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Abstract 
 
Sigmoid growth models play an important role in describing many 

natural events that have a sigmoidal curve (S-shaped). In this paper, 
the two sigmoid growth models based on Burr Type XII distribution 
called the Burr 1 Type XII and Burr 2 Type XII sigmoid growth 
models are proposed to be able to describe various situations with 
accuracy. The methods of estimation of the non-linear least squares 
and maximum likelihood are used to estimate the parameters of the 
proposed models. The performance of the new proposed models is 
investigated and compared with the classical sigmoid growth, Brody 
and Weibull models in describing the growth of confirmed new cases 
of COVID-19 in Egypt. The results showed that the new proposed 
model, Burr 1 Type XII sigmoidal growth is superior over the other 
models with respect to the coefficient of determination 푅 , mean 
squared error, root mean squared error, model efficiency, and the 
Akaike information corrected criterion especially when NLS 
estimation is used. 
 
Keywords: Non-linear regression, Sigmoid growth model, Weibull 
model, Non-linear least squares, Maximum likelihood, COVID-19.  
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1 Introduction 
 

     The growth curves are found in a wide range of disciplines such as 
biology, chemistry, economy, fishery, demography, and medical 
science. These curves are used to model natural events that involve 
investigation changes of response in time. The growth rate curve is 
often bell-shaped, in which the rate of growth increases sharply at the 
initial stage, reaching a peak, and then decreases towards zero at an 
upper asymptote.  
      Many mathematical growth functions have been proposed by 
some others such as Brody (1945), von Bertalanffy (1957), and 
Richards (1959) to capture the growth trajectory with accuracy. 
These functions can be classified into three categories: the first with a 
diminishing returns behavior (Brody model), the second with 
sigmoidal (S- shaped) curve, and a fixed inflection point which is the 
point at when the rate of growth gets maximum value (Gompertz, 
Logistic, and von Bertalanffy models) and the third with a flexible 
inflection point (Richards model).  

     Sigmoid growth models are nonlinear regression models that have 
been applied in various fields with many different notations and 
parameterization [Tjørve and Tjørve(2017)]. The most in use are 
three-parameter growth functions as Logistic, Gompertz, and von 
Bertalanffy and four-parameter growth functions as Richards 
[Ratkowsky (1983), France et al. (1996), Maruyama et al.(2001), and 
Narushin and Takma (2003)].  General discussions of sigmoid growth 
models were presented in Malott (1990), Tsoularis and Wallace 
(2002), Seber and Wild (2003), Goshu and Koya (2013), Mahanta 
and Borah (2014), Archontoulis and Miguez (2015), Vrána et al. 
(2019), Omori et al. (2020), Shen (2020), and Utsunomiya et al. 
(2020). 

The mathematical forms of some classical growth models are as 
follows: 

Brody model:        푦 = 훼 + (훽 − 훼)푒 	 + 휀 	,                                    (1)   
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Logistic model:     푦 = 	풙풊
+ 휀 	,                                                    (2) 

Gompertz model:  푦 = 훼	푒 	 	 + 휀 	,                                               (3)   

Weibull model:     푦풊 = 훼	 1 −	푒 ( 	 ) + 휀 	,		                                    (4) 

where 푦 	; 	푖 = 1, … ,푛	is the response variable, 푥 		is the independent 
variable, 훼, 훽,푘, and 푐 are parameters to be estimated which are 
defined as: 훼	is the maximum value of the response variable in the 
data	,훼 > 0,훽is the minimum value of the response variable in the 
data, 푘	is the parameter governing the rate at which the response 
variable approaches its potential maximum,	푘 > 0, and 푐 is the 
allometric constant, and 휀  is a random error term which assumes that 
it is independent and identically distributed (푖. 푖.푑. )	with 푁(0,휎 ). 

      Many studies used and proposed growth models in analyzing 
various growth phenomena such as Fernandes et al. (2017) used the 
Logistic and Gompertz growth models for analyzing the growth 
pattern of coffee berries, Souza et al. (2017) studied the growth 
models: Brody, Gompertz, Logistic, and von Bertalanffy models in 
analyzing the cross-section data of the live weight of the Mangalarga 
Marchador horses, Amarti (2018) proposed the Logistic growth 
model with the Allee effect for describing the growth of the 
population number, Ghaderi-Zefrehel et al. (2018) studied some 
general non-linear growth models such as von Bertalanffy, Gompertz, 
Logistic, and Brody along with hierarchical modeling to investigate 
the phenotypic growth pattern of Iranian Lori-Bakhtiari sheep, 
Ribeiro et al. (2018) explained the growth and development of the 
Asian pear fruit on the grounds of length, diameter, and fresh weight 
determined over time using the Gompertz, and Logistic models, Cao 
et al. (2019) presented a new sigmoid growth model for describing 
the growth of animals and plants when the growth rate curve is 
asymmetric and Ukalska and Jastrzebowski (2019) studied the 
dynamics of the epicotyls emergence of oak using the Lgoistic, 
Gompertz, and Richards models.  
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     The aim of this paper is to introduce new sigmoid growth models 
based on Burr Type XII distribution for analyzing various growth 
situations with accuracy, the first model is called Burr 1 Type XII 
sigmoid growth model and the second is called Burr 2 Type XII 
sigmoid growth model. The organization of this paper is as follows: 
the new proposed models of sigmoidal growth, Burr 1 Type XII, and 
Burr 2 Type XII are introduced in Section 2. Estimation of the 
parameters of the proposed models is performed using the non-linear 
least squares (NLS) and maximum likelihood (ML) estimation 
methods in Section 3. The performance of new sigmoid growth 
models are investigated using daily confirmed new COVID-19 cases 
in Egypt from March 15, 2020 to May 4, 2020 in Section 4. Some 
concluding remarks are provided in Section 5. 
 

2 The Proposed Models 

  There are different procedures for modeling the sigmoid functions 
to the sigmoid growth models, one important of these procedures 
formulas based on the cumulative distribution function (cdf) as 
proposed by Seber and Wild (2003). An obvious way for describing a 
sigmoid shape is to use the distribution function 퐹(푥;휽) of a 
continuous random variable with a unimodal distribution. The general 
formula of sigmoid model based on the distribution function can be 
defined as follows: 

                      				푦 = 훽 + (훼 − 훽)퐹(푘(푥 − 훾); 	휽) + 휀	,                      (5) 

where 푦  is the response variable in the general formula of sigmoid 
model, 푥 is the independent variable, 훾 is the point of  inflection, 훼 is 
the maximum value of the dependent variable in the data, 훼 > 0, 훽 is 
the minimum value of the response variable, 푘	is as a scale parameter 
on 푥	,	푘 > 0, and 휀 is the random error.  
 

Another formula of sigmoid model as special case when 훽 = 0	in (5) 
as follows: 
                                      푦 = 훼	퐹(푘(푥 − 훾); 	휽) + 휀	,                               (6) 
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where 푦  is the response variable in the special case of sigmoid 
model when 훽 = 0 and 휀 is the random error. Also, when shifting the 
standard curve vertically at 훾 = 0	in (5), the special case of sigmoid 
model can be written as follows: 

                                  푦 = 훽 + (훼 − 훽)퐹(푘푥;휽) + 휀,                               (7) 

where 푦  is the response variable in the special case of sigmoid 
model when 훾 = 0 and 휀 is the random error. 

The Burr Type XII distribution was first introduced in the literature 
by Burr (1942) and has gained special attention due to its broad 
applications in different fields including the area of reliability, failure 
time modeling and acceptance sampling plan and so on. The Burr 
Type XII distribution is one of the most important distributions, since 
it is including several distributions as special cases such as Weibull, 
Pareto, Generalized Logistic, Logistic, Exponential, and Gompertz 
distributions [Kumar (2017)]. Thus, the Burr Type XII distribution 
will be using to construct different models of sigmoidal growth based 
on the cumulative distribution functions.  

The probability density function (pdf) and the cdf of Burr Type XII 
(푐, 푟) distribution are given respectively by: 

                푓(푥; 푐, 푟) = 푐	푟	푥 (1 + 푥 ) ( ), 푋 ≥ 0, 푐 > 0	,푟 > 0           (8) 

and 

                    퐹(푥; 푐, 푟) = 1− (1 + 푥 ) 	,				푋 ≥ 0	, 푐 > 0, 푟 > 0,            (9) 

where 푐 and 푟	are the shape and scale parameters, respectively. 

From (5), the Burr Type XII sigmoid growth model is denoted 푦 (퐵) 
and is written in the following form: 

                             푦 (퐵) = 푓 (푥 ,휽) + 휀 	, 휽 = (훼,훽,푘, 푐, 푟)  

                                       = 훽 + (훼 − 훽)[	1− (1 + (푘푥 ) ) ] + 휀 	.      (10) 

When		푟 = 1 in (10), the first new proposed model called the Burr 1 
Type XII sigmoid growth model, denoted by 푦 (퐵1) and is defined as 
follows:  
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푦 (퐵1) = 푓 (푥 ,휽) + 휀 	, 휽 = (훼,훽, 푘, 푐)  

                                     = 훽 + (훼 − 훽)[	1− (1 + (푘푥 ) ) ] + 휀 	.        (11) 

Also, when 푐 = 1	and	푟 = 1 in (10), the second new proposed model 
called the Burr 2 Type XII sigmoid growth model denoted by 푦 (퐵2) 
and is defined as follows: 

푦 (퐵2) = 푓 (푥 ,휽) + 휀 ,휽 = (훼,훽,푘)  

                                          	= 훽 + (훼 − 훽) 	1 − 1 + (푘푥 ) + 휀 	.  (12) 

3 Estimation of the Parameters of the Proposed Models 

      In this section, the NLS and the ML estimation methods are used 
for estimating the parameters of the proposed sigmoid growth 
models.  

3.1  Non-linear least squares estimation 

     First, we will discuss non-linear least squares estimation for the 
parameters of some classical growth models: Brody and Weibull 
models. It is required to minimize the following function:  

           푆(휽) = ∑ {푦 − 푓(푥 ,휽)} ( ,휽)

	
, 푗 = 1, 2, … , 푝.      (13) 

This provides a system of 푝 non-linear equation with 푝 unknown 
parameters. For Brody model as defined in (1), 

                    푓 (푥 ,휽) = 훼 + (훽 − 훼)푒 	 , 휽 = (훼,푘,훽) .           (14) 

The NLS estimators can be obtained by minimizing    

                    ∑ {푦 − [훼 + (훽 − 훼)푒 	 ]} ( ,휽)

	
= 0	.    (15)  

The derivatives of 푓 (푥 ,휽) with respect to the parameters are 
given by 

               
( ,휽)

= 1	 − 	푒 	 ,		                                                      (16)                                                 
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( ,휽)

= 	 푒 	 ,					                                                        (17) 

and 

             
( ,휽)

= (훼 − 훽)	푥 푒 	 	.			                                             (18) 

 Since the NLS method requires an iterative method, one of 
iterative methods can be used to solve these equations numerically, 
such as the Gauss-Newton method, the gradient descent method, and 
the Levenberg-Marquardt method [Fekedulegn et al. (1999), Seber 
and Wild (2003), and Gavin (2017)]. 

For the Weibull model as defined in (4), 

                     푓 (푥 ,휽) = 훼	 1 −	푒 ( 	 ) 		, 휽 = (훼, 푘, 푐) .        (19) 

The NLS estimators can be obtained by minimizing    

                 ∑ 푦 − 훼	 1 −	푒 ( 	 ) ( ,휽)

	
= 0	.       (20)    

Then, 

                                ( ,휽) = 	 1 −	푒 ( 	 ) ,					                          (21)   

                                ( ,휽) = 	훼	푐		푥 푘 푒 ( 	 ) 	,			                  (22)   

and 

                           ( ,휽) = 	훼		푒 ( 	 ) (푘	푥 ) 푙푛(푘	푥 ).                (23) 

The iterative methods can be used to get the solution of these 
equations numerically. 

     For the first new proposed model, the Burr 1 Type XII sigmoid 
growth model as defined in (11), the NLS estimators can be obtained 
by minimizing    

              ∑ 푦 − 훽 + (훼 − 훽)[	1− (1 + (푘푥 ) ) ] 	 ( ,휽)

	
= 0	.	      (24)  
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Then, 

                                	 	( ,휽) = 1 − (1 + (푘푥 ) ) ,	                            (25) 

                                  	 	( ,휽) = (1 + (푘푥 ) ) ,	                                 (26) 

                      	( ,휽) = 	푐	푥 푘 (훼 − 훽)(1 + (푘푥 ) ) ,		               (27) 

and 

                 	 	( ,휽) = 	 (훼 − 훽)(1 + (푘푥 ) ) (푘푥 ) 	ln(푘푥 ).		            (28)     

An iterative method can be used to get the solution of these equations 
numerically. 

     For the second new proposed model, the Burr 2 Type XII sigmoid 
growth model as defined in (12), the NLS estimators can be obtained 
by minimizing    

      ∑ 푦 − 훽 + (훼 − 훽) 	1 − 1 + (푘푥 ) . 	 	( ,휽)

	
= 0	.    (29)    

Then, 

                ( ,휽) = 1 − 1 + (푘푥 ) 	,	                                              (30) 

                  ( ,휽) = (1 + (푘푥 )) 		,	                                                  (31) 

and 

               ( ,휽) = (훼 − 훽)푥 (1 + (푘푥 )) .						                                  (32) 

An iterative method can be used to get the solution of these equations 
numerically. 

3.2 Maximum likelihood estimation 

In this subsection, the ML estimation method is used for estimating 
the parameters of the proposed models. First, for the Brody growth 
model as in (1), suppose that 풚 = (푦 , … ,푦 )푻 be 푛 independent 
random variables with pdf, 푓(푦 |휽,휎 ) depending on a vector-valued 
parameter 휽 and the variance of error, 휎 . Also, the 휀  푠 are assumed׳
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to be independent and 푖. 푖.푑	with 푁(0,휎 ), then the likelihood 
function is:                             

퐿 = 푓(풚|휽,휎 ) 

   = 	 (2휋휎 ) / 	푒푥푝 − ∑ ( ) 	
.                         (33) 

The logarithm of the likelihood function denoted by 푙(휽,휎 ; 	풚) and 
is given as follows: 

            푙(휽,휎 ; 	풚) = log(퐿) ∝	− log(휎 )− ∑ ( ) 	
.         (34)             

Then, the ML estimator 휽 can be obtained by solving the following 
equation:   

                      휽, ;	풚
휽 휽 	휽

= 0	,			휽 = (훼, 푘,훽) 	,                                  (35) 

where 

               휽, ;	풚 = ∑ 푦 − [훼 + (훽 − 훼)푒 	 ] (1 − 푒 	 ) ,      (36) 

             휽, ;	풚 = ∑ 푦 − [훼 + (훽 − 훼)푒 	 ] (푒 	 ) ,        (37) 

              휽, ;	풚 = ( )∑ 푦 − [훼 + (훽 − 훼)푒 	 ] 	푥 푒 	 ,        (38) 

and  

            휽, ;	풚 = − + ∑ (푦 − [훼 + (훽 − 훼)푒 	 ]) .         (39) 

An iterative method can be used to get the solution of these equations 
numerically. 

     For the Weibull growth model as in (4), suppose that the 휀  푠 are׳
푖. 푖.푑.푁(0,휎 ), then the likelihood function becomes: 

              퐿 = 푓(풚|휽, 휎 ) = (2휋휎 ) / 	푒푥푝 − ∑
	( 	 	 )

.      (40) 
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And the logarithm of the likelihood function is 

                푙(휽,휎 ; 	풚) = log(퐿) ∝ − lo g(휎 )− ∑
	( 	 	 )

.     (41) 

The ML estimator 휽 can be obtained by solving the following 
equation:   

                           휽, ;	풚
휽 휽 	휽

= 0	,			휽 = (훼, 푘, 푐) 	,                            (42) 

where 

             휽, ;	풚 = ∑ 푦 − 훼	 	1−	푒 ( 	 ) 	1 −	푒 ( 	 ) ,        (43)  

              휽, ;	풚 = 	 	 ∑ 푦 −	 1−	푒 ( 	 ) 푒 ( 	 ) 	푥 ,       (44)   

           (휽, ;	풚) = ∑ 푦 −	 1 −	푒 ( 	 ) 푒 ( 	 ) (푘	푥 ) ln(푘	푥 ) , (45) 

and 

             휽, ;	풚 = − + ∑ 푦 − 훼	(1 −	푒 ( 	 ) ) .          (46) 

An iterative method can be used to get the solution of these equations 
numerically. 

    For the new proposed model of sigmoidal growth, Burr 1 Type 
XII, suppose that the 휀 .푠 are 푖׳ 푖.푑.푁(0, 휎 ), then the likelihood 
function becomes: 

퐿 = 푓(풚|휽,휎 ) 

    = (2휋휎 ) / 	푒푥푝 − ∑
( )[	 ( ( ) ) ]

.		                       (47)                                                                                                                            

And the logarithm of the likelihood function is as follows:  

푙(휽,휎 ; 	풚) = log(퐿) 

                    ∝ 	− lo g(휎 ) − ∑
( ) 	 ( ( ) )

.	         (48)  
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The ML estimator 휽 can be obtained by solving the following 
equation:   

                       휽, ;	풚
휽 휽 	휽

= 0	,			휽 = (훼, 푘,훽, 푐) 	,                             (49) 

where  

       휽, ;	풚 = ∑ 푦 − 훽 + (훼 − 훽)[	1 − (1 + (푘푥 ) ) ]
[	1 − (1 + (푘푥 ) ) ]

,	            (50)  

        휽, ;	풚 = ∑ 푦 −
훽 + (훼 − 훽)[	1 − (1 + (푘푥 ) ) ]

(1 + (푘푥 ) ) ,            (51) 

         (휽, ;	풚) = ( )∑ 푦 − 훽 + (훼 − 훽)[	1 − (1 + (푘푥 ) ) ]
(1 + (푘푥 ) ) 푥

,     (52) 

         (휽, ;	풚) = ( )∑ 푦 − 훽 + (훼 − 훽)[	1 − (1 + (푘푥 ) ) ]
(1 + (푘푥 ) ) (푘푥 ) ln(푘푥 )

,	            (53)   

and  

           (휽, ;	풚) = − + ∑ 푦 −
훽 + (훼 − 훽)

	1− 1 + 푘(푥 − 훾) .        (54) 

An iterative method can be used to get the solution of these equations 
numerically. 

     For the new proposed model of sigmoidal growth, Burr 2 Type 
XII, suppose that the 휀 .푠 are 푖׳ 푖.푑.푁(0, 휎 ), then the likelihood 
function is given as:  

퐿 = 푓(풚|휽,휎 ) 

				= 	 (2휋휎 ) / 	푒푥푝 − ∑
( ) 	 ( ( ) )

.           (55)                                                                                                                            

By taking the logarithm of likelihood function:                                   

푙(휽,휎 ; 	풚) = log(퐿) 

                   ∝	− lo g(휎 ) − ∑
( ) 	 ( ( ) )

.           (56) 
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The ML estimator, 휽 can be obtained by solving the following 
equation:   

                                 휽, ;	풚
휽 휽 	휽

= 0	,			휽 = (훼, 푘,훽) 	,                       (57) 

where 

      휽, ;	풚 = ∑
푦 − 훽 + (훼 − 훽) 	1 − 1 + (푘푥 )

	1− 1 + (푘푥 )
,            (58) 

            (휽, ;	풚) = − ∑ 푦 − 훽 + (훼 − 훽) 	1− 1 + (푘푥 )
[	1− (1 + (푘푥 )) ]

,           (59)   

           (휽, ;	풚) = ( )∑
푦 − 훽 + (훼 − 훽) 	1− 1 + (푘푥 )

1 + (푘푥 ) 	푥
,          (60) 

and 

                 (휽, ;	풚) = − + ∑ 푦 −
훽 + (훼 − 훽)

[	1− (1 + (푘푥 )) ] .             (61) 

After that, one of iterative methods can be used to get the solution of 
these equations numerically. 

     Determining the initial values of the parameters is needed to 
obtain the estimators when the iterative methods are used. Initial 
value specification is one of the most difficult problems encountered 
in estimating parameters of non-linear models [Fekedulegn et al. 
(1999)]. 

The starting value of	휶: The parameter 훼  is specified as the 
maximum value of the dependent variable in the data. Then, the new 
value of	훼 is calculated for the different sigmoidal equations. 

The starting value of 	풌: The parameter 푘 is defined as the constant 
rate at which the response variable approaches its maximum possible 
value. Based on this definition, one can write 

                                                푘 = ( )
( )

	,                                           (62) 
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where 푦 and 푦  are the values of the response variable corresponding 
to the first 푥 and the last 푥  observations, and 훼  is the initial value 
specified for the parameter	훼. 

The starting value of 휸: The parameter 훾	is defined as the point of 
inflection value of the curve of the response variable, or, it can be 
assumed that	훾 is the value of the response variable corresponding to 

  value of the dependent variable.  

The starting value of 휷: The starting value for the constant 훽  is 
specified by evaluating the model at the start of the growth and the 
assumption that 훽	is the minimum of the dependent variable in the 
data. Then, when the predictor variable is zero, the new value of 	훽 is 
considered for the different sigmoid equations. 

Now, the inflection points for growth curves, namely, Brody, 
Weibull, Burr 1 Type XII, and Burr 2 Type XII functions are derived 
as follows: 

Brody: From (1), consider 푓 (푥 ,휽) = 	훼 + (훽 − 훼)푒 	 	,	 

휽 = (훼,푘, 훽) .Then, set 훽 = 푦 	, 푦 = 푓 (푥 ,휽) at 푥 = 0	. 

Then, according to the inflection point of Brody function, the first 
and second derivatives of 푓 (푥 ,휽) denoted as 푓 ׳ (푥 ,휽) and 

푓״ (푥 ,휽) are given respectively by: 

푓 ׳ (푥 ,휽) = 푘(훼 − 훽)푒 	, 

and 

푓״ (푥 ,휽) = 푘 (훼 − 훽)푒 	, 

where when 푓״ (푥 ,휽) 	= 0, the Brody growth function does not 
possess any point of inflection. 

Weibull: From (4), consider 푓 (푥 ,휽) = 훼	 1 −	푒 ( 	 ) 		,	 

휽 = (훼,푘, 푐) . The first and second derivatives of 푓 (푥 ,휽) 
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denoted as 푓׳ (푥 ,휽) and 푓״ (푥 ,휽) are given respectively 
by: 

푓 ׳ (푥 ,휽) = 훼	푐	푘 푒( ) 푥 	, 

and 

푓״ (푥 ,휽) = 푐	훼	푘 푒( ) 푥 [(푐 − 1) − 푘푐]	. 

When 푓״ (푥 ,휽) = 0, the Weibull growth function does not 
possess any point of inflection.  

Burr 1 Type XII: From (11), 

        푓 (푥 ,휽) = 	훽 + (훼 − 훽)[	1 − (1 + (푘푥 ) ) ],	휽 = (훼,훽, 푘, 푐)  

                             = 훼 − (훼 − 훽)(1 + (푘푥 ) ) 		.                                 (63) 

By solving (63) and setting 훽 = 푦 	 where 푦 = 푓 (푥 ,휽) at 푥 =
0,	then, according to the inflection point of Burr 1 Type XII, the first 
and second derivatives of 푓 (푥 ,휽) denoted 푓׳ (푥 ,휽) and 

푓״ (푥 ,휽) are given respectively by: 

푓 ׳ (푥 ,휽) = 푐푘 (훼 − 훽)푥 (1 + (푘푥 ) ) 	, 

                     푓 ״ (푥 ,휽) = 	푐푘 (훼 − 훽) 푥 (−2푐푘 푥 )(1 + (푘푥 ) )
+(1 + (푘푥 ) ) 	(푐 − 1)푥 )

. 

When 푓״ (푥 ,휽) = 0, then, (1 + (푘푥 ) ) = 0. Hence, 푥 =
( ) /

, then, by substituting the new	푥 in (63), the new value of 

훼 	= 푓 (푥 ,휽) = 훼	.	 

Burr 2 Type XII: From (12), 

              	푓 (푥 ,휽) = 훽 + (훼 − 훽) 	1 − 1 + (푘푥 ) ,	휽 = (훼,훽,푘, 푐)  

                             = 훼 − (훼 − 훽) 1 + (푘푥 ) .                                    (64) 

By solving (64) and setting 훽 = 푦 	 where 푦 = 푓 (푥 ,휽) at 푥 = 0	, 
the first and second derivatives of 푓 (푥 ,휽) denoted as 푓 ׳ (푥 ,휽) 
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and 푓״ (푥 ,휽) are given respectively by: 

푓 ׳ (푥 ,휽) = 푘(훼 − 훽)(1 + 푘푥 ) 	,	 
and 

                        푓״ 	(푥 ,휽) = −2	푘 (훼 − 훽)(1 + 푘푥 ) .                      (65) 

When 푓״ 	(푥 ,휽) 	= 0, then, (1 + 푘푥 ) = 0. Hence, 푥 =  , then, 
the new value of 훼  after substituting the new	푥  in (65) is 

훼 = 푓 (푥 ) = 훼 − (훼 − 훽)(2) 	. 
 

4 Application 

COVID-19 is an emerging pandemic of Corona virus disease 2019 
caused by severe acute respiratory syndrome Coronavirus2 (SARS-
Cov2). It was first detected in Wuhan, China in December, 2019. The 
epidemic was declared by the World Health Organization (WHO) as 
a public health emergency of international importance on January, 
2020.  
     To check the performance of the new proposed sigmoid growth 
models, the data set on the number of daily confirmed new COVID-
19 cases in Egypt from March 15, 2020 to May 4, 2020, which is 
taken from ministry of health and population in Egypt (2020). The 
data was recorded every day for a period of 51 days. The explanatory 
variable considered in this study is days (푥) and the number of 
confirmed new cases of COVID-19 (푦) is considered as a response 
variable. Fig. 1 displays the relationship between the number of 
confirmed new cases of COVID-19 as response variable	푦, and the 
days as explanatory variable 푥 after the data are refined by 
multiplying by inverted variance transformation. 
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Fig. 1: Description of the number of confirmed 

new cases of COVID-19 over time. 
 

The initial values are calculated as 훼 = 0.0426, 푘 = 0.0194,
훾 ≅ 15, 푐 = 3, and	훽 = 0.0011. Plots of growth curves, Burr 1 
Type XII, Burr 2 Type XII, Brody, and Weibull using their inflection 
points are displayed in Fig. 2. Also, fitted growth curves of the Burr 1 
Type XII, Burr 2 Type XII, Brody, and Weibull growth models for 
the data set are displayed in Fig. 3. Estimation of the model 
parameters are performed by NLS method using Levenberg-
Marquardt iteration algorithm by nlsLM function of the minpack.lm 
package of R.3.6.3. In addition, the estimate parameters of these 
models by ML method are obtained by Newton-Raphson 
maximization using maxLik package of R.3.6.3. Table 1 shows the 
parameter estimates by NLS and ML estimation, approximate 
standard error (ASE) and asymptotic 95% confidence intervals for 
each parameter by these two methods. Also, for comparison between 
the models, the Akaike Information corrected criterion (AICc) and 
Likelihood Ratio Test (LRT) are used (Table 2) according to the 
following formulas: 

                               AICc = −2	푙 + 2	푝 + 	 ( ),                              (66) 

where 푙 is the logarithm of likelihood function for the model, and 푝 
represents the number of parameters in the model. 

            LRT = 2	푙표푔 = 2	 푙표푔 퐿 − 푙표푔(퐿 ) , (67) 
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where 퐿  and 퐿  are the likelihood functions for the full and 
reduced models, respectively. 

     For evaluating the selection models to the data, the following 
criteria are used: the coefficient of determination, 푅 , mean squared 
error (MSE), root mean squared error (RMSE) and model efficiency 
(ME) as shown in Table 3 according to the following formulas: 

                          푅 = 1 − ∑ ( )
∑ ( ) ∑ ( )

			,                           (68)   

                       MSE = ∑ ( ) 			,                                                     (69)  

                     RMSE = ∑ ( ) 	,		                                                 (70)  

and 

             ME = 1 − ∑ ( )
∑ ( )

	,		                                              (71) 

where 푛 is the sample size, 푦 	,푦  are the observed and predicted 
values, respectively, 푦	is the mean of observed values, and 푝 is the 
number of parameters in the model. 

 
Fig.2. Plots of growth curves with their 

respective inflection points. 
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Fig. 3. Plots of the fitted growth curves. 

Table1. Parameter estimates, approximate standard errors 
and confidence intervals of parameters for each model. 

 
Model 
 

 
Estimation 
method 

 
parameter 

 
Estimate 

 
ASE 

Approximate 95% confidence 
limits 
Lower bound Upper bound 

 
 
 
Burr 1 
Type XII 

 
 
NLS 

훼 
훽 
푘 
푐 

1.3977 
0.0029 
0.0024 
1.7780 

30.6130 
0.0013 
0.0329 
0.6564 

0 
0.0001 
0 
0.4574 

62.9834 
0.0057 
0.0688 
3.0986 

 
ML 

훼 
훽 
푘 
푐 

0.5316 
0.0029 
0.0044 
1.8200 

52.8030 
0.3825 
0.3792 
71.3600 

0 
-0.7467 
0 
0 

104.0200 
0.7525 
0.7478 
141.7000 

 
 
Burr 2 
Type XII 

 
NLS 
 

훼 
훽 
푘 

1.8481 
-0.0024 
0.0004 

18.2570 
0.0015 
0.0038 

0 
-0.0006 
0 

38.55 
0.0006 
0.0081 

 
ML 
 

훼 
훽 
푘 

3.2040 
-0.0024 
0.0002 

700.0200 
0.2858 
0.0480 

0 
-0.0563 
0 

1375.2000 
0.5570 
0.0944 

 
 

 
Weibull 

 
NLS 

훼 
푐 
푘 

0.8545 
1.4145 
0.0021 

16.1270 
0.3257 
0.0298 

0 
0.7596 
0 

33.2800 
2.0695 
0.0621 

 
ML 
 

훼 
푐 
푘 

0.52397 
0.0030 
1.4243 

48.8900 
0.2450 
30.9700 

0 
0 
0 

96.3620 
0.4849 
62.1200 

 
 
 
Brody 

 
 
NLS 

훼 
훽 
푘 

1.4497 
-0.0024 
0.0005 

22.2220 
0.0016 
0.0075 

0 
-0.0056 
0 

46.1310 
0.0007 
0.0156 

 
ML 
 

훼 
훽 
푘 

1.5018 
-0.0025 
0.0005 

150.9200 
0.2860 
0.0472 

0 
-0.5631 
0 

297.3000 
0.5581 
0.0931 
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From Table 1, since the estimate of the parameter 훼 indicates the 
number of confirmed new cases when the maximum rate of growth is 
reached in the respective stages, the highest value of the upper 
asymptote 훼 was obtained for the Burr	2 Type XII growth model and 
the smallest for the Weibull model. Also, the 푘 parameter which 
indicates the growth rate of confirmed new cases is similar for the 
Weibull and Burr	1Type XII growth curves by NLS estimation. The 
largest value of this parameter was obtained for the Weibull model by 
ML estimation and the smallest for the Burr 2 Type XII model by 
NLS estimation. On the other hand, the c parameter, which is 
presented as an adjustment factor, shifts a sigmoidal curve parallel to 
the time axis; as the value of the parameter is smaller, the curve shifts 
to the more left side, and vice versa. That is, with a smaller value of 
c, the model describes a growth curve with a shorter lag period as 
achieved by Weibull model. 

 
 

Table 2. Evaluation of AICc and  p-values of LRT test for Burr 1 Type 
XII, Burr 2 Type XII, Brody, and Weibull growth models 

 

Model AICc p-value 
 

Burr 1 Type XII 
 

Burr 2 Type XII 
 

Brody 
 

Weibull 

 
-442.4 

 
-423.6 

 
-423.9 

 
-438.5 

 
0.0019 

 
0.0114 

 
0.0114 

 
0.0058 
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Table 3. The 푅 , MSE, RMSE, and ME for Burr 1 Type XII, 
Burr 2 Type XII, Brody, and Weibull growth models 

 

Model Method 	푹ퟐ 퐌퐒퐄 퐑퐌퐒퐄 퐌퐄 

 

Burr 1Type XII 

NLS  0.9310 8. 96 × 	10  0.0029
 

0.9310 
 

ML 0.9210 9.62 × 	10  0.0031 0.9260 

 

Burr 2Type XII 

NLS 0.8950 1. 32 × 	10  0.0036 0.8950 

ML  0.8820 1. 40 × 	10  0.0037 0.8900 

 

Brody 

NLS 0.8950 1. 31 × 	10  0.0036 0.8950 

ML 0.8920 1. 33 × 	10  0.0036 0.8950 

 

Weibull 

NLS 0.9280 9.91 × 	10  0.0031 0.9220 

ML 0.9230 1.11 × 	10  0.0033 0.9190 

 
As observed from Table 2, the LRT is significant (푝 − 푣푎푙푢푒 <
	0.05) in all models, and the model, Burr 1 Type XII with four 
parameters is the most suitable to describe the growth of confirmed 
new cases of COVID-19 in Egypt over time since it has the 
lowest	AICc.   

      Moreover, as observed from Fig. 3 and Table 3, all evaluated 
models fitted well the investigated curves of confirmed new cases of 
COVID-19 in Egypt with 	푅  and ME values and the Burr 1 Type XII 
sigmoid growth model is the best since it has the largest value of 	푅  
and ME and the lowest value of MSE and RMSE specially when NLS 
estimation is used. 

5.  Conclusions 

     In this paper, two sigmoid growth models have been proposed to 
be able to describe the most diverse situations of growth data. The 
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new proposed models based on the Burr Type XII distribution with 
two formulas of cdf. Estimating the parameters of the new proposed 
models were provided by NLS and ML estimation methods. 
Moreover, the performance of new sigmoid growth models was 
investigated using daily confirmed new COVID-19 cases in Egypt 
from March 15, 2020 to May 4, 2020. The results showed that the 
new proposed model, Burr 1 Type XII sigmoidal growth is superior 
over the other models with respect to	푅 , MSE,	RMSE, ME, and	AICc 
especially when NLS estimation is used. 
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