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ROOTS OF PELL POLYNOMIALS

F. BIROL, . KORUOGLU AND B.DEMIR

Abstract. In this paper we consider the Pell polynomials. We express these
polynomials as complex hyperbolic functions. Using this we obtain roots of
Pell polynomials. Further we give some interesting identities about images of
roots of a polynomial under another member of the family.

1. Introduction

Fibonacci, Lucas and Pell polynomials are the families of orthogonal polynomi-
als, and they are expressed recursively. These polynomials are widely used in the
study of many topics such as number theory, combinatorics, algebra, approximation
theory, geometry, graph theory (see [15] and [16]). The ratio of two consecutive
polynomials of Fibonacci and Lucas families converges to the Golden Ratio which
appears in many fields in the literature. For example; nature, art, architecture,
biology, physics, chemistry, cosmos, theology, finance and so on (see, e.g., [9], [11],
[15], [17], [19] and [20]). Furthermore, the ratio of two consecutive polynomials of
Pell family converges to Silver Mean. The ratio is another member of the class of
metallic means defined by Spinadel, apart from the Golden Mean. Other metallic
means with special naming are Bronze Mean and Cooper Mean (see [24]). There are
many interesting studies on different aspects related to the number sequences, poly-
nomials and metallic means mentioned above (see [1], [2], [3], [5], [6], [7], [8], [10],
[14], [18], [21], [23] and [25] for more details). Pell sequence is another phenomen-
non in mathematics like Fibonaci and Lucas numbers. These sequences fascinate
mathematical society with their beauty, ubiquity and applicability. Pell numbers
can be thougt as a member of extended Fibonacci family and share interesting
numerous properties. Recursive formula of Pell sequence is

Pn = 2Pn−1 + Pn−2 (1)

for n ≥ 2 with initial conditions P0 = 0 and P1 = 1 (see [16]). Ratio of consequtive

two Pell numbers converges to Silver Ratio ϕ2 = 1+
√
2. Pell numbers can also be

calculated by Binet formula

Pn =
γn − δn

γ − δ
(2)
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where γ = 1+
√
2 and δ = 1−

√
2. By the inspiration of the recursive definition of

Pell sequence, in [14] Horadam defined Pell polynomials as

Pn(x) = 2xPn−1(x) + Pn−2(x) (3)

where n ≥ 2 and P0(x) = 0, P1(x) = 1. Pell numbers are some values of these

polynomials. For γ(x) = x+
√
1 + x2 and δ(x) = x−

√
1 + x2 Binet formula of Pell

polynomials is obtained:

Pn(x) =
γn(x)− δn(x)

γ(x)− δ(x)
. (4)

Also there is a Cassini like identity for Pell polynomials as

Pn+1(x)− Pn−1(x)− P 2
n(x) = (−1)n.

In this study we focus on the roots of these polynomials. Using the Binet formula
of Pell polynomials and the theory of complex functions is critical significant to ob-
tain the root formula of Pell polynomials. The roots of some classes of polynomials
with recursive relation were obtained by this approach in [13]. In Section 2 we
give some background about Fibonacci and Pell numbers and polynomials. After
we express Pell polynomials in terms of complex hyperbolic functions in Section 3.
Then we obtain roots of Pell Polynomials. Finally we investigate the image of a
root of a polynomial under another member of the family.

2. Motivation and Background

Fibonacci numbers are the most compelling sequence in mathematics. They
enamoured not only mathematicians but also people who interested in numerical
sciences. First two terms of Fibonacci sequence are F0 = 0 and F1 = 1 then other
terms can be calculated by the recurance Fn = Fn−1 + Fn−2 for n ≥ 2.

E.C. Catalan defined Fibonacci polynomials for n ≥ 3 an integer

Fn(x) = xFn−1(x) + Fn−2(x) (5)

and F1(x) = 1, F2(x) = x [15]. Relations between Fibonacci polynomials and the
diagonal of the Pascal’s triange are generalized in [12] by Hoggat and Bicknell in
1973. In the same year they expressed Fibonacci polynomials as complex hyper-
bolic functions and from this point they obtained general root formula for these
polynomials in [13]. Derivatives of Fibonacci and Lucas polynomials studied in
[26]. And zeros of derivative Fibonacci polynomials are obtained in [22].

In 1963 P. F. Byrd studied on hyperbolic function represents of Pell polynomials
as follows [4]:
Theorem 1 Let x = sinh z then

P2n(x) =
e2nz − (−1)2ne−2nz

ez + e−z
=

sinh 2nz

cosh z
(6)

P2n+1(x) =
e(2n+1)z − (−1)2n+1e−(2n+1)z

ez + e−z
=

cosh (2n+ 1)z

cosh z
(7)

It is known from W. N. H. Abel that an algebraic equation of degree five or more
that cannot be solved by radicals. Also considering the D’Alembert-Gauss theorem,
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we can interpret that the general root formulas for the polynomials are very valu-
able. At that point finding a general root formula for Pell polynomials is striking
and important.

3. Main Results

In this section we give results about zeros of Pell polynomials. We express Pell
polynomials as complex hyperbolic functions. Then we obtain interesting identities
about images of a zero of a Pell polynomial under another member of the family.
Theorem 2 Zeros of Pell polynomials are

P2n(x) = 0 : x = ±i sin
kπ

2n
(8)

P2n+1(x) = 0 : x = ±i sin
(2k + 1)π

(2n+ 1)2
(9)

where k = 0, 1, ..., n− 1.
Proof.

We first obtain the zeros of the even subscripted Pell polynomials. Consider
the Theorem 1. If P2n(x) = 0 then sinh 2nz

cosh z = 0. Which yields sinh 2nz = 0 and
cosh z ̸= 0. Therefore;

sinh 2nz = sinh (2na+ i2nb) = sinh 2na cos 2nb+ i cosh 2na sin 2nb = 0

cosh z = cosh (a+ ib) = cosh a cos b+ i sinh a sin b ̸= 0

for z = a + ib where a, b ∈ R. Since cosh 2na ≥ 1 for n ∈ N, sin 2nb must be zero.
So b = kπ

2n for 0 ≤ k ≤ 2n−1. We use this in the real part of the preceding equation
in the above line.

sinh 2na cos 2n
kπ

2n
= sinh 2na cos kπ = 0

Here a = 0 because sinh 2na must be zero. The error now we have is the Pell
polynomial P2n(x) has degree 2n − 1. Hence we must collect at most 2n − 1
zeros. Unlikely we have one value of b which should not be a member. That
one is obtained when k = n which is impossible because it leads the denominator
P2n(x) = sinh 2nz

cosh z to be zero. Therefore we omit it. It can be easily seen that
cosh a cos b + i sinh a sin b ̸= 0 for other possible values of k. Since P2n(x) is odd
function we can restrict k as 0 ≤ k ≤ n− 1 and give roots as x = ±i sin kπ

2n . Zeros
of odd subscripted Pell polynomials can be calculated similarly.
It is better to obtain root formula in one identity. Therefore we need to combine
the identities given in Theorem 1.
Theorem 3 Let x = i cosh z then nth member of the Pell polynomials is;

Pn(x) = in−1.
sinhnz

sinh z
. (10)

Proof. Observe that if x = i cosh z we have

γ(x) = i cosh z + i sinh z = iez

δ(x) = i cosh z − i sinh z = ie−z
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After substituting these to ones in (4) we obtain the desired result.
Theorem 4 Zeros of the nth Pell polynomial Pn(x) are x = i cos kπ

n for k =
1, 2, ..., n− 1.
Proof. Let Pn(x) = in−1 sinhnz

sinh z = 0. Then the numerator sinhnz = 0 and the
denominator sinh z ̸= 0. For z = a+ ib where a and b are real numbers;

sinhnz = sinhna+ inb = sinhna cosnb+ i coshna sinnb = 0

sinh z = sinh a+ ib = sinh a cos b+ i cosh a sin b ̸= 0

Hence the real numbers a and b must satisfy both of these equalities:

sinhna cosnb = 0 (11)

and
coshnb sinnb = 0 (12)

Furthermore the real numbers a and b which satisfy the equations above must also
satisfy at least one of the followings;

sinh a cos b ̸= 0 (13)

or
cosh a sin b ̸= 0 (14)

From equation (12) we have sinnb = 0 since coshnb ≥ 1 for all b ∈ R. Therefore
b = kπ

n for some k ∈ Z excluding multiples of n because of (14). In addition one

can solve a = 0 from (11). As a result we have Pn(x) = 0 if and only if x = i cos kπ
n .

Observe that Pn(x) = Pn(−x) = 0 where x is a zero of Pn(x). Owing to the fact
that Pell polynomial Pn(x) has degree n− 1, we restrict k = 1, 2, ..., n− 1.
Now we are ready to calculate images of roots of a Pell polynomial under another
member of the family.
Theorem 5 If a is a root of P2n(x) then P2n+1(a) = P2n−1(a) = ±1.
Proof. First we modify the recurrence relation (3) for odd and even terms:

P2n+1(x) = 2xP2n(x) + P2n−1(x)

And let x = a be a zero of the polynomial P2n(x) i.e. P2n(a) = 0. Then we have;

P2n+1(a) = P2n−1(a) (15)

On the other hand we consider the Cassini-like identity

P2n+1(x)P2n−1(x)− P 2
2n(x) = (−1)2n

which implies that;
P2n+1(a)P2n−1(a) = 1 (16)

since P2n(a) = 0. Interpreting identities (15) and (16) we complete the proof.
Theorem 6 If a is a zero of the Pell polynomial P2n−1(x), then P2n(a) = ±i and
P2n+1(a) = ±2ai.
Proof. Let x = a be a root of P2n−1(x). Once more using the Cassini-like identity
for Pell polynomials, we get

P 2
2n(a) = −1

Therefore;
P2n(a) = ±i

Now we need the image of a under the polynomial P2n+1(x). For doing this we use
the recurrence formula;

P2n+1(x) = 2xP2n(x) + P2n−1(x)
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If we put x = a then we obtain; P2n+1(a) = 2aP2n(a) = ±2ai which is the proof
of the result.
Corollary 1 P2n−1(a) = 0, implies P2n(a).P2n+1(a) = −2a.
Theorem 7 If a is zero of the Pell polynomial P2n−1(x) then we have P2n(a)P2n+1(a) ̸=
0. In other words 0 can not be a root of P2n−1.
Proof. We know from Corollary 1 that if P2n−1(a) = 0 then P2n(a).P2n+1(a) =
−2a. Hence if P2n(a)P2n+1(a) = 0 then a must be zero. The roots of P2n−1(x) can
be calculated by Theorem 4 as

a = i cos
kπ

2n− 1

for k = 1, 2, ..., 2n − 2. By considering all possible values of k we have kπ
2n−1 = π

2 .

After elementary calculations one has n− k = 1
2 which is a contradiction.

Following results can be proven using the same techniques. So we leave the
proofs to the reader.
Theorem 8 If a is a root of the Pell polynomial P2n+1(x), then P2n(a) = ∓i and
P2n−1(a) = ±2ai.
Corollary 2 P2n+1(a) = 0, implies P2n(a).P2n−1(a) = 2a.
Theorem 9 If a is root of the Pell polynomial P2n+1(x) then we have P2n(a)P2n−1(a) ̸=
0. In other words 0 can not be a root of P2n+1.
Now we need some identities proven in [14] by Horadam and Mahon.

n∑
r=1

P2r−1(x) =
P2n(x)

2x
(17)

n∑
r=1

P2r(x) =
P2n+1(x)− 1

2x
(18)

Pm+n(x) = Pm−1(x)Pn(x) + Pm(x)Pn+1(x). (19)

Let us use x = a as a root of P2n+1(x), P2n(x) and Pn(x) in equations (17),(18),(19)
respectively. Therefore we have the following theorem.
Theorem 10
(i) P2n(a) = 0 : P1(a) + P3(a) + ...+ P2n−1(a) = 0
(ii) P2n+1(a) = 0 : P2(a) + P4(a) + ...+ P2n(a) =

i
2 cos kπ

2n+1

(iii) Pn(a) = 0 : Pm+n(a) = ±i⌈
n
2 −m

2 ⌉Pm(x).

References

[1] S. Azhar, N. A. Azam and U. Hayat, Text Encryption Using Pell Sequence and Elliptic Curves
with Provable Security, Computers, Materials & Continua, 71, 3, 4971-4988, 2022.

[2] F. Birol, . Koruoglu, R. Sahin, B. Demir, Generalized Pell sequences related to the extended

generalized Hecke groups H3,q and an application to the group H3,3, Honam Mathematical
Journal, 41, 3, 197-206, 2019.

[3] F. Birol, . Koruoglu, B. Demir, Genisletilmis modler grubun H3,3 alt grubu ve Fibonacci

sayilari, Balikesir niversitesi Fen Bilimleri Enstits Dergisi, 20, 2, 460-466, 2018.
[4] P. F. Byrd, 16 expansion of analytic functions in polynomials associated with Fibonacci

numbers, The Fibonacci Quarterly, 1, 1, 16-29, 1963.

[5] S. Cayan, M. Sezer, Pell Polynomial Approach for Dirichlet problem related to partial differ-
ential equations, Journal of Science and Arts 48, 3, 613-628, 2019.



288 F. BIROL, . KORUOGLU AND B.DEMIR EJMAA-2022/10(2)

[6] J. Choi, N. Khan, T. Usman and M. Aman, Certain unified polynomials, Integral Transforms

and Special Functions 30, 1, 28-40, 2019.
[7] B. Demirtrk and R. Keskin, Integer solutions of some Diophantine equations via Fibonacci

and Lucas numbers, Journal of Integer Sequences, 12, 8, Article ID 09.8.7, 14 pp., 2009.
[8] R. Dikici and E. zkan, An application of Fibonacci sequences in groups, Applied Mathematics

and Computation, 136, 2-3, 323-331, 2003.
[9] R. A. Dunlap, The golden ratio and Fibonacci numbers, World Scientific, Singapore, 1997.

[10] S. Halici, On some Pell polynomials, Acta Universitatis Apulensis, 29, 105-112, 2012.
[11] R. Heyrovsk, The Golden ratio in the creations of Nature arises in the architecture of atoms

and ions, In Innovations in Chemical Biology (Chapter 12, B. Sener, editor), Springer, New
York, 2009.

[12] V. E. Hoggatt, M. Bicknell, Generalized Fibonacci polynomials, The Fibonacci Quartely, 11,
5, 457-465, 1973.

[13] V. E. Hoggatt and M. Bicknell, Roots of Fibonacci polynomials, The Fibonacci Quarterly,
11, 3, 25-28, 1973.

[14] A. F. Horadam and B. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quar-
terly, 23, 1, 7-20, 1985.

[15] T. Koshy, Fibonacci and Lucas numbers with applications, JohnWiley and Sons, New York,
2001.

[16] T. Koshy, Pell and Pell-Lucas numbers with applications, Springer Verlag, New York, 2014.

[17] M. Livio, The golden ratio: The story of phi, the world’s most astonishing number, Broadway
Books, New York, 2008.

[18] Q. Mushtaq and U. Hayat, Pell numbers, Pell-Lucas numbers and modular group, Algebra
Colloquium, 14, 1, 97-102, 2007.

[19] A. F. Nematollahi, A. Rahiminejad and B. Vahidi, A novel meta-heuristic optimization
method based on golden ratio in nature, Soft Computing, 24, 3, 1117-1151, 2020.

[20] S. Olsen, The Golden Section: Natures Greatest Secret, Walker Publishing Company Inc,
New York, 2006.

[21] N. Y. zgr, On the sequences related to Fibonacci and Lucas numbers, Journal of the Korean
Mathematical Society, 42, 1, 135-151, 2005.

[22] N. Y. zgr and . . Kaymak, On the zeros of the derivatives of Fibonacci and Lucas polynomials,
Journal of New Theory, 7, 22-28, 2015.

[23] C. zgr, N. Y. zgr, Metallic shaped hypersurfaces in Lorentzian space forms, Revista de La
Unin Mathemtica Argentina, 58, 2, 215-226, 2017.

[24] A. Stakhov, S. Aranson, Hyperbolic Fibonacci and Lucas Functions, Golden Fibonacci Go-
niometry, Bodnars Geometry, and Hilberts Fourth Problem. Part I, Applied Mathematics, 1,

2, 74-84, 2011.
[25] D. Tasi, E. Sevgi, Pell and Pell-Lucas numbers associated with Brocard-Ramanujan equation,

Turkish Journal of Mathematics and Computer Science, 7, 59-62, 2017.

[26] J. Wang, On the derivative sequences of Fibonacci and Lucas polynomials, The Fibonacci
Quarterly, 33, 174-178, 1995.

F. Birol
Information Technologies Department, Izmir Katip elebi University, Izmir, Turkey

E-mail address: furkan.birol@ikc.edu.tr

. Koruoglu
Department of Secondary Mathematics Education, Balıkesir University, Balıkesir, Turkey

E-mail address: ozdenk@balikesir.edu.tr

B. Demir
Department of Secondary Mathematics Education, Balıkesir University, Balıkesir, Turkey

E-mail address: bdemir@balikesir.edu.tr


