Theorem 1.5 Suppose $r \in \mathcal{R}_{n}$, where r has exactly n poles at $a_{1}, a_{2}, \ldots, a_{n}$ and all zeros of r lie in $T_{k} \cup D_{k-}$ where $k \leq 1$, then for $z \in T_{1}$, we have

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left\{\left|B^{\prime}(z)\right|+\frac{2 m-n(1+k)}{(k+1)}\right\}|r(z)| \tag{4}
\end{equation*}
$$

where m is number of zeros of $r(z)$. The result is best possible and equality holds for $r(z)=\frac{(z+k)^{m}}{(z-a)^{n}}$ where $a>1, k \leq 1$ and $B(z)=\left(\frac{1-a z}{z-a}\right)^{n}$ evaluated at $z=1$.

Let $D_{\alpha} P(z)$ be an operator that carries $n^{t h}$ degree polynomial $P(z)$ to the polynomial

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z), \quad \alpha \in \mathbb{C}
$$

of degree at most $(n-1) . D_{\alpha} P(z)$ generalizes the ordinary derivative $P^{\prime}(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

Aziz was among the first to extend these results to polar derivatives. Aziz [2] proved inequality (1) due to Lax [10] in terms of polar derivatives by showing that for $P \in \mathcal{P}_{n}$ having no zeros in D_{1-} and $|\alpha| \geq 1$,

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \leq \frac{n}{2}\left(\left|\alpha z^{n-1}\right|+1\right) \max _{z \in T_{1}}|P(z)| \quad \text { for } \quad z \in T \cup D_{1+} \tag{5}
\end{equation*}
$$

Xin Li [15] pointed out that inequalities involving polynomials and their polar derivatives are a special case of the inequalities for the rational functions by considering $a_{i}=\alpha$ for each $i=1,2, \ldots, n$, that is for $\left|a_{i}\right|=|\alpha|>1$,

$$
\begin{equation*}
r^{\prime}(z)=\left(\frac{P(z)}{(z-\alpha)^{n}}\right)^{\prime}=\frac{-D_{\alpha} P(z)}{(z-\alpha)^{n+1}} \tag{6}
\end{equation*}
$$

2. Preliminaries

For the proof of the main Theorems we need the following Lemmas. The first Lemma which we need is due to Li , Mohapatra and Rodriguez [15].
Lemma 2.1 If $r \in \mathcal{R}_{n}$ and $r^{*}(z)=B(z) \overline{r\left(\frac{1}{\bar{z}}\right)}$ then for $z \in T_{1}$, we have

$$
\begin{equation*}
\left|\left(r^{*}(z)\right)^{\prime}\right|+\left|r^{\prime}(z)\right| \leq\left|B^{\prime}(z)\right|\|r\| . \tag{7}
\end{equation*}
$$

Equality in (7) holds in $r(z)=u B(z)$ with $u \in T_{1}$.
Lemma 2.2 If $z \in T_{1}$, then

$$
\operatorname{Re}\left(\frac{z W^{\prime}(z)}{W(z)}\right)=\frac{n-\left|B^{\prime}(z)\right|}{2}
$$

Lemma 2.2 is due to Aziz and Zargar [16].
Next Lemma is due to N. Arunrat and K. M. Nakprasit [1].
Lemma 2.3 Let $r \in \mathcal{R}_{n}$, where r has exactly n poles at $a_{1}, a_{2}, \ldots, a_{n}$ and all its zeros lie in $T_{k} \cup D_{k-}$ where $k \leq 1$, then for $z \in T_{1}$,

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \geq \frac{1}{2}\left[\left|B^{\prime}(z)\right|+\frac{2 t-n(1+k)}{1+k}\right](|r(z)|+m) \tag{8}
\end{equation*}
$$

where t is the number of zeros of r with counting multiplicity and $m=\min _{z \in T_{k}}|r(z)|$.

3. Main Results

In this paper, we propose to relax the condition that all the zeros of the rational function $r(z)$ lie in $|z| \leq k, \quad k \leq 1$. In this direction we prove the following result which gives generalisation and refinement of (4).
Theorem 3.1 If $r \in \mathcal{R}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|>k, \quad k \leq 1$ and the remaining $t-\nu$ zeros in $T_{k} \cup D_{k-}$, then

$$
\begin{align*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| & \geq \frac{1}{2}\left\{\left(\frac{\left|1-\left|z_{0}\right|\right|}{1+\left|z_{0}\right|}\right)^{\nu}\left[\left|B^{\prime}(z)\right|+\frac{2(t-\nu)-n(1+k)}{1+k}\right]-\frac{2 \nu}{\left(1+\left|z_{0}\right|\right)}\right\} \max _{z \in T_{1}}|r(z)| \\
& +\frac{1}{2}\left(\frac{\left|1-\left|z_{0}\right|\right|}{k+\left|z_{0}\right|}\right)^{\nu}\left[\left|B^{\prime}(z)\right|+\frac{2(t-\nu)-n(1+k)}{1+k}\right] \min _{z \in T_{k}}|r(z)| \tag{9}
\end{align*}
$$

Proof. Let $r(z)=\left(z-z_{0}\right)^{\nu} u(z) \in \mathcal{R}_{n}$ where $u(z) \in \mathcal{R}_{n}$ having all its $t-\nu$ zeros in $T_{k} \cup D_{k+}$ where $k \leq 1$. Then

$$
r^{\prime}(z)=\left(z-z_{0}\right)^{\nu} u^{\prime}(z)+\nu\left(z-z_{0}\right)^{\nu-1} u(z)
$$

Or

$$
\begin{aligned}
\left|r^{\prime}(z)\right| & =\left|\left(z-z_{0}\right)^{\nu} u^{\prime}(z)+\nu\left(z-z_{0}\right)^{\nu-1} u(z)\right| \\
& \geq\left|\left(z-z_{0}\right)^{\nu} u^{\prime}(z)\right|-\nu\left|\left(z-z_{0}\right)^{\nu-1} u(z)\right|
\end{aligned}
$$

Which implies

$$
\begin{equation*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| \geq \max _{z \in T_{1}}\left|\left(z-z_{0}\right)^{\nu} u^{\prime}(z)\right|-\nu \max _{z \in T_{1}}\left|\left(z-z_{0}\right)^{\nu-1} u(z)\right| . \tag{10}
\end{equation*}
$$

Using the fact that for $z \in T_{1}$,

$$
\left|1-\left|z_{0}\right|\right| \leq\left|z-z_{0}\right| \leq 1+\left|z_{0}\right|
$$

we obtain from (10)

$$
\begin{equation*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| \geq\left|1-\left|z_{0}\right|\right|^{\nu} \max _{z \in T_{1}}\left|u^{\prime}(z)\right|-\nu\left(1+\left|z_{0}\right|\right)^{\nu-1} \max _{z \in T_{1}}|u(z)| \tag{11}
\end{equation*}
$$

By Lemma 2.3, we have for $z \in T_{1}$

$$
\begin{equation*}
\max _{z \in T_{1}}\left|u^{\prime}(z)\right| \geq \frac{1}{2}\left[\left|B^{\prime}(z)\right|+\frac{2(t-\nu)-n(1+k)}{1+k}\right]\left(\max _{z \in T_{1}}|u(z)|+m^{\prime}\right) \tag{12}
\end{equation*}
$$

where $m^{\prime}=\min _{z \in T_{k}}|u(z)|$.
Using (12) in (11) we obtain for $z \in T_{1}$

$$
\begin{align*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| & \geq \frac{\left|1-\left|z_{0}\right|\right|^{\nu}}{2}\left[\left|B^{\prime}(z)\right|+\frac{2(t-\nu)-n(1+k)}{1+k}\right]\left(\max _{z \in T_{1}}|u(z)|+m^{\prime}\right) \\
& -\nu\left(1+\left|z_{0}\right|\right)^{\nu-1} \max _{z \in T_{1}}|u(z)| \\
& =\left\{\frac{\left|1-\left|z_{0}\right|\right|^{\nu}}{2}\left[\left|B^{\prime}(z)\right|+\frac{2(t-\nu)-n(1+k)}{1+k}\right]-\nu\left(1+\left|z_{0}\right|\right)^{\nu-1}\right\} \max _{z \in T_{1}}|u(z)| \\
& +\frac{\left|1-\left|z_{0}\right|\right|^{\nu}}{2}\left[\left|B^{\prime}(z)\right|+\frac{2(t-\nu)-n(1+k)}{1+k}\right] m^{\prime} \tag{13}
\end{align*}
$$

The relation between $u(z)$ and $r(z)$ implies that

$$
\begin{align*}
\max _{z \in T_{1}}|u(z)| & =\max _{z \in T_{1}}\left[\frac{1}{\left|z-z_{0}\right|^{\nu}}|r(z)|\right] \tag{14}\\
& \geq \frac{1}{\left(1+\left|z_{0}\right|\right)^{\nu}} \max _{z \in T_{1}}|r(z)|
\end{align*}
$$

and

$$
\begin{align*}
\min _{z \in T_{k}}|u(z)| & =\min _{z \in T_{k}}\left[\frac{1}{\left|z-z_{0}\right|^{\nu}}|r(z)|\right] \tag{15}\\
& \geq \frac{1}{\left(k+\left|z_{0}\right|\right)^{\nu}} \max _{z \in T_{k}}|r(z)|
\end{align*}
$$

Using (14) and (15) in (13) we get inequality (9).
If we take $t=n$ in (9), then we have the following result:
Corollary 3.1 If $r \in \mathcal{R}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|>k, \quad k \leq 1$ and the remaining $n-\nu$ zeros in $T_{k} \cup D_{k-}$, then for $z \in T_{1}$

$$
\begin{align*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| & \geq \frac{1}{2}\left\{\left(\frac{\left|1-\left|z_{0}\right|\right|}{1+\left|z_{0}\right|}\right)^{\nu}\left[\left|B^{\prime}(z)\right|+\frac{n(1-k)-2 \nu}{1+k}\right]-\frac{2 \nu}{\left(1+\left|z_{0}\right|\right)}\right\} \max _{z \in T_{1}}|r(z)| \\
& +\frac{1}{2}\left(\frac{\left|1-\left|z_{0}\right|\right|}{k+\left|z_{0}\right|}\right)^{\nu}\left[\left|B^{\prime}(z)\right|+\frac{n(1-k)-2 \nu}{1+k}\right] \min _{z \in T_{k}}|r(z)| . \tag{16}
\end{align*}
$$

In particular if we consider $r(z)=\frac{P(z)}{(z-\alpha)^{n}}$ and noting that

$$
r^{\prime}(z)=\left(\frac{P(z)}{(z-\alpha)^{n}}\right)^{\prime}=\frac{-D_{\alpha} P(z)}{(z-\alpha)^{n+1}}
$$

and

$$
B^{\prime}(z)=n \frac{\left(\alpha^{2}-1\right)}{(z-\alpha)^{2}}\left(\frac{1-\alpha z}{z-\alpha}\right)^{n-1}
$$

Hence for $z \in T_{1}$

$$
\left|B^{\prime}(z)\right|=n \frac{\left(|\alpha|^{2}-1\right)}{|z-\alpha|^{2}}
$$

we obtain the following result in terms of polar derivative.
Corollary 3.2 If $P \in \mathcal{P}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|>1$ and the remaining $n-\nu$ zeros in $T_{1} \cup D_{1-}$, then for any complex number α with $|\alpha|>1$ and for $z \in T_{1}$

$$
\begin{align*}
\max _{z \in T_{1}}\left|D_{\alpha} P(z)\right| & \geq \frac{1}{2}\left\{\left(\frac{\left|1-\left|z_{0}\right|\right|}{1+\left|z_{0}\right|}\right)^{\nu}(n-\nu)(|\alpha|-1)-\frac{2 \nu}{\left(1+\left|z_{0}\right|\right)}(|\alpha|+1)\right\} \max _{z \in T_{1}}|P(z)| \\
& +\frac{1}{2}\left(\frac{\left|1-\left|z_{0}\right|\right|}{1+\left|z_{0}\right|}\right)^{\nu}(n-\nu)(|\alpha|-1)\left(\frac{|\alpha|-1}{|\alpha|+1}\right)^{n} \min _{z \in T_{1}}|P(z)| . \tag{17}
\end{align*}
$$

Dividing both of (17) by α and letting $|\alpha| \rightarrow \infty$, we get the following result: Corollary 3.3 If $P \in \mathcal{P}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|>1$ and the remaining $n-\nu$ zeros in $T_{1} \cup D_{1-}$, then for $z \in T_{1}$

$$
\begin{align*}
\max _{z \in T_{1}}\left|P^{\prime}(z)\right| & \geq \frac{(n-\nu)}{2}\left\{\left(\frac{\left|1-\left|z_{0}\right|\right|}{1+\left|z_{0}\right|}\right)^{\nu}-\frac{2 \nu}{\left(1+\left|z_{0}\right|\right)}\right\} \max _{z \in T_{1}}|P(z)| \\
& +\frac{(n-\nu)}{2}\left(\frac{\left|1-\left|z_{0}\right|\right|}{1+\left|z_{0}\right|}\right)^{\nu} \min _{z \in T_{1}}|P(z)| . \tag{18}
\end{align*}
$$

Theorem 3.2 If $r \in \mathcal{R}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|<1$ and the remaining $n-\nu$ zeros in $T_{1} \cup D_{1+}$, then for $z \in T_{1}$

$$
\begin{equation*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left(\frac{1+\left|z_{0}\right|}{1-\left|z_{0}\right|}\right)^{\nu}\left(\left|B^{\prime}(z)\right|+\frac{\nu\left(1-\left|z_{0}\right|\right)}{1+\left|z_{0}\right|}\right) \max _{z \in T_{1}}|r(z)| \tag{19}
\end{equation*}
$$

Proof. Let $r(z)=\left(z-z_{0}\right)^{\nu} u(z) \in \mathcal{R}_{n}$ where $u(z) \in \mathcal{R}_{n}$ having all its $n-\nu$ zeros in $T_{1} \cup D_{1+}$. Then

$$
r^{\prime}(z)=\left(z-z_{0}\right)^{\nu} u^{\prime}(z)+\nu\left(z-z_{0}\right)^{\nu-1} u(z)
$$

Or

$$
\begin{aligned}
\left|r^{\prime}(z)\right| & =\left|\left(z-z_{0}\right)^{\nu} u^{\prime}(z)+\nu\left(z-z_{0}\right)^{\nu-1} u(z)\right| \\
& \leq\left|\left(z-z_{0}\right)^{\nu} u^{\prime}(z)\right|+\nu\left|\left(z-z_{0}\right)^{\nu-1} u(z)\right|
\end{aligned}
$$

Which implies

$$
\begin{equation*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| \leq \max _{z \in T_{1}}\left|\left(z-z_{0}\right)^{\nu} u^{\prime}(z)\right|+\nu \max _{z \in T_{1}}\left|\left(z-z_{0}\right)^{\nu-1} u(z)\right| \tag{20}
\end{equation*}
$$

Using the fact that for $z \in T_{1}$ and $\left|z_{0}\right|<1$,

$$
1-\left|z_{0}\right| \leq\left|z-z_{0}\right| \leq 1+\left|z_{0}\right|
$$

we obtain from (20)

$$
\begin{equation*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| \leq\left(1+\left|z_{0}\right|\right)^{\nu} \max _{z \in T_{1}}\left|u^{\prime}(z)\right|+\nu\left(1+\left|z_{0}\right|\right)^{\nu-1} \max _{z \in T_{1}}|u(z)| \tag{21}
\end{equation*}
$$

Let $u(z)=\frac{h(z)}{W(z)} \in \mathcal{R}_{n}$ where $h(z)=\sum_{j=0}^{n-\nu} a_{j} z^{j}$. If $b_{1}, b_{2}, \ldots, b_{n-\nu}$ are the zeros of $h(z)$, then $\left|b_{j}\right| \geq 1, j=1,2, \ldots, n-\nu$ and we have

$$
\begin{aligned}
\frac{z u^{\prime}(z)}{u(z)} & =\frac{z h^{\prime}(z)}{h(z)}-\frac{z W^{\prime}(z)}{W(z)} \\
& =\sum_{j=1}^{n-\nu} \frac{z}{z-b_{j}}-\frac{z W^{\prime}(z)}{W(z)}
\end{aligned}
$$

For $z \in T_{1}$, this gives with the help of Lemma 2.2, that

$$
\begin{align*}
\operatorname{Re} \frac{z u^{\prime}(z)}{u(z)} & =\operatorname{Re} \sum_{j=1}^{n-\nu} \frac{z}{z-b_{j}}-\operatorname{Re} \frac{z W^{\prime}(z)}{W(z)} \\
& =\operatorname{Re} \sum_{j=1}^{n-\nu} \frac{z}{z-b_{j}}-\left(\frac{n-\left|B^{\prime}(z)\right|}{2}\right) \tag{22}
\end{align*}
$$

Now $\operatorname{Re}\left(\frac{z}{z-b_{j}}\right) \leq \frac{1}{2}$ for $\left|b_{j}\right| \geq 1, \quad j=1,2, \ldots, n-\nu$. Using this in (22), we get for $z \in T_{1}$,

$$
\begin{aligned}
\operatorname{Re} \frac{z u^{\prime}(z)}{u(z)} & \leq \frac{n-\nu}{2}-\left(\frac{n-\left|B^{\prime}(z)\right|}{2}\right) \\
& =\frac{\left|B^{\prime}(z)\right|-\nu}{2}
\end{aligned}
$$

Hence for $z \in T_{1}$ we have [[15], p.529],

This implies for $z \in T_{1}$,

$$
\begin{equation*}
\left\{\left|u^{\prime}(z)\right|^{2}+\nu|u(z)|^{2}\left|B^{\prime}(z)\right|\right\}^{\frac{1}{2}} \leq\left|\left(u^{*}(z)\right)^{\prime}\right| \tag{23}
\end{equation*}
$$

Combining (23) with Lemma 2.1, we get

$$
\left|u^{\prime}(z)\right|+\left\{\left|u^{\prime}(z)\right|^{2}+\nu|u(z)|^{2}\left|B^{\prime}(z)\right|\right\}^{\frac{1}{2}} \leq\left|B^{\prime}(z)\right| \max _{z \in T_{1}}|u(z)|
$$

or equivalently

$$
\begin{aligned}
\left|u^{\prime}(z)\right|^{2}+\nu|u(z)|^{2}\left|B^{\prime}(z)\right| & \leq\left\{\left|B^{\prime}(z)\right| \max _{z \in T_{1}}|u(z)|-\left|u^{\prime}(z)\right|\right\}^{2} \\
& =\left|B^{\prime}(z)\right|^{2}\left(\max _{z \in T_{1}}|u(z)|\right)^{2}-2\left|B^{\prime}(z)\right|\left|u^{\prime}(z)\right| \max _{z \in T_{1}}|u(z)|+\left|u^{\prime}(z)\right|^{2}
\end{aligned}
$$

which after a simplification yields for $z \in T_{1}$ that

$$
\left|u^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{2} \max _{z \in T_{1}}|u(z)|-\frac{\nu}{2} \frac{|u(z)|^{2}}{\max _{z \in T_{1}}|u(z)|}
$$

Or

$$
\begin{equation*}
\max _{z \in T_{1}}\left|u^{\prime}(z)\right| \leq\left(\frac{\left|B^{\prime}(z)\right|-\nu}{2}\right) \max _{z \in T_{1}}|u(z)| \tag{24}
\end{equation*}
$$

using (24) in (21) we obtain for $z \in T_{1}$

$$
\begin{align*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| & \leq\left(1+\left|z_{0}\right|\right)^{\nu}\left(\frac{\left|B^{\prime}(z)\right|-\nu}{2}\right) \max _{z \in T_{1}}|u(z)|+\nu\left(1+\left|z_{0}\right|\right)^{\nu-1} \max _{z \in T_{1}}|u(z)| \\
& =\frac{\left(1+\left|z_{0}\right|\right)^{\nu}}{2}\left(\left|B^{\prime}(z)\right|-\nu+\frac{2 \nu}{1+\left|z_{0}\right|}\right) \max _{z \in T_{1}}|u(z)| \\
& =\frac{\left(1+\left|z_{0}\right|\right)^{\nu}}{2}\left(\left|B^{\prime}(z)\right|+\frac{\nu\left(1-\left|z_{0}\right|\right)}{1+\left|z_{0}\right|}\right) \max _{z \in T_{1}}|u(z)| . \tag{25}
\end{align*}
$$

Further,

$$
\begin{align*}
\max _{z \in T_{1}}|u(z)| & =\max _{z \in T_{1}}\left[\frac{1}{\left|z-z_{0}\right|^{\nu}}|r(z)|\right] \tag{26}\\
& \leq \frac{1}{\left(1-\left|z_{0}\right|\right)^{\nu}} \max _{z \in T_{1}}|r(z)|
\end{align*}
$$

(25) together with (26) gives the desired result.

If we take $z_{0}=0$, we get the following result:
Corollary 3.4 If $r \in \mathcal{R}_{n}$ has ν-fold zeros at origin and the remaining $n-\nu$ zeros in $T_{1} \cup D_{1+}$, then for $z \in T_{1}$

$$
\begin{equation*}
\max _{z \in T_{1}}\left|r^{\prime}(z)\right| \leq \frac{1}{2}\left(\left|B^{\prime}(z)\right|+\nu\right) \max _{z \in T_{1}}|r(z)| \tag{27}
\end{equation*}
$$

The result is sharp and equality holds for $r(z)=\frac{z^{\nu}(z+1)^{n-\nu}}{(z+a)^{n}}$ where $a>1$ and $B(z)=\left(\frac{1-a z}{z-a}\right)^{n}$ evaluated at $z=1$.

By considering $r(z)=\frac{P(z)}{(z-\alpha)^{n}}$, we get the following result:
Corollary 3.5 If $P \in \mathcal{P}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|<1$ and the remaining $n-\nu$ zeros in $T_{1} \cup D_{1+}$, then for any complex number α with $|\alpha|>1$ and for $z \in T_{1}$

$$
\begin{equation*}
\max _{z \in T_{1}}\left|D_{\alpha} P(z)\right| \leq \frac{(|\alpha|-1)}{2}\left(\frac{1+\left|z_{0}\right|}{1-\left|z_{0}\right|}\right)^{\nu}\left(n+\frac{\nu\left(1-\left|z_{0}\right|\right)}{1+\left|z_{0}\right|}\right) \max _{z \in T_{1}}|P(z)| \tag{28}
\end{equation*}
$$

Dividing both sides of (28) by α and letting $|\alpha| \rightarrow \infty$, we get the following result:
Corollary 3.6 If $P \in \mathcal{P}_{n}$ has a zero of order ν at z_{0} with $\left|z_{0}\right|<1$ and the remaining $n-\nu$ zeros in $T_{1} \cup D_{1+}$, then for $z \in T_{1}$

$$
\begin{equation*}
\max _{z \in T_{1}}\left|P^{\prime}(z)\right| \leq \frac{1}{2}\left(\frac{1+\left|z_{0}\right|}{1-\left|z_{0}\right|}\right)^{\nu}\left(n+\frac{\nu\left(1-\left|z_{0}\right|\right)}{1+\left|z_{0}\right|}\right) \max _{z \in T_{1}}|P(z)| \tag{29}
\end{equation*}
$$

4. Acknowledgement

The authors are extremely grateful to the referee for his valuable suggestion.

References

[1] N. Arunrat and K. M. Nakprasit, Bounds of the derivative of some classes of rational functions, http://arxiv.org/abs/2001. 09791.
[2] A. Aziz, Inequalities for polar derivative of a polynomial, J. Approx. Theory, 55, 183-193, 1988.
[3] Abdul Aziz and Q. G. Mohammad, Simple proof of a Theorem of Erdös and Lax. Proc. Amer. Math. Soc. 80,119-122, 1980.
[4] Abdul Aziz and W. M. Shah, Some refinements of Bernstein type inequalities for rational functions. Glas. Mat. (52) 32, 29-37, 1997.
[5] A. Aziz and W. M. Shah, Some properties of rational functions with prescribed poles and restricted zeros, Mathematica Balkanica 18 , 33-40, 2004.
[6] Abdul Aziz and B. A. Zargar, Some properties of rational functions with prescribed poles, Canad. Math. Bull. 42(4), 417-426, 1999.
[7] S. N. Bernstein, Sur e'ordre de la meilleure approximation des functions continues par des polynomes de degre' donne'. Mem. Acad. R. Belg. 4, 1-103, 1912.
[8] M. H. Gulzar, B. A. Zargar and Rubia Akhter, Inequalities for the polar derivative of a polynomial, J. Anal. 28, 923-929, (2020).
[9] M. H. Gulzar, B. A. Zargar and Rubia Akhter, Some inequalities for the polar derivative of a polynomial, Kragujevac. J. math. 47(4), 567-576, (2024).
[10] P. D. Lax, Proof of conjecture of P. Erdös on the derivative of a polynomials, Bull. Amer .Math. Soc, 50, 509-511, 1994.
[11] M. A. Malik, An integral mean estimate for the polynomials, Proc. Amer. Math. Soc. 91, 281-284, 1984.
[12] Q.I.Rahman and G.Schmeisser, Analytic theory of polynomials, 2002, Oxford Science Publications.
[13] Xin Li, R.N.Mohapatra and R.S.Rodriguez, Bernstein-type inequalities for rational functions with prescribed poles, J. London Math. Soc. (51) 20, 523-531, 1995.
[14] A. L. Schaffer, Inequalities of A. Markoff and S. Bernstein for polynomials and rational functions, Bull. Amer. Math. Soc. 47, 565-579, 1941.
[15] Xin Li, A comparison inequality for rational functions, Proc. Am. Math. Soc. 139, 1659-1665, 2011.
[16] B. A. Zargar, M. H. Gulzar and Rubia Akhter, Inequalities for the rational functions with prescribed poles and restricted zeros, Adv. Inequal. Appl. 2021, 2021:1.
M. H. Gulzar

Department of Mathematics, University of Kashmir, India
E-mail address: gulzarmh@gmail.com
B. A. Zargar

Department of Mathematics, University of Kashmir, India
E-mail address: bazargar@gmail.com
Rubia Akhter
Department of Mathematics, University of Kashmir, India
E-mail address: rubiaakhter039@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26A84, 26D07.
 Key words and phrases. Rational Functions, inequalities,polar derivative, zeros, Poles. Submitted Feb. 6, 2022. Revised March 9, 2022.

