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SOME INEQUALITIES FOR INTERVAL-R-L INTEGRALS VIA

CONVEXITY

HALIM BENALI

Abstract. By using the convexity property some fractional integrals inequal-
ities are obtained in a very simple way for interval-valued Riemann-Liouville

fractional integrals. Furthermore, Hermite-Hadamard-type inequalities are ob-
tained as consequence.

1. Introduction

It is known that inequalities play an important role in almost all branches of
mathematics as well as in other areas of science.The study of inequalities has
increased enormously since the classical treatise was published by Hardy, Little-
wood and Polya.More recently, some of these inequalities have been extended to
set-valued functions [7],[9] especially, to interval-valued functions by Chalco-Cano
et al [2],[12],[13],[16],[19]. In this direction, recently several classical integral in-
equalities have been extended to the interval-valued context. In 2018, using the
Kulisch-Miranker order on the space of real and compact intervals, Roman-Flores
et al. [6] established interval Minkowski’s inequality, interval Radon’s inequality
and interval Beckenbach’s inequality. Others authors Meanwhile, Costa et al. (see
[12],[13]), obtained new Jensen’s inequality, Minkowski’s and Gauss’s integral in-
equalities for fuzzy-interval-valued functions and then they [14] established some
Opial-type integral inequalities by using the concept of gH− differentiability the
authors in [14],[15],[19] shows an Ostrowski’s inequality for interval-valued func-
tions. By using the h-convex concept, Zhao et al. [16] presented new Jensen and
Hermite-Hadamard type inequalities for interval-valued functions. Next, in 2019,
Zhao et al. proved some integral inequalities on time scales, which generalize some
previous inequalities presented by Costa [12] and Roman-Flores et al.[6].
To develope a theory of the fractional calculus for interval-valued-functions,several
notions of derivative of interval-valued-function (gH-derivative,for example see [15])
were introduced.In ([17],section 3,4 and 5), the authors study main properties of
Riemann-Liouville fractional integral,Riemann-fractional derivative,caputo deriva-
tive.
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The purpose of this work is to present some contributions on fractional integral
inequalities in the interval-valued context.

2. Preliminaries

We start by recalling some basic notations, definitions and results on interval
analysis. For more details on concepts (interval operations,interval-valued func-
tions) and results on interval analysis. (see [[11], pp.131] ,[[15],[5],chap 4],[[9],[10],sect
2,th 2.3] ).

2.1. Interval operations.

(1) A real interval A is the subset of R defined by

A = [a, ā] = {x ∈ R : a ≤ x ≤ ā},

When a = ā, the interval A is said to be degenerate or point interval.
The mid-point representation of an interval A = (â, ã) where

m(A) := â =
a+ ā

2
, ã =

ā− a

2
, ω(A) = ā− a.

Assuming the condition we define the comparison ratio:

γA,B =
ã− b̃

â− b̂
= γB,A

whch is very useful in the characterization of different order relations for
intervals;

b̄− ā = (b̂− â)(γA,B + 1)

b− a = (â− b̂)(γA,B − 1)
(1)

(2) IR, IR+ and IR−, denote the set of all intervals,positive intervals and nega-
tive intervals of R respectively.The intervalA = [a, ā] is positive (negative)
if a > 0 (a < 0).

(3) Let ⊙be one of the four arithmetic operators +,−, ∗, / we set

A⊙B = {u⊙ v : u ∈ A, v ∈ B},

where ⊙ can the quotient / is defined only if 0 /∈ B.
If A,B,C, and D are intervals such that A ⊂ B and C ⊂ D, then the
following relation is valid A⊙ C ⊂ B ⊙D.

(4) For s ∈ R and A ∈ IR, we set

sA =


[s ā, s a] if s < 0.

0 ifs = 0,

[s a, s ā], if s > 0,

(5) The Kulisch-Miranker order relation ≤ku is defined on Kc as follows [8]:

[a, a] ≤ku [b, b] ⇐⇒ a ≤ b and a ≤ b.
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2.2. Interval valued functions. ([[11],[1] ,[15]]). A function F : I = [a, b] → IR
is said to be an interval-valued function( in short i-v-f) of t on I = [a, b] if it assigns
a nonempty interval F (t) to each t ∈ [a, b],

F (t) = [F (t), F (t)],

where F (t) and F (t) are single-real-valued functions with F (t) ≤ F (t) for all t ∈
[a, b]. The set of all such functions is denoted by F[a,b].

1) F is said ω− increasing (ω− decreasing) in I if the single-valued function
ωF (t) := ω(F (t)) is increasing (decreasing) in I, respectively.Or equivalently
if F and F are increasing (decreasing) on [a, b].

2) Integral of interval-valued functions.(see [[1],th 2.3],[[11], p. 131])
• The IR−integral: The i-v-function F is (Riemann) integrable in [a, b], a ≤
b if the functions F and F are Riemann-integrable. And the collection
of all functions that are IR− integrable on [a, b], a ≤ b is denoted by
IR([a,b]). In this case we define

(IR)
∫ b

a

F (t)dt =

[
(R)

∫ b

a

F (t)dt, (R)

∫ b

a

F (t)dt

]
,

where R([a, b]) denotes the Riemann-integrable functions .
• The IL−integral: The i-v-function F is (Lebesgue) integrable in [a, b], a ≤
b if the functions F and F are Lebesgue integrable(see [[15]]). In this
case we define

(IL)
∫ b

a

f(t)dt =

[
(L)

∫ b

a

F (t)dt, (L)
∫ b

a

F (t)dt

]
.

3) Derivative for interval-valued functions.
Differentiation of interval functions is considered in ([15],sec 5.,th 3.,th

4.,p 328).In general the differentiability(gH− differentiability) of F = [F , F ]
does not imply generally differentiability of the single-valued functions F
and F . But differentiability(gH− differentiability) of F = [F , F ] is equiv-
alent to differentiability of both F and F if F is ω− increasing function
and

F ′(x) = [F ′(x), F
′
(x)].

4) Convexity
Definition 1 (see ([2],[3],[7],[16],[15],[19] )

Let I be an interval in IR. Let F : I → IR+ be an interval-valued-
functionis,we say that F is convex if for all x, y ∈ I and all r ∈ [0, 1],
then

rF (x) + (1− r)F (y) ⊆ F (rx+ (1− r)y) (2)

holds and F is said to be concave interval-valued functions if set inclusion (2)
is reversed.Here F (x) = [F (x), F (x)] and F (x), F̄ (x) are single-valued func-
tions.
Remark 1.(see [[16],theorem 3.7]) F is convex if and only if F is convex
and F is concave.
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3. Main Results

In this section, we mention some concepts related to fractional integration and
we prove some inequalities by considering the Riemann-Liouville fractional integrals
for real-valued functions [[5],[17]]. In the following the notations IR,R, IL,L in front
of the integral symbol have been omited for simplicity.

3.1. Interval-valued R-L fractional integral. Definition 2 [15]. For 1 ≤ p ≤
∞ we denote by Lp := Lp([a, b], IR+) the set of all Lebesgue measurable interval-

valued functions F : [a, b] → IR+ such that

∥F∥p =


(∫ b

a
|F (x)|pdx

) 1
p

< ∞, if 1 ≤ p < ∞
ess supx∈[a,b] |F (x)|, if p = ∞.

(3)

Definition 3 [18]. Let z > 0, r, s > 0. The gamma and the beta functions are
defined by

Γ(z) =

∫ ∞

0

tz−1 e−t dt z > 0,

B(r, s) =

∫ 1

0

tr−1(1− t)s−1 dt.

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
.

First, we recall that the Riemann-Liouville fractional integral of a single-valued
function f is defined as follows
Definition 4 ([18],[4]) Let −∞ < a < b < +∞. The left and right-sided Riemann-
Liouville fractional integral operators Jα of order α ≥ 0 of function f(x) ∈ L1[a, b]
are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a; (4)

and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b. (5)

We set J0
a+f = J0

b−f = f.

Let α > 0, F ∈ L1([a, b], IR). The interval-valued function t → (x − t)α−1F (t)
(t → (t−x)α−1F (t)) is Lebesgue integrable on [a, x] ([x, b] ) for all t ∈ [a, b]. Hence

J α
a+F (x) =

1

Γ(α)

∫ x

a

(x− t)α−1F (t)dt, x > a; (6)

and

J α
b−F (x) =

1

Γ(α)

∫ b

x

(t− x)α−1F (t)dt, x < b (7)

exist for all t ∈ [a, b]. The formulas (6),(7) (see [5]) are called the left( respec-
tively right) interval-valued Riemann-Liouville fractional integral of order α of the
interval-valued-function F.
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As consequence and by the theorem (see [15]) giving a relation between IR−
integrable and R− Riemann-integrable, we have for all x ∈ [a, b]

J α
a+F (x) = [Jα

a+F (x),Jα
a+F (x)]

and
J α
b−F (x) = [Jα

b−F (x),Jα
b−F (x)].

Now let α1, α2 ≥ 1 and F : [a; b] → IR be a non-negative convex-i-v-function.
Then for all t ∈ [a, x], we have

F (t) ⊇ x− t

x− a
F (a) +

t− a

x− a
F (x). (8)

Multiplying (Scalar multiplication of interval) both side of (8) by (x − t)α1−1

and integrating the resulting inequality with respect to t over [a, x], we obtain∫ x

a

(x− t)α1−1F (t)dt ⊇ 1

x− a
×[

F (a)

∫ x

a

(x− t)α1dt+ F (x)

∫ x

a

(t− a)(x− t)α1−1dt

]
= (x− a)α1

[
1

α1 + 1
F (a) +B(α1, 2)F (x)

]
,

Therefore, in view of the definition of the interval-valued left sided RiemannLiouville
fractional integrals, we get

Γ(α1)J α1
a+F (x) ⊇ (x− a)α1

[
1

α1 + 1
F (a) +B(α1, 2)F (x)

]
. (9)

Now we consider the i-v function F on the interval [x, b], x ∈ (a, b). Similarly,we
have

Γ(α2)J α2

b−F (x) ⊇ (b− x)α2

[
1

α2 + 1
F (b) +B(α2, 2)F (x)

]
, (10)

by adding (9) and (10),we obtain

Γ(α1)J α1
a+ F (x) + Γ(α2)J α2

b− F (x) ⊇
[B(α1, 2)(x− a)α1 +B(α2, 2)(b− x)α2 ]F (x)

+
(x− a)α1

1 + α1
F (a) +

(b− x)α2

1 + α2
F (b).

This allows the following result.
Theorem 1 Let α1, α2 ≥ 1. Let F : [a; b] → IR be a non-negative convex interval-
valued function for all x ∈ (a, b), F ∈ L1([a, b], IR). Then

Γ(α1)J α1
a+ F (x) + Γ(α2)J α2

b− F (x) ⊇
[B(α1, 2)(x− a)α1 +B(α2, 2)(b− x)α2 ]F (x)

+
(x− a)α1

1 + α1
F (a) +

(b− x)α2

1 + α2
F (b)

(11)

holds .In particular if α1 = α2 = α ,then

Γ(α)
[
J α
a+ F (x) + J α

b− F (x)
]
⊇ B(α, 2) [(x− a)α + (b− x)α]F (x)

+
(x− a)αF (a) + (b− x)αF (b)

α+ 1
.
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Corollary 1.By setting α1 = α2 = 1 and x = b or x = a , we have

1

b− a

∫ b

a

F (t)dt ⊇ F (a) + F (b)

2
.

Corollary 2 By taking α1 = α2 = 1 and x =
a+ b

2
, we have

1

b− a

∫ b

a

F (t)dt ⊇ F

(
a+ b

2

)
+

F (a) + F (b)

2
.

Corollary 3 If F is degenerate i.e F (t) = F (t) = F (t), then Theorem 1 reduces
to the result

Γ(α1)J
α1
a+ F (x) + Γ(α2)J

α2

b− F (x) ≤
(x− a)α1 + (b− x)α2

2
F (x)+

(x− a)α1F (a) + (b− x)α2F (b)

2

holds . If α1 = α2 = α then

Γ(α)(Jα
a+ F (x) + Jα

b− F (x)) ≤
(x− a)α + (b− x)α

2
F (x)+

(x− a)αF (a) + (b− x)αF (b)

2

Remark 2.The result expressed in Corollary 3. is the same to that of theorem
1 and corollary 1 see [3].

Remark 3 If F is a concave interval valued function, for x ∈ (a, b), then the
set inclusion (11) is reversed .

Lemma 1 Let 0 < λ1 < λ2, A = [a, ā] := (â, ã), B = [b, b̄] = (b̂, b̃) such that
A ⊆ B.

(1) If λ1â > λ2b̂, then λ1A ⊂ λ2B.

(2) If λ1â ≤ λ2b̂, two cases
(a) If −1 < γλ1Aλ2B < 1 then λ1A ̸⊂ λ2B.
(b) If γλ1Aλ2B ≥ 1, then λ1A ⊂ λ2B.

Proof. Since A = [a, ā] ⊆ B = [b, b̄], then a ≤ b, b ≤ a it follows that λ1a ≤ λ2b
but λ2b ≤ λ1a does not hold.

(1) Suppose that λ1â > λ2b̂, that is

λ2b− λ1a ≤ λ1a− λ2b ≤ 0

which leads to λ2b ≤ λ1a consequently λ1A ⊂ λ2B.

(2) If λ1â ≤ λ2b̂, two cases
(a) If −1 < γλ1Aλ2B < 1 then γλ1Aλ2B + 1 > 0, γλ1Aλ2B − 1 < 0 from

(1) we deduce that λ1A ̸⊂ λ2B.
(b) If γλ1Aλ2B ≥ 1, then γλ1Aλ2B ± 1 ≤ 0. From (1) it follows that

λ1A ⊂ λ2B.
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Theorem 2 Let 0 < α1, α2 ≤ 1. Let F = [F , F̄ ] = (F̂ , F̃ ) : [a; b] → IRI be
a non-negative convex interval-valued function for all x ∈ (a, b), F ∈ L1([a, b], IR)
satisfying for all λ ∈ [0, 1], t ∈ [a, x]

(x− t)α1−1F̂ (t) ≤ (x− a)α1−1(λF̂ (a) + (1− λ)F̂ (x)) (12)

and for all t ∈ [x, b],

(t− x)α2−1F̂ (t) ≤ (b− x)α2−1(λF̂ (b) + (1− λ)F̂ (x)). (13)

Then

Γ(α1)J α1
a+ F (x) + Γ(α2)J α2

b− F (x) ⊇ (x− a)α1 + (b− x)α2

2
F (x)

+
(x− a)α1F (a) + (b− x)α2F (b)

2

(14)

holds .If α1 = α2 = α, then

Γ(α)
[
J α
a+ F (x) + J α

b− F (x)
]
⊇ (x− a)α + (b− x)α

2
F (x)

+
(x− a)αF (a) + (b− x)αF (b)

2
.

Proof. For allx ∈ [a, b], for all t ∈ [a, x] and 0 < α1 ≤ 1 the following inequality
holds

(x− t)α1−1 ≥ (x− a)α1−1. (15)

Since F is convex therefore for all t ∈ [a, x], we have

F (t) ⊇ x− t

x− a
F (a) +

t− a

x− a
F (x). (16)

By multiply (Scalar multiplication of interval) (15), (16) takin in to acount of (12),
and integrating the result with respect to t over [a, x], we obtain∫ x

a

(x− t)α1−1F (t)dt ⊇ (x− a)α1−1

x− a

×
[
F (a)

∫ x

a

(x− t)dt+ F (x)

∫ x

a

(t− a)dt

]
= (x− a)α1

F (x) + F (a)

2
,

Consequently, we have

Γ(α1)J α1
a+F (x) ⊇ (x− a)α1

F (x) + F (a)

2
. (17)

And similarly by reasoning for all t ∈ [x, b], we get

Γ(α2)J α2

b−F (x) ⊇ (b− x)α2
F (x) + F (b)

2
. (18)

By adding (17) and (18),we obtain the desired inequality.
Corollary 4. By taking α1 = α2 = 1 and x = b or x = a, we have

1

b− a

∫ b

a

F (t)dt ⊇ F (a) + F (b)

2
.
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Corollary 5. If α1 = α2 = 1 and x =
a+ b

2
, then

1

b− a

∫ b

a

F (t)dt ⊇ F

(
a+ b

2

)
+

F (a) + F (b)

2
.

Corollary 6. If F is degenerate i.e F (t) = F (t) = F (t), then Theorem 2. reduces
to the result

Γ(α1)J
α1
a+ F (x) + Γ(α2)J

α2

b− F (x) ≤
(x− a)α1 + (b− x)α2

2
F (x)+

(x− a)α1F (a) + (b− x)α2F (b)

2

holds . If α1 = α2 = α then

Γ(α)(Jα
a+ F (x) + Jα

b− F (x)) ≤
(x− a)α + (b− x)α

2
F (x)+

(x− a)αF (a) + (b− x)αF (b)

2

Theorem 3 Let α1, α2 ≥ 0. Let F = [F , F ] : [a; b] → IR be a non-negative
interval-valued function such that the real valued functions F , F are differentiable
.If the gH− derivative F ′ is non-negative convex interval-valued function, then

Γ(α1)
(
J α1
a+F (x)

)
+ Γ(α2)

(
J α2

b−
)
F (x)−

((x− a)α1F (a) + (b− x)α2F (b)) ⊇
F ′(x)

(
B(α2 + 1, 2)(b− x)α2+1 +B(α1 + 1, 2)(x− a)α1+1

)
+

(b− x)α2+1F ′(b)

α2 + 2
+

(x− a)α1+1F ′(a)

α1 + 2
.

(19)

holds. If α1 = α2 = α, then

Γ(α)
(
J α
a+ F (x) + J α

b− F (x)
)
−

((x− a)αF (a) + (b− x)αF (b)) ⊇
B(α+ 1, 2)

(
(b− x)α+1 + (x− a)α+1

)
F ′(x)+(

(b− x)α+1F ′(b) + (x− a)α+1F ′(a)

α+ 2

)
.

Proof. Letα1 ≥ 0 and x ∈ (a, b), then for all t ∈ [a, x], F ′ existts and theremore

F ′ = [F ′, F
′
] (see[15]). Since F ′ is convex, we have

F ′(t) ⊇ x− t

x− a
F ′(a) +

t− a

x− a
F ′(x) (20)

Multiplying (20) by (x−t)α1 and integrating the resulting inequality with respect
to t over [a, x], we get
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∫ x

a

(x− t)α1F ′(t)dt ⊇ 1

x− a
×[

F ′(a)

∫ x

a

(x− t)α1+1dt+ F ′(x)

∫ x

a

(t− a)(x− t)α1dt

]
= (x− a)α1+1

[
1

α1 + 2
F ′(a) +B(α1 + 1, 2)F ′(x)

]
,

since ∫ x

a

(x− t)α1F ′(t)dt = −F (a)(x− a)α1 + Γ(α1)J α1
a+F (x),

hence

Γ(α1)J α1
a+F (x)− F (a)(x− a)α1 ⊇ (x− a)α1+1

×
[

1

α1 + 2
F ′(a) +B(α1 + 1, 2)F ′(x)

]
.

(21)

On the other hand, using the convexity of F ′, for all t ∈ [x, b], we have

F ′(t) ⊇ t− x

b− x
F ′(b) +

b− t

b− x
F ′(x). (22)

Also,multiply (22) by (t− x)α2 , we get

Γ(α2)J α2

b−F (x)− F (b)(b− x)α2 ⊇ (b− x)α2+1

×
[

1

α2 + 2
F ′(b) +B(α2 + 1, 2)F ′(x)

]
.

(23)

from (21) and (23),we obtain the required estimation.

Corollary 7. Taking x =
a+ b

2
and α1 = α2 = 1 in (19), this reduces to

2

b− a

∫ b

a

F (t)dt− (F (b) + F (a)) ⊇

b− a

3

(
F ′

(
a+ b

2

)
+

F ′(b) + F ′(a)

2

)
.

An interval valued-function F = [F , F ] is said to be symmetric about
a+ b

2
, if

we have F (a+ b− x) = F (x).

Remark 4. F symmetric about
a+ b

2
⇔ F , F are symmetric about

a+ b

2
.

Lemma 2. Let F : I = [a, b] → IR, be a convex i-v-function.If F is symmetric

about
a+ b

2
, then

F

(
a+ b

2

)
⊇ F (x), x ∈ [a, b].

Proof. We have

a+ b

2
=

1

2

(
b
x− a

b− a
+ a

b− x

b− a

)
+

1

2

(
a
x− a

b− a
+ b

b− x

b− a

)
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by convexity of F ,we have

F

(
a+ b

2

)
⊇ 1

2

[
F

(
b
x− a

b− a
+ a

b− x

b− a

)]
+

1

2

[
F

(
a
x− a

b− a
+ b

b− x

b− a

)]
=

1

2
F (x) +

1

2
F (a+ b− x)

= F (x).

Theorem 4 Let α1, α2 ≥ 1. Let F : [a, b] → IR, be a convex interval-valued

function and F ∈ L1([a, b], IR),. If F is symmetric about
a+ b

2
, then

[
(b− a)α1+1

(α1 + 1)
+

(b− a)α2+1

(α2 + 1)

]
F

(
a+ b

2

)
⊇

Γ(α1 + 1)J α1+1
b− F (a) + Γ(α2 + 1)J α2+1

a+ F (b) ⊇[
(b− a)α1+1

α1 + 2
+B(α1 + 1, 2)(b− a)α1+1

]
F (a)+[

(b− a)α2+1

α2 + 2
+B(α2 + 1, 2)(b− a)α2+1

]
F (b)

(24)

holds.If α1 = α2 = α, then

1

(α+ 1)
F

(
a+ b

2

)
⊇

Γ(α+ 1)
J α+1
b− F (a) + J α+1

a+ F (b)

2(b− a)α+1
⊇[

1

α+ 2
+B(α+ 1, 2)

]
F (a) + F (b)

2
.

Proof. Letα1, α2 ≥ 1. Since F is convex, we have for t ∈ [a, b]

F (t) ⊇ t− a

b− a
F (a) +

b− t

b− a
F (b). (25)

Multiplying (25) by (t−a)α1 and integrating the result with respect to t over [a, b],
we obtain

Γ(α1 + 1)J α1+1
b− F (a) ⊇ (b− a)α1+1

[
1

α1 + 2
F (a) +B(α1 + 1, 2)F (b)

]
. (26)

Now multiplying (25) by (b − t)α2 and integrating with respect to t over [a, b],
we obtain

Γ(α2 + 1)J α2+1
a+ F (b) ⊇ (b− a)α2+1

[
1

α2 + 2
F (b) +B(α2 + 1, 2)F (a)

]
. (27)
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By adding (26) and (27), we get

Γ(α1 + 1)J α1+1
b− F (a) + Γ(α2 + 1)J α2+1

a+ F (b) ⊇[
(b− a)α1+1

α1 + 1
+B(α1 + 1, 2)(b− a)α1+1

]
F (a)+[

(b− a)α2+1

α2 + 1
+B(α2 + 1, 2)(b− a)α2+1

]
F (b).

(28)

Using lemma 2.,we have

F

(
a+ b

2

)
(t− a)α1 ⊇ F (t)(t− a)α1 , F

(
a+ b

2

)
(b− t)α2 ⊇ F (t)(b− t)α2 . (29)

Integrating (29)with respect to t over [a, b], we obtain

(b− a)α1+1

α1 + 1
F

(
a+ b

2

)
⊇ Γ(α1 + 1)J α1+1

b− F (a). (30)

and
(b− a)α2+1

α2 + 1
F

(
a+ b

2

)
⊇ Γ(α2 + 1)J α2+1

a+ F (b). (31)

Adding (30) and (31), we have

[
(b− a)α1+1

α1 + 1
+

(b− a)α2+1

α2 + 1

]
F

(
a+ b

2

)
⊇

Γ(α1 + 1)J α1+1
b− F (a) + Γ(α2 + 1)J α2+1

a+ F (b).

(32)

Combining (28) and (32),we obtain the desired inequality.

Theorem 5 Let 0 < α1, α2 ≤ 1. Let F = [F , F̄ ] = (F̂ , F̃ ) : [a; b] → IR be a
non-negative convex interval-valued function , F ∈ L1([a, b], IR) satisfying for all
t ∈ [a, b], λ ∈ [0, 1]

(b− t)α1−1F̂ (t) ≤ (b− a)α1−1(λF̂ (a) + (1− λ)F̂ (b)),

and

(t− a)α2−1F̂ (t) ≤ (b− a)α2−1(λF̂ (a) + (1− λ)F̂ (b)).

Then [
(b− a)α1+1

α1 + 1
+

(b− a)α2+1

α2 + 1

]
F

(
a+ b

2

)
⊇

Γ(α1 + 1)J αJ+1
b− F (a) + Γ(α2 + 1)J α2+1

a+ F (b) ⊇(
(b− a)α1+1 + (b− a)α2+1

) F (a) + F (b)

2

(33)

holds .In particular if α1 = α2 = α, then

(b− a)α+1

Γ(α+ 2)
F

(
a+ b

2

)
⊇

J α+1
b− F (a) + J α+1

a+ F (b)

2
⊇

(b− a)α+1(F (a) + F (b))

2Γ(α+ 1)
.

(34)
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Proof. The proof is similar to that of Theorem 2. Using lemma 2. taking into
account the convexity of F and the fact that for all t ∈ [a, b] and 0 < α1, α2 ≤ 1

(t− a)α1−1 ≥ (b− a)α1−1, (b− t)α2−1 ≥ (b− a)α2−1. (35)

Corollary 8 ([5],remark 2.6) If α → 0, then from above inequality, we get Hermite-
Hadamard’s inequality for interval-valued function

F

(
a+ b

2

)
⊇ 1

b− a

∫ b

a

F (t)dt ⊇ F (a) + F (b)

2
.
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