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ON THE DYNAMICS OF A RICCATI DIFFERENTIAL

EQUATION WITH PERTURBED DELAY

A. M. A. EL-SAYED, S. M. SALMAN, A. A. F. ABDELFATTAH

Abstract. Within the scope of this study, we discuss the new concept of a

perturbed delay. As a simple example, we will focus on a Riccati differential
equation with a perturbed delay to illustrate this concept. We look at both

the solution’s existence and its continuous dependence on the initial condi-

tions. Analyses of Hopf bifurcations and the local stability of the fixed points
are presented. In order to solve the delay differential equation with piecewise

constant arguments, we adopt a discretization procedure. We do an analysis

of the local stability of the discrete system. We use numerical simulations
to draw out the results, like bifurcation diagrams, Lyapunov exponents, and

phase diagrams. This helps us confirm our research and unearth more complex

dynamics. We contrast the results of theoretical studies of the delayed Ric-
cati differential equation and its perturbed equation. Our results show that,

under certain conditions, the Riccati differential equation with perturbed de-

lay is equivalent to the Riccati differential equation with the same dynamical
properties.

1. Introduction

Many phenomena in domains as diverse as the economy, chemistry, physics, engi-
neering, and biology exhibit both time and space change [1-3]. Modeling and interpreting
these phenomena may be greatly aided by studying dynamical systems. Synchronization
and chaos control, secure communications, brain research, machine learning, electrical
circuits, cryptography, and image encryption are just a few of the numerous fields that
benefit from the study of dynamical systems [4-9].

Applications of Riccati differential equations are widespread throughout classical
and contemporary science and engineering, including diffusion problems, stochastic reali-
sation theory, network synthesis, optimal filtering, controls, financial mathematics, robust
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stabilisation, random processes, and variational calculus [10-13]. Another important model
in physics, the Riccati differential equation is related to the Schrodinger equation of one
dimension [14].

Differential equations with a delay are equations that use the derivatives of an un-
known function at a particular time that is determined by the function’s values at earlier
periods [15-16]. In addition, the delay differential equation may be used to characterise
the dynamics of physiological systems as well as electrochemical intercalation [17-23]. In
addition, there are certain systems that are not stable with only one delay, but if a second
delay is introduced to the system, the system is able to maintain its stability [24].

The delayed Riccati differential equation reads

dx

dt
= 1− ρx(t)x(t− r), t ∈ (0, T ],

x(t) = xo, t ≤ 0,
(1.1)

where ρ, r > 0.

The problem (1.1) can be rewritten as follows

dx

dt
= 1− ρx(t)y(t), t ∈ (0, T ],

y(t) = x(t− r),

x(t) = xo, y(t) = yo, t ≤ 0.

(1.2)

Let there exists a perturbed delay as

y(t) = ax(t− r) + ϵx(t− 2r),

where 0 < a, ϵ < 1.

The Riccati differential equation with perturbed delay can be considered as

dx

dt
= 1− ρx(t)y(t), t ∈ (0, T ],

y(t) = ax(t− r) + ϵx(t− 2r),

x(t) = xo, y(t) = yo, t ≤ 0.

(1.3)

The structure of this article is as shown. The existence of a Riccati differential
equation’s solution with perturbed delay is discussed in Subsection (2.1). In Subsection
(2.2) the continuous dependence of the solution on the initial conditions is studied. Local
stability of the Riccati differential equation with perturbed delay is studied in Subsection
(2.3). The Hopf bifurcation analysis is performed in Subsection (2.4). The method of
discretization of the Riccati differential equation with a perturbed delay is presented in
Subsection (2.5). Local stability of the discrete system is performed in Subsection (2.6).
In Subsection (2.7), we confirm the obtained results with numerical simulations. The
work’s summary and knowledge discussion are included in Section (3).
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2. Main Results

It is possible to rewrite the problem (1.3) as

dx

dt
= 1− ρx(t)

[
ax(t− r) + ϵx(t− 2r)

]
, t ∈ (0, T ],

x(t) = xo, t ≤ 0.
(2.1)

2.1. Existence and uniqueness.

Theorem 2.1. If ρ <
1

(3a+ 4ϵ)T
, then the problem (2.1) has a unique solution x ∈

C[0, T ], 0 ≤ x(t) ≤ 1.

Proof. Assume the following operator F : C[0, T ] → C[0, T ], defined by

Fx(t) = xo +

∫ t

0

(
1− ρx(s)

[
ax(s− r) + ϵx(s− 2r)

])
ds,

= xo +

∫ r

0

(
1− ρx(s)

[
ax(s− r) + ϵx(s− 2r)

])
ds+

∫ 2r

r

(
1− ρx(s)

[
ax(s− r) + ϵx(s− 2r)

])
ds

+

∫ t

2r

(
1− ρx(s)

[
ax(s− r) + ϵx(s− 2r)

])
ds,

= xo +

∫ r

0

(
1− ρx(s)

[
axo + ϵxo

])
ds+

∫ 2r

r

(
1− ρx(s)

[
ax(s− r) + ϵxo

])
ds

+

∫ t

2r

(
1− ρx(s)

[
ax(s− r) + ϵx(s− 2r)

])
ds.

We can deduce for each x, y ∈ C[0, T ]

|Fx− Fy| ≤ ρ(a+ ϵ)xo

∫ r

0

|x(s)− y(s)|ds+ ρϵxo

∫ 2r

r

|x(s)− y(s)|ds

+ ρa

∫ 2r

r

|x(s)x(s− r)− y(s)y(s− r)|ds+ ρa

∫ t

2r

|x(s)x(s− r)− y(s)y(s− r)|ds

+ ρϵ

∫ t

2r

|x(s)x(s− 2r)− y(s)y(s− 2r)|ds,

≤ ρ(a+ ϵ)xo

∫ r

0

|x(s)− y(s)|ds+ ρϵxo

∫ 2r

r

|x(s)− y(s)|ds

+ ρa

∫ t

r

∣∣∣[x(s)− y(s)
]
y(s− r) + x(s)

[
x(s− r)− y(s− r)

]∣∣∣ds
+ ρϵ

∫ t

2r

∣∣∣[x(s)− y(s)
]
y(s− 2r) + x(s)

[
x(s− 2r)− y(s− 2r)

]∣∣∣ds,
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then,

||Fx− Fy|| ≤ ρr(a+ ϵ)xo ||x− y||+ ρϵrxo ||x− y||+ ρa(t− r) ||x− y|| ||y||+ ρa(t− r) ||x− y|| ||x||
+ ρϵ(t− 2r) ||x− y|| ||y||+ ρϵ(t− 2r) ||x− y|| ||x||,
≤ ρ(a+ ϵ)T ||x− y||+ ρϵT ||x− y||+ ρaT ||x− y||+ ρaT ||x− y||
+ ρϵT ||x− y||+ ρϵT ||x− y||,
≤ ρ(3a+ 4ϵ)T ||x− y||.

If ρ <
1

(3a+ 4ϵ)T
, then F is contraction, and the problem (2.1) has a unique solution

x ∈ C[0, T ]. □

2.2. Continuous dependence.

Definition 2.1. The solution of the problem (2.1) depends continuously on the initial
value xo if ∀ ϵ > 0, ∃ δ > 0 such that |xo − x∗

o| ≤ δ implies that ||x − x∗|| ≤ ϵ where x∗

is the solution of the problem

dx

dt
= 1− ρx(t)

[
ax(t− r) + ϵx(t− 2r)

]
, t ∈ (0, T ],

x(t) = x∗
o, t ≤ 0.

(2.2)

Theorem 2.2. If ρ(3a+4ϵ)T ̸= 1, then the unique solution of the problem (2.1) depends
continuously on the initial value xo.

Proof. Let x and x∗ are the solutions of the problems (2.1) and (2.2) respectively, then

||x(t)− x∗(t)|| ≤ |xo − x∗
o|+ ρ(a+ ϵ)

∫ r

0

|x(s)xo − x∗(s)x∗
o|ds+ ρϵ

∫ 2r

r

|x(s)xo − x∗(s)x∗
o|ds

+ ρa

∫ 2r

r

|x(s)x(s− r)− x∗(s)x∗(s− r)|ds+ ρa

∫ t

2r

|x(s)x(s− r)− x∗(s)x∗(s− r)|ds

+ ρϵ

∫ t

2r

|x(s)x(s− 2r)− x∗(s)x∗(s− 2r)|ds,

≤ |xo − x∗
o|+ ρ(a+ ϵ)

∫ r

0

|[x(s)− x∗(s)]xo + [xo − x∗
o]x

∗(s)|ds

+ ρϵ

∫ 2r

r

|[x(s)− x∗(s)]xo + [xo − x∗
o]x

∗(s)|ds+ ρa

∫ t

r

|x(s)x(s− r)− x∗(s)x∗(s− r)|ds

+ ρϵ

∫ t

2r

|x(s)x(s− 2r)− x∗(s)x∗(s− 2r)|ds,

≤ |xo − x∗
o|+ ρ(a+ ϵ)||x− x∗|| |xo|

∫ r

0

ds+ ρ(a+ ϵ)|xo − x∗
o| ||x∗||

∫ r

0

ds

+ ρϵ||x− x∗|| |xo|
∫ 2r

r

ds+ ρϵ|xo − x∗
o| ||x∗||

∫ 2r

r

ds

+ ρa

∫ t

r

∣∣∣[x(s)− x∗(s)
]
x∗(s− r) + x(s)

[
x(s− r)− x∗(s− r)

]∣∣∣ds
+ ρϵ

∫ t

2r

∣∣∣[x(s)− x∗(s)
]
x∗(s− 2r) + x(s)

[
x(s− 2r)− x∗(s− 2r)

]∣∣∣ds,
then,

||x− x∗|| ≤ |xo − x∗
o|+ ρ(a+ ϵ)r||x− x∗|| |xo|+ ρ(a+ ϵ)r|xo − x∗

o| ||x∗||+ ρϵr||x− x∗|| |xo|
+ ρϵr|xo − x∗

o| ||x∗||+ ρa(t− r)||x− x∗|| ||x∗||+ ρa(t− r)||x|| ||x− x∗||
+ ρϵ(t− 2r)||x− x∗|| ||x∗||+ ρϵ(t− 2r)||x|| ||x− x∗||,
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which implies

||x− x∗|| ≤ 1 + ρ(a+ 2ϵ)T

1− ρ(3a+ 4ϵ)T
|xo − x∗

o|,

which proves that

|xo − x∗
o| ≤ δ =⇒ ||x− x∗|| ≤ 1 + ρ(a+ 2ϵ)T

1− ρ(3a+ 4ϵ)T
δ = ϵ∗.

□

2.3. The local stability of problem (2.1). The local stability of the equilibrium points

of (2.1) will be studied. Specifically, x∗
1,2 = ± 1√

ρ(a+ ϵ)
, are solutions to the equation

1− ρx[ax+ ϵx] = 0.

We get the linearized equation as

dy

dt
= ∓

√
ρ(a+ ϵ)y(t)∓

a
√
ρ

√
a+ ϵ

y(t− r)∓
ϵ
√
ρ

√
a+ ϵ

y(t− 2r).

The characteristic equation is given by

λ±
√

ρ(a+ ϵ)±
a
√
ρ

√
a+ ϵ

e−rλ ±
ϵ
√
ρ

√
a+ ϵ

e−2rλ = 0. (2.3)

A following corollary is a helpful tool that may be used to estimate the local stability of
equation (2.3) at the points of equilibrium x∗

1,2.

Corollary 2.1. [25] The scalar equation

ẋ(t) = ao x(t) +

N∑
k=1

ak x(t− rk)

is asymptotically stable if and only if
∑N

k=0 ak ̸= 0,
∑N

k=1 |ak| ≤ |ao| and ao < 0.

Now let ao =
√

ρ(a+ ϵ), a1 =
a
√
ρ

√
a+ ϵ

, a2 =
ϵ
√
ρ

√
a+ ϵ

and using above corollary we get the

following results.

Proposition 2.1.

(1) The equilibrium point x∗
1 =

1√
ρ(a+ ϵ)

is always stable.

(2) The equilibrium point x∗
2 =

−1√
ρ(a+ ϵ)

is always unstable.

2.4. Hopf bifurcation. Following is a discussion of the Hopf bifurcation that we cover
in this part.

Theorem 2.3. If
d(Re(λ))

dϵ

∣∣∣∣
ϵ=ϵ∗

=
dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

̸= 0, ϵ∗ =
−a− a cos (rω)

2 cos2 (rω)
,

ωo = tan(2rωo)
(
−

√
ρ(a+ ϵ)−

a
√
ρ

√
a+ ϵ

cos(rωo)
)
+

a
√
ρ

√
a+ ϵ

sin(rωo), then there
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is a Hopf bifurcation when ϵ = ϵ∗ at the equilibrium x∗
1, where

dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

=

[(
ρ

2
√
ρ
−

a
√
ρ

2(a+ ϵ∗)
cos(rωo) +

√
ρ cos(2rωo)−

ϵ∗
√
ρ

2(a+ ϵ∗)
cos(2rωo)

)
(
ar

√
ρ cos(rωo) + 2ϵ∗r

√
ρ cos(2rωo)−

√
a+ ϵ∗

)
−

(
a
√
ρ

2(a+ ϵ∗)
sin(rωo)

−√
ρ sin(2rωo) +

ϵ∗
√
ρ

2(a+ ϵ∗)
sin(2rωo)

)(
ar

√
ρ sin(rωo) + 2ϵ∗r

√
ρ sin(2rωo)

)]

÷

[(
ar

√
ρ sin(rωo) + 2ϵ∗r

√
ρ sin(2rωo)

)2

+

(
ar

√
ρ cos(rωo) + 2ϵ∗r

√
ρ cos(2rωo)

−
√
a+ ϵ∗

)2
]
.

Proof. Suppose that equation (2.3) has a pure imaginary solution λ = iωo, ωo ∈ R+ for
a given value of a parameter ϵ = ϵ∗. Therefore, we get the following equation

iωo +
√

ρ(a+ ϵ) +
a
√
ρ

√
a+ ϵ

e−riωo +
ϵ
√
ρ

√
a+ ϵ

e−2riωo = 0.

We can rephrase that by

iωo+
√

ρ(a+ ϵ)+
a
√
ρ

√
a+ ϵ

(
cos(rωo)−i sin(rωo)

)
+

ϵ
√
ρ

√
a+ ϵ

(
cos(2rωo)−i sin(2rωo)

)
= 0.

This complex equation is equivalent to the two real equations√
ρ(a+ ϵ) +

a
√
ρ

√
a+ ϵ

cos(rωo) +
ϵ
√
ρ

√
a+ ϵ

cos(2rωo) = 0, (2.4)

ωo −
a
√
ρ

√
a+ ϵ

sin(rωo)−
ϵ
√
ρ

√
a+ ϵ

sin(2rωo) = 0. (2.5)

Following the resolution of equation (2.4) and equation (2.5), we get

ϵ∗ =
−a− a cos (rωo)

2 cos2 (rωo)
,

ωo = tan(2rωo)
(
−

√
ρ(a+ ϵ)−

a
√
ρ

√
a+ ϵ

cos(rωo)
)
+

a
√
ρ

√
a+ ϵ

sin(rωo).

In what follows, we show that condition
d(Re(λ))

dϵ

∣∣∣∣
ϵ=ϵ∗

̸= 0 is investigated. Put λ =

k(ϵ) + iω(ϵ) and use equation (2.3), we have

k + iω +
√

ρ(a+ ϵ) +
a
√
ρ

√
a+ ϵ

e−r(k+iω) +
ϵ
√
ρ

√
a+ ϵ

e−2r(k+iω) = 0,

then,

k +
√

ρ(a+ ϵ) +
a
√
ρ

√
a+ ϵ

e−rk cos(rω) +
ϵ
√
ρ

√
a+ ϵ

e−2rk cos(2rω) = 0, (2.6)

ω −
a
√
ρ

√
a+ ϵ

e−rk sin(rω)−
ϵ
√
ρ

√
a+ ϵ

e−2rk sin(2rω) = 0. (2.7)
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By differentiating equation (2.6) and equation (2.7) with respect to ϵ, we obtain

dk

dϵ
+

ρ

2
√

ρ(a+ ϵ)
−

a
√
ρ

2 (a+ ϵ)
3
2

e−rk cos(rω)−
a
√
ρ

√
a+ ϵ

re−rk cos(rω)
dk

dϵ

−
a
√
ρ

√
a+ ϵ

e−rkr sin(rω)
dω

dϵ
+

√
ρ

√
a+ ϵ

e−2rk cos(2rω)−
ϵ
√
ρ

2 (a+ ϵ)
3
2

e−2rk cos(2rω)

− 2
ϵ
√
ρ

√
a+ ϵ

re−2rk cos(2rω)
dk

dϵ
− 2

ϵ
√
ρ

√
a+ ϵ

e−2rkr sin(2rω)
dω

dϵ
= 0,

(2.8)

dω

dϵ
+

a
√
ρ

2 (a+ ϵ)
3
2

e−rk sin(rω) +
a
√
ρ

√
a+ ϵ

re−rk sin(rω)
dk

dϵ
−

a
√
ρ

√
a+ ϵ

e−rkr cos(rω)
dω

dϵ

−
√
ρ

√
a+ ϵ

e−2rk sin(2rω) +
ϵ
√
ρ

2 (a+ ϵ)
3
2

e−2rk sin(2rω) + 2
ϵ
√
ρ

√
a+ ϵ

re−2rk sin(2rω)
dk

dϵ

− 2
ϵ
√
ρ

√
a+ ϵ

e−2rkr cos(2rω)
dω

dϵ
= 0.

(2.9)

Following the resolution of equation (2.8) and equation (2.9), we get

dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

=

[(
ρ

2
√
ρ
−

a
√
ρ

2(a+ ϵ∗)
cos(rωo) +

√
ρ cos(2rωo)−

ϵ∗
√
ρ

2(a+ ϵ∗)
cos(2rωo)

)
(
ar

√
ρ cos(rωo) + 2ϵ∗r

√
ρ cos(2rωo)−

√
a+ ϵ∗

)
−

(
a
√
ρ

2(a+ ϵ∗)
sin(rωo)

−√
ρ sin(2rωo) +

ϵ∗
√
ρ

2(a+ ϵ∗)
sin(2rωo)

)(
ar

√
ρ sin(rωo) + 2ϵ∗r

√
ρ sin(2rωo)

)]

÷

[(
ar

√
ρ sin(rωo) + 2ϵ∗r

√
ρ sin(2rωo)

)2

+

(
ar

√
ρ cos(rωo) + 2ϵ∗r

√
ρ cos(2rωo)

−
√
a+ ϵ∗

)2
]
.

If
d(Re(λ))

dϵ

∣∣∣∣
ϵ=ϵ∗

=
dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

̸= 0, hence when the parameter ϵ crosses a certain

critical value

ϵ = ϵ∗ =
−a− a cos (rω)

2 cos2 (rω)
, ωo = tan(2rωo)

(
−
√

ρ(a+ ϵ)−
a
√
ρ

√
a+ ϵ

cos(rωo)
)
+

a
√
ρ

√
a+ ϵ

sin(rωo),

the equilibrium point x∗
1 undergoes Hopf bifurcation. □

Likewise, we can illustrate that the equilibrium point x∗
2 undergoes Hopf bifurcation.

2.5. The discrete system. Dynamical systems generated by piecewise constant argu-
ments have been studied in [26-29].

Consider the problem (1.3) with piecewise constant arguments as follows.

dx

dt
= 1− ρx(r[

t

r
])y(r[

t

r
]), t ∈ (0, T ],

y(r[
t

r
]) = ax(r[

t

r
]− r) + ϵx(r[

t

r
]− 2r),

x(t) = xo, y(t) = yo, t ≤ 0,

(2.10)

where [.] denotes the greatest integer function and r is a constant argument.
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Let t ∈ [nr, (n + 1)r) and n = 0, 1, 2, ... . The procedure for discretization is as given
below.

1) Let t ∈ [0, r), then [
t

r
] = 0 and the solution of problem (2.10) is given by

dx

dt
= 1− ρxoyo

x(t)− x(0) =
(
1− ρxoyo

)∫ t

0

1 ds

x(t) = xo + t
(
1− ρxoyo

)
,

yo = axo + ϵxo.

When t → r and x(r) = x1 we get

x1 = xo + r(1− ρxoyo),

yo = axo + ϵxo.

2) Let t ∈ [r, 2r), then [
t

r
] = 1 and the solution of problem (2.10) is given by

dx

dt
= 1− ρx1y(r)

x(t)− x(r) =
(
1− ρx1y(r)

)∫ t

r

1 ds

x(t) = x1 + (t− r)
(
1− ρx1y(r)

)
,

y(r) = axo + ϵxo.

When t → 2r, x(2r) = x2 and y(r) = y1 we get

x2 = x1 + r(1− ρx1y1),

y1 = axo + ϵxo.

3) Let t ∈ [2r, 3r), then [
t

r
] = 2 and the solution of problem (2.10) is given by

dx

dt
= 1− ρx2y(2r)

x(t)− x(2r) =
(
1− ρx2y(2r)

)∫ t

2r

1 ds

x(t) = x2 + (t− 2r)
(
1− ρx2y(2r)

)
,

y(2r) = ax1 + ϵxo.

When t → 3r, x(3r) = x3 and y(2r) = y2 we get

x3 = x2 + r(1− ρx2y2),

y2 = ax1 + ϵxo.
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We can conclude from iterating the procedure that the presented is a solution to problem
(2.10)

xn+1 = xn + r(1− ρxnyn),

yn+1 = axn + ϵxn−1.
(2.11)

2.6. The local stability of the discrete system. System (2.11) can be rephrased as
below

xn+1 = xn + r(1− ρxnyn),

yn+1 = axn + ϵzn,

zn+1 = xn.

(2.12)

This system has two fixed points (x∗
1, y

∗
1 , z

∗
1) and (x∗

2, y
∗
2 , z

∗
2) where

x∗
1 =

1√
ρ(a+ ϵ)

, y∗
1 =

a+ ϵ√
ρ(a+ ϵ)

, z∗1 =
1√

ρ(a+ ϵ)
,

x∗
2 =

−1√
ρ(a+ ϵ)

, y∗
2 =

−(a+ ϵ)√
ρ(a+ ϵ)

, z∗2 =
−1√

ρ(a+ ϵ)
,

and (a+ ϵ) ̸= 0, which are solutions to the next algebraic system

x = x+ r(1− ρxy),

y = ax+ ϵz,

z = x.

The system’s (2.12) associated Jacobian matrix reads

J(x, y, z) =


1− rρy −rρx 0

a 0 ϵ

1 0 0

 .

What follows is an analysis of fixed points’ stability.

2.6.1. Stability analysis at (x∗
1, y

∗
1 , z

∗
1). Jacobian matrix at (x∗

1, y
∗
1 , z

∗
1) represents

J(x∗
1, y

∗
1 , z

∗
1) =


1−

r
√
ρ(a+ ϵ)
√
a+ ϵ

−
r
√
ρ

√
a+ ϵ

0

a 0 ϵ

1 0 0

 .

J(x∗
1, y

∗
1 , z

∗
1) has a characteristic equation given by

P (λ) ≡ λ3 + (
r
√
ρ(a+ ϵ)
√
a+ ϵ

− 1)λ2 +
ar

√
ρ

√
a+ ϵ

λ+
ϵr
√
ρ

√
a+ ϵ

= 0.
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The Jury test described in [30] is used to establish whether or not system (2.12), at the
fixed point (x∗

1, y
∗
1 , z

∗
1), is locally stable. We find the following.

Proposition 2.2. The fixed point (x∗
1, y

∗
1 , z

∗
1) is stable if 0 < ρ <

a+ ϵ

a2 r2
and unstable if

ρ >
a+ ϵ

a2 r2
.

2.6.2. Stability analysis at (x∗
2, y

∗
2 , z

∗
2). Jacobian matrix at (x∗

2, y
∗
2 , z

∗
2) represents

J(x∗
2, y

∗
2 , z

∗
2) =


1 +

r
√
ρ(a+ ϵ)
√
a+ ϵ

r
√
ρ

√
a+ ϵ

0

a 0 ϵ

1 0 0

 .

J(x∗
2, y

∗
2 , z

∗
2) has a characteristic equation of the form

P (λ) ≡ λ3 − (
r
√
ρ(a+ ϵ)
√
a+ ϵ

+ 1)λ2 −
ar

√
ρ

√
a+ ϵ

λ−
ϵr
√
ρ

√
a+ ϵ

= 0.

Using the Jury test, the second condition is not satisfied and we find the following.

Proposition 2.3. The fixed point (x∗
2, y

∗
2 , z

∗
2) is always unstable.

2.7. Numerical simulations. In this part, to validate our studies we use numerical
experiments to draw out the theoretical results and show that changes in r, a, and ϵ affect
the dynamical behavior of the dynamical system (2.11). We have been experimenting
with different values of r, a and ϵ and then plotting bifurcation diagrams as a function of
ρ. Moreover, the maximal Lyapunov exponent corresponding to each bifurcation diagram
is introduced below it. In Figure (1a) we start with the initial point (0.09, 0.08, 0.09) at
r = 0.1, a = 0.8, ϵ = 0.1 the system undergoes bifurcation at ρ ≃ 140.625. In Figure
(1b) we start with the initial point (0.08, 0.08, 0.08) at r = 0.1, a = 0.8, ϵ = 0.2 the
system undergoes bifurcation at ρ ≃ 156.25. In Figure (1c) we start with the initial
point (0.1778, 0.16, 0.1778) at r = 0.2, a = 0.8, ϵ = 0.1 the bifurcation occurs in the
system at ρ ≃ 35.156. Figure (1g) illustrates that the bifurcation occurs in the system
at ρ ≃ 123.457 with initial point (0.09, 0.09, 0.09) and r = 0.1, a = 0.9, ϵ = 0.1. Figure
(1h) illustrates that the system undergoes bifurcation at ρ ≃ 100.2 with initial point
(0.1, 0.1, 0.1) and r = 0.1, a = 0.999, ϵ = 0.001. We noticed that when a → 1 and ϵ → 0
the Riccati equation with perturbed delay (1.3) will be the Riccati differential equation
(1.1) as shown in Figures (1g)-(1h).

Also, we introduce some phase diagrams by taking r = 0.1, a = 0.8, ϵ = 0.2, and
initial point = (0.08, 0.08, 0.08) as in Figure (2). Through the increase in the value of
ρ, the curve rotates clockwise and a period-4 orbit appears and the Lyapunov exponent
becomes positive, as shown in Figures (2a)-(2g). The curve turns into an oval with an
increase in radius and the Lyapunov exponent changes between negative and positive as
in Figures (2h)-(2o). In Figure (2p) the circular curve breaks down and a period-7 orbit
appears and the Lyapunov exponent becomes negative again. The curve appears again
as in Figure (2q) and the Lyapunov exponent becomes positive. In figure (2r) the curve
breaks down again and a period-17 orbit appears and the Lyapunov exponent becomes
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positive again. Figures (2s)-(2t) show that the circular curve breaks down, appears again
then disappears and the Lyapunov exponent changes between negative and positive.

(a) r = 0.1, a = 0.8, ϵ = 0.1 (b) r = 0.1, a = 0.8, ϵ = 0.2 (c) r = 0.2, a = 0.8, ϵ = 0.1

(d) r = 0.1, a = 0.8, ϵ = 0.1 (e) r = 0.1, a = 0.8, ϵ = 0.2 (f) r = 0.2, a = 0.8, ϵ = 0.1

(g) r = 0.1, a = 0.9, ϵ = 0.1 (h) r = 0.1, a = 0.999, ϵ = 0.001

(i) r = 0.1, a = 0.9, ϵ = 0.1 (j) r = 0.1, a = 0.999, ϵ = 0.001

Figure 1. Bifurcation diagrams of a system (2.11) and its
accompanying maximum Lyapunov exponent
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(a) ρ = 115 (b) ρ = 130 (c) ρ = 145 (d) ρ = 150

(e) ρ = 155 (f) ρ = 156 (g) ρ = 157 (h) ρ = 157.5

(i) ρ = 158 (j) ρ = 165 (k) ρ = 170 (l) ρ = 180

(m) ρ = 185 (n) ρ = 200 (o) ρ = 215 (p) ρ = 216.6

(q) ρ = 226 (r) ρ = 231 (s) ρ = 232 (t) ρ = 233.2

Figure 2. Phase diagrams of system (2.11) with varying values
of ρ



EJMAA-2023/11(2) ON THE DYNAMICS OF A RICCATI DE WITH PERTURBED DELAY 13

3. Conclusion

In this study, a Riccati differential equation with a delayed perturbation was stud-
ied. We looked at both the solution’s existence and its continuous dependence on the
initial conditions. Analyses of Hopf bifurcations and fixed points’ local stability were
presented. We adopted a discretization procedure to solve the delayed differential equa-
tion with piecewise constant arguments. When looking at the discrete system, we ran an
investigation of its local stability. We validated our results using numerical simulations
that generated bifurcation diagrams, Lyapunov exponents, and phase diagrams to better
understand the underlying complicated dynamics. We contrasted the results of theoretical
studies of the delayed Riccati differential equation (1.1) and its perturbed equation (1.3).
We found that the dynamical system is sensitive to shifts in r, a and that even a little
perturbation may cause a significant shift in the system’s chaotic behavior. Moreover,
when a → 1 and ϵ → 0 the Riccati equation with perturbed delay (1.3) is equivalent to
the Riccati differential equation (1.1) with the same dynamical properties.

References

[1] P. N. V. Tu, Dynamical Systems, An Introduction with Applications in Economics and Biol-

ogy, Springer Science & Business Media, (2012).

[2] R. A. Frantz, J. C. Loiseau, J. C. Robinet, Krylov methods for large-scale dynamical systems:
Application in fluid dynamics. Applied Mechanics Reviews, (2023).

[3] S. H. Strogatz, Nonlinear dynamics and chaos with applications to physics, Biology, chemistry,
and engineering, CRC press, (2018).

[4] C. Zhu, A novel image encryption scheme based on improved hyperchaotic sequences, Optics

communications, 285 (2012), 29–37.
[5] A. M. A. El-Sayed, A. Elsaid, H. M. Nour, A. Elsonbaty, Dynamical behavior, chaos con-

trol and synchronization of a memristor-based ADVP circuit, Communications in Nonlinear

Science and Numerical Simulation, (2012).
[6] S. Vaidyanathan, K. Rajagopal, LabVIEW implementation of chaotic masking with adap-

tively synchronised forced Van der Pol oscillators and its application in real-time image en-

cryption, International Journal of Simulation and Process Modelling, 12(2) (2017), 165-78.
[7] L. Kocarev, S. Lian, Chaos-based cryptography, Springer, (2011).

[8] N. Yadav, S. Ravela, A. R. Ganguly, Machine learning for robust identification of com-

plex nonlinear dynamical systems: applications to earth systems modeling. arXiv preprint
arXiv:2008.05590, (2020).

[9] K. Gajamannage, D. I. Jayathilake, Y. Park, E. M. Bollt, Recurrent neural networks for dy-
namical systems: Applications to ordinary differential equations, collective motion, and hy-

drological modeling. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(1) (2023).

[10] W. T. Reid, Riccati Differential Equations. Mathematics in Science and Engineering, Aca-
demic Press, vol. 86 (1972).

[11] B. D. Anderson, J. B. Moore, Optimal Control-linear Quadratic Methods, Courier Corpora-

tion, (2007).
[12] G. Männel, M. Siebert, C. Brendle, P. Rostalski, Robust model predictive control of an

anaesthesia workstation ventilation unit. at-Automatisierungstechnik, 68(11) (2020).

[13] P. Acquistapace, and F. Bucci, Uniqueness for Riccati equations with application to the
optimal boundary control of composite systems of evolutionary partial differential equations.

Annali di Matematica Pura ed Applicata, (2023).

[14] J. F. Carinena, G. Marmo, A. M. Perelomov, M. F. Z. Ranada, Related operators and exact
solutions of Schrödinger equations, International Journal of Modern Physics A, 13(28) (1998),

4913–4929.
[15] A. M. A. El-Sayed, S. M. Salman, Dynamic behavior and chaos control in a complex Riccati-

type map, Quaestions Mathematicae, 39(5) (2016), 665–681.



14 A. M. A. EL-SAYED, S. M. SALMAN, A. A. F. ABDELFATTAH EJMAA-2023/11(2)

[16] R. D. Driver, Ordinary and delay differential equations, Springer Science & Business Media,

Vol. 20, (2012).

[17] A. A. Elsadany, S. M. Salman, On the bifurcation of Marotto’s map and its application in
image encryption, Journal of Computational and Applied Mathematics, 328 (2018), 177-196.

[18] S. M. Salman, A. M. Yousef, A. A. Elsadany, Stability, bifurcation analysis and chaos control

of a discrete predator-prey system with square root functional response Chaos, Solitons and
Fractals, 93 (2016), 20-31.

[19] M. C. Mackey, L. Glass, Oscillations and Chaos in Physiological Control Systems, Science,

197 (1997), 287-289.
[20] A. M. A. EL-Sayed, S. M. Salman, A. M. A. Abo-Bakr, On the Dynamics of the Logistic Delay

Differential Equation with Two Different Delays. Journal of Applied and Computational

Mechanics, 7(2) (2021).
[21] N. Guglielmi, E. Iacomini, A. Viguerie, Delay differential equations for the spatially resolved

simulation of epidemics with specific application to COVID-19. Mathematical Methods in
the Applied Sciences, 45(8) (2022).

[22] C. Zhang, Q. Zhu, Exponential stability of random perturbation nonlinear delay systems with

intermittent stochastic noise. Journal of the Franklin Institute, 360(2) (2023).
[23] A. M. A. EL-Sayed, S. M. Salman, A. M. A. Abo-Bakr, On the dynamics of a class of difference

equations with continuous arguments and its singular perturbation. Alexandria Engineering

Journal, 66 (2023).
[24] N. MacDonald, Two delays may not destabilize although either can delay, Mathematical

Biosciences, 82(2) (2006), 127-140.

[25] J. K. Hale, E. F. Infante, F. S. Tsen, Stability in linear delay equations, Journal of Mathe-
matical Analysis and Applications, 105(2) (1985), 533-555.

[26] A. M. A. El-Sayed, S. M. Salman, Chaos and bifurcation of discontinuous dynamical systems

with piecewise constant arguments, Malaya Journal of Matematik, 1(1) (2012), 14-18.
[27] A. M. A. El-Sayed, S. M. Salman, Chaos and bifurcation of the Logistic discontinuous dynam-

ical systems with piecewise constant arguments, Malaya Journal of Matematik, 3(1) (2013),
14-20.

[28] M. U. Akhmet, D. Altntana, T. Ergenc, Chaos of the logistic equation with piecewise constant

arguments, arXiv preprint arXiv:1006.4753, (2010).
[29] A. M. A. El-Sayed, S. M. Salman, On a discretization process of fractional-order Riccati

differential equation, J. Fract. Calc. Appl, 4(2) (2013), 251-259.

[30] K. Ogata, Discrete-time control systems, Prentice-Hall, Inc., (1995).

Ahmed M. A. El-Sayed

Faculty of Science, Alexandria University, Alexandria, Egypt
Email address: amasayed@alexu.edu.eg

Sanaa M. Salman
Faculty of Education, Alexandria University, Alexandria, Egypt
Email address: samastars9@alexu.edu.eg

AbdAllah A. F. AbdElfattah
Faculty of Science, Alexandria University, Alexandria, Egypt

Email address: abdallah.awad pg@alexu.edu.eg


	1. Introduction
	2. Main Results
	2.1. Existence and uniqueness
	2.2. Continuous dependence
	2.3. The local stability of problem (2.1)
	2.4. Hopf bifurcation
	2.5. The discrete system
	2.6. The local stability of the discrete system
	2.7. Numerical simulations

	3. Conclusion
	References

