
1 
 

Rayleigh Uniform {Log-logistic} distribution And Aplications 

 Abdelhamid M. Rabie(1), Mostafa Abdelhamid(2) and Mahmoud 

Wahba(3). 

Abstract: In this paper we introduce Rayleigh uniform {log-logsitic} (RU 

{LL}) distribution. Properties of RU {LL} distribution namely, density function g(x), 

the ordinary moments, quintile function, mean residual life, Renyi entropy are 

introduced. Four methods of estimation of the RU{LL} distribution based on 

complete sampling are introduced. A Monte Carlo simulation study based on R 

software to evaluate the performance of the estimation methods and to calculate the 

measures and main formulas introduced in this paper. 

Keywords: Rayleigh distribution, 𝑇 − 𝜒 families, mean residual life, Renyi 

entropy. 

1- Introduction 

Statistical distributions have been extensively used over the past decades for 

modeling many real world important phenomena in several areas such as engineering, 

medical sciences, biological studies, economics, finance and lifetime analysis. Many 

new methods have been developed to generate statistical distributions. These methods 

are based on the idea of combining two or more existing distributions or adding extra 

parameters to an existing distribution to generate a new family of distributions. 

A common feature of these generalized distributions is that they have more 

parameters. A brief summary of some methods in the literature that related to this 

article is introduced below. 

The person system of continuous distributions as developed by person [26], is a 

system for which every PDF function 𝑓(𝑥) satisfies a certain differential equation. 

The different shapes of the person distributions were classified by person into a 

number of types. For details of the various types, see chapter 12 of Johnson et al. [11]. 

Burr [6] proposed a system of distributions satisfy a certain differential equation. Burr 

[6] gave 12 types of distributions. See fry [9] and Jonson et al. [11] for a list of Burr 

types of distributions. Jonson [10] proposed a system for generating distributions 

using a general normalization transformation. He propose some families of 

distributions which cover many commonly used distributions such as normal, 

lognormal gamma, beta and others. For more details see Johnson et al. [11]. Azzalin  

[3] introduced the skew normal family of distributions. For review of skew-symmetric 
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distributions see Kotz and Vicari (2005) [16]. Marshall and Olkin (1997)[20] 

proposed a general method for generating a new family of life distributions 

determined in terms of survival functions. For details about life distributions, one may 

refer to Marshall and Olkin (2010)[21] and Lai [19]. Eugene et. al. (2002) [8] used the 

beta distribution as a generator to develop a new family of beta-generated family of 

distributions, where beta distribution with PDF b(.) is used as the generator. The CDF 

function of a beta – generated random variable X is defined as: 

𝐺(𝑥) =  ∫ 𝑏(𝑡)𝑑𝑡
𝐹(𝑥)

0
… …                                                                                          (1.1) 

Where b(t) is the PDF of the beta random variable and 𝐹(𝑥) is the CDF of any 

random variable. If X is continuous, the PDF corresponding to (1.1) is given by: 

𝑔(𝑥) =  
1

𝐵(∝ , 𝐵)
 𝑓(𝑥)𝐹(𝑥)𝛼−1 (1 − 𝐹(𝑥))𝐵−1                                                            (1.2) 

Where 𝐵(𝛼, 𝛽) is the complete beta function. Since Eugene et al. [8] many beta 

– generated distributions have been introduced in the literature including the beta 

Gumbel distribution by Nadarajah and Kotz [24], beta- exponential distribution by 

Najarah and Kotz [25], and others. Recently Jones [12] and Cordeiro and De Castro 

[7] extended the beta – generated family by replacing the beta distribution in (1.1) 

with the Kumaraswamy distribution [18]. Alzaatreh et.al. (2013b)[2] proposed a 

general method to generate families of distributions with a PDF r(.) of continuous 

random variable and applying a function 𝑊(𝐹(𝑥)) that satisfies some conditions to 

develop the T-X family. The CDF of the T-X family is defined as: 

𝐺(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡
𝑤(𝐹(𝑥))

𝑎

                                                                                                      (1.3) 

        = 𝑅 {𝑊(𝐹(𝑥)}  

Where F(x) is the CDF of any existing distribution with PDF 𝑓(𝑥)𝑎𝑛𝑑 𝑅(. ) is 

the CDF of T. the corresponding PDF of the T-X family is: 

𝑔(𝑥) =  {
𝑑

𝑑𝑥
 𝑊(𝐹(𝑥))}  𝑟 {𝑊(𝐹(𝑥))}                                                                            (1.4) 

Different W functions generate different families of T- X distribution. 

2- Generating Families of Continuous Probability Distribution Using 

Quantile Function. 

Aljarrah et. al. (2014)[1] generate families of continuous probability 

distributions using quintile function. They introduced a class of W(.) functions wider 

than that of Alzatteh et. al. (2013b)[2]. They introduced a general definition of the 

W(.) function which proposes a general method to generate T-X families.  
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If T has PDF r(.) with support (a, b), then: 

𝐺(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡
𝑊(𝐹(𝑥))

𝑎

                                                                                                    (2.1) 

If both functions W and F are absolutely continuous, then G(x) in (2.1) is 

absolutely continuous and has a PDF 𝑔(𝑥) =  
𝑑

𝑑𝑥
 𝐺(𝑥). Let P(.) be the CDF of a 

random variable y taking values on (a, b) and the quantile function of y denoted by 

𝑄𝑦(𝜆), 𝜆 ∈  (0,1). If P(.) is continuous and strictly increasing then 𝑄𝑦(𝜆) = 𝑃−1 (𝜆) 

is continuous and strictly increasing. Taking W(.) to be the quantile function of 

strictly increasing distribution function P(.) for the random variable y, namely, 

𝑊(𝜆) =  𝑄𝑦 (𝜆), 𝜆 ∈ (0,1), then 𝑄𝑦 (. ) is continuous and non-decreasing, and the 

CDF of a 𝑇 − 𝑋{𝑦} family using the quintile function 𝑄𝑦 (. )  is defined as: 

𝐺(𝑥) =  
∫ 𝑟(𝑡)𝑑𝑡

𝑄𝑦 (𝐹(𝑥))

𝑎

= 𝑅 {𝑄𝑦 (𝐹(𝑥))}, 𝑥 ∈ (−∞, ∞)

}                                                                     (2.2) 

Where R(.) is the CDF of T. 

If we assume further that y has a density 𝑃(𝑦) > 0 for all y in a neighborhood 

of 𝑄𝑦(𝜆), 𝜆𝜖 (0,1), then 
𝑑

𝑑𝜆
 𝑄(𝜆) exists and equals [𝑃(𝑄𝑦 (𝜆)]

−1
 and hence the 

corresponding PDF associated with (2.2) is: 

𝑔(𝑥) =  
𝑟 {𝑄𝑦 (𝐹(𝑥)} 𝑓(𝑥)

𝑃 {𝑄𝑦 (𝐹(𝑥))}
                                                                                              (2.3) 

The PDF defined in (2.3) can be easily used to generate a 𝑇 − 𝑋 {𝑦} family of 

distributions by applying the quintile function of any existing distribution. 

3- Some 𝑻 − 𝑿 {𝒚} Families 

3.1 Some 𝑻 − 𝑿 {𝒚} Families Based on Different Quantile Functions: 

Let the random variable y follows the long-logistic distribution with parameters 

𝛼 and 𝛽. Then the PDF and the quantile functions are respectively  

𝑝(𝑦) =  
(
𝛽

𝛼⁄ ) (
𝑦

𝛼⁄ )
𝛽−1

(1 +  (
𝑦

𝛼⁄ )
𝛽

)2
, 𝑦 ≥ 0 

𝑄𝑦 (𝜆) =  𝛼 (
𝜆

1 − 𝜆
)

1/𝛽

, 𝜆𝜖 (0,1) 

Therefore, 
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𝑝 (𝑄𝑦(𝜆)) = (
𝛽

𝛼⁄ ) 𝜆(𝐵−1) 𝛽⁄ (1 − 𝜆)(𝐵+1) 𝛽⁄ , 

and the definition (2.3) gives the PDF of 𝑇 − 𝑋 {𝑙𝑜𝑔 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐} family as: 

𝑔(𝑥) =  

(𝛼 𝛽⁄ )𝑓(𝑥)𝑟 {𝛼 (
𝐹(𝑥)

1 − 𝐹(𝑥)
)

1 𝛽⁄

}

(𝐹(𝑥))(𝐵−1) 𝛽⁄  (1 − 𝐹(𝑥))(𝐵+1) 𝛽⁄
                                                              (3.1) 

Also, the definition (2.2) gives the CDF of 𝑇 − 𝑋 {𝑙𝑜𝑔 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐} family as: 

𝐺(𝑥) = 𝑅 {𝑄 (𝐹(𝑥))}, −∞ < 𝑥 <  ∞ 

Then  

𝐺(𝑥) = 𝑅 {𝛼 (
𝐹(𝑥)

1 − 𝐹(𝑥)
)

1 𝛽⁄

}                                                                                  (3.2) 

When 𝛼 =  𝛽 = 1, the family (3.1) reduces to  

𝑔(𝑥) =  
𝑓(𝑥)

(1 − 𝐹(𝑥))2
 𝑟 {

𝐹(𝑥)

1 − 𝐹(𝑥)
}                                                                        (3.3) 

And the family (3.2) reduces to  

𝐺(𝑥) =  𝑅 {
𝐹(𝑥)

1 − 𝐹(𝑥)
}                                                                                             (3.4) 

3.2- A New Distribution Derived from T-X{y} Family:  Rayleigh-

Uniform {log-logistic} Distribution  

Let r(.) and R(.) be the PDF and the CDF of the Rayleigh distribution, f(.) and 

F(.) are the PDF and CDF of uniform distribution, where  

𝑟(𝑡) =  
𝑡

𝜎2
 𝑒−𝑡2 2𝜎2⁄       , 𝑡 > 0 , 𝜎 > 0                                                                (3.5) 

𝑅(𝑡) =  1 − 𝑒−𝑡2 2𝜎2⁄       , 𝑡 > 0 , 𝜎 > 0                                                              (3.6) 

𝑓(𝑥) =  
1

𝑏 − 𝑎
     , 𝑎 ≤ 𝑥 ≤ 𝑏                                                                               (3.7) 

𝐹(𝑥) =  
𝑥 − 𝑎

𝑏 − 𝑎
     , 𝑎 ≤ 𝑥 ≤ 𝑏                                                                               (3.8) 

Then, substituting for r(.), R(.), f(.) and F(.) in (3.3) and (3.4) we obtain the PDF 

g(x) and the CDF G(x) of the Rayleigh-uniform {log-logistic} (RU{𝐿𝐿}) distribution 

as: 
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𝑔(𝑥) =  
(𝑏 − 𝑎)

𝜎2 (𝑏 − 𝑥)2
 (

𝑥 − 𝑎

𝑏 − 𝑥
) 𝑒

−(
𝑥−𝑎
𝑏−𝑥

)
2

2𝜎2⁄
                                                           (3.9) 

Similarly, substituting for 
𝐹(𝑥)

1−𝐹(𝑥)
=  

𝑥−𝑎

𝑏−𝑥
 , and using the CDF R(.) given in (3.6) 

we get from (3.4) the CDF of the Rayleigh-uniform {log-logistic} distribution as: 

𝐺(𝑥) = 1 − exp {− (
𝑥 − 𝑎

𝑏 − 𝑥
)

2

2𝜎2⁄ }                                                                            (3.10) 

𝑎 < 𝑥 < 𝑏             ,        𝜎 > 0 

Our new family is called: Rayleigh – uniform {log-logistic} family of T-X{Y} 

family. The new PDF is g(x) as given in (3.9) and its CDF function is G(x) as given in 

(3.10) 

Also the survival function S(x) and the hazard function h(x) are 

𝑆(𝑥) = 1 − 𝐺(𝑥)                                                                                                             (3.11) 

ℎ(𝑥) =
𝑔(𝑥)

𝑆(𝑥)
                                                                                                                     (3.12) 

where g(x) and G(x) are as given in (3.9) and (3.10) respectively. g(x) and G(x) 

will be used in the parameter's estimation. Our parameters are: a , b and 𝜎 (3 

parameters). The graphs of PDF and hazard functions of RU{LL} are given below 
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4- The Quantile and Generating Functions 

4.1- The Quantile Function 

Quantile function plays a significant role in estimation and simulating.  In heavy 

tailed distributions, the measures of skewness and kurtosis based on quantiles are 

better than those based on moments for which the higher moments may not be exist. 

The quantile function of RU{LL} distribution can be obtained using the inverse 

distribution function method as a solution of the equation 𝐺(𝑄 (𝑃)) = 𝑃 

Then 

𝑄𝑝 =  
𝑎 + 𝑏 √2 𝜎 [ln (

1
1 − 𝑝)]

1
2⁄

1 +  √2 𝜎 [ln (
1

1 − 𝑝)]

1
2⁄

 , 𝑃

∈ (0,1)                                                                                                       (4.1) 

The Bowley Skewness measure Bsk [15] and the Moor's Kurtosis measure 

Mkur [22] are defined by 

𝐵𝑠𝑘 =  
𝑄0.75 −  2𝑄0.5 + 𝑄0.25

𝑄0.75 −  𝑄0.25
 

𝑀 𝑘𝑢𝑟 =  
𝑄0.875 − 2𝑄0.625 −  2𝑄0.375 + 𝑄0.125

𝑄0.75 −  𝑄0.25
 

The above measures are less sensitive to outliers. Table (1) drawn below gives 

the values of Bowley Skewness and Moor kurtosis for fixed value of a=0, b=3 and 𝜎 

= 0.5, 1.5, 2, 2.5, 3, 3.5, 4 
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Table (1): quantiles, B skewness (Bsk) and M kurtosis (Mkur) for a=0 , b=3 

and different values for 𝝈. 

        𝝈 

Q 
0.5 1.5 2 2.5 3 3.5 4 

𝑄0.25 0.82492662 1.5966826 1.8081310 1.9642025 2.0841325 2.179172 2.2563416 

𝑄0.5 1.11166958 1.9154464 2.1057643 2.2392593 2.3380742 2.414169 2.4745728 

𝑄0.75 1.36294101 2.1422846 2.3071943 2.4189169 2.4996103 2.560625 2.6083774 

𝑄0.125 0.61600251 1.3100227 1.5247563 1.6910726 1.8236879 1.931903 2.0218852 

𝑄0.375 0.97948484 1.7776603 1.9792722 2.1237932 2.2324655 2.317156 2.3850139 

𝑄0.625 1.23560143 2.0325353 2.2107723 2.3335526 2.4232740 2.491704 2.5456176 

𝑄0.875 1.51460661 2.2609019 2.4092939 2.5080624 2.5785334 2.631344 2.6723938 

Bsk -0.06593046 -0.1684847 -0.1927675 -0.2098002 -0.2224080 -0.232117 -0.2398239 

Mkur -0.15701653 -0.4385449 -5.5129496 -0.5678526 -0.6101846 -0.643887 -0.6713876 

 

The above table shows that both Skewness and kurtosis decrease with increasing 𝜎, 

since the PDF of RU{LL} is Skewed to the left as can be shown from the graph of the 

PDF. 

4.2 The Generating Function 𝝌𝒖. 

The generating function 𝜒𝑢 is the solution of the equation 

𝜒𝑢 = 𝐺(𝑢) 

Where u is the uniform random variable u(0, 1), or u is a vector of uniform 

random variables u (0, 1) 

Then 𝜒𝑢 is given by: 

𝜒𝑢 =  
𝑎 + 𝑏 √2 𝜎 [ln (

1
1 − 𝑢)]

1
2⁄

1 +  √2 𝜎 [ln (
1

1 − 𝑢)]

1
2⁄

                                                                                 (4.2) 

Where u is a vector of uniformly in dependent u(0,1) random variables. 

5- Expanding g(x) in terms of f(x), F(x) of the Uniform Distribution 

and r(x) of Rayleigh Distribution.  

From (3.3) 

𝑔(𝑥) = 𝑓(𝑥)𝑟 {
𝐹(𝑥)

1 − 𝐹(𝑥)
} (1 − 𝐹(𝑥))−2 

= 𝑓(𝑥)𝑟 {
𝑥 − 𝑎

𝑏 − 𝑥
} (1 − 𝐹(𝑥))−2 

Since |𝐹(𝑥)|  < 1, then: 
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𝑔(𝑥) = 𝑓(𝑥)𝑟 {
𝑥 − 𝑎

𝑏 − 𝑥
} ∑(𝑗 + 1)𝐹𝑗(𝑥)

∞

𝑗=0

 

=  
1

𝜎2 (𝑏 − 𝑎)
 (

𝑥 − 𝑎

𝑏 − 𝑥
) 𝑒−(

𝑥−𝑎
𝑏−𝑥

) 2𝜎2⁄
 ∑(𝑗 + 1)𝐹𝑗(𝑥)

∞

𝑗=0

 

Where: 𝑓(𝑥) =  
1

𝑏−𝑎
 𝑎𝑛𝑑 𝐹(𝑥) =  

𝑥−𝑎

𝑏−𝑎
 

6- The Ordinary Moments of RU{LL} Distribution  

The rth ordinary moment of the RU{LL} distribution is given by: 

𝜇𝑟
, = 𝐸 (𝑥𝑟) =  ∫ 𝑥𝑟

𝑏

𝑎

 𝑔(𝑥)𝑑𝑥                                                                                          (6.1) 

Where g(x) as given by (3.9). 

Integrating (6.1) using the integrate (.) function of the R software we can obtain 

all the moments of the RU{LL} random variable 𝜒. Table (2) given below presents 

the values of the first four moments, the variance, the coefficient of variation (CV), 

the skewness (SK) and the kurtosis (kur) of RU{LL} distribution for various values of 

a, b, and 𝜎.                   

Table(2): The values of the mean (𝜇), 𝜇2
, , 𝜇3

, , 𝜇4
, , 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜇2), skewness (sk) and 

kurtosis (kur) of RU{LL} for various values of a, b and 𝜎. 

Table (2): the values of the moment for a=0, b=3 and 𝝈= 1, 2, 3, 4 

          𝝈 

Moments 
𝝈 = 𝟏 𝝈 = 𝟐 𝝈 = 𝟑 𝝈 = 𝟒 

Mean (𝜇) 0.1610105 0.02199681 0.004824066 0.001457297 

𝑚2 (𝜇2
′ ) 0.1818124 0.02243712 0.004194036 0.001071796 

𝑚3 (𝜇3
′ ) 0.2181759 0.02481385 0.004036417 0.0008824280 

𝑚4 (𝜇4
′ ) 0.2722950 0.02895977 0.004170466 0.0007876759 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜇2) 0.1558880 0.02195326 0.004170764 0.001059672 

CV 2.4521790 6.73581000 0.1338735 0.2244281 

Sk 2.2535470 7.17996100 0.1476104 0.2508961 

Kur 3.3536050 52.69280000 0.02323031 0.06809246 

 

7- The Mean Residual Life (MRL) 

In reliability studies, the mean residual life or life expectancy is an important 

characteristic of the study. The expected additional lifetime given that a component 

has survived until time t is a function of t, called the mean residual life. If the random 
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variable 𝜒 represents the life of a component, then the MRL is given by 𝑚(𝑡) =

𝐸(𝑥 − 𝑡|𝑥 > 𝑡). 

The MRL has been studied in life length studies by Bryson and Siddiqui [5], 

Muth [23] and Bradley, et. Al. [4]. 

If X is a nonnegative random variable representing the life of a component 

having the RU{LL} distribution, the MRL is defined by: 

𝑚(𝑡) = 𝐸 (𝑥 − 𝑡|𝑥 > 𝑡) 

=  
1

𝑃𝑟  (𝑥 > 𝑡)
 ∫ (𝑥 − 𝑡)

∞

𝑡

 𝑔(𝑥)𝑑𝑥, 𝑡 ≥ 0 

Where g(.) is the PDF of RU{LL} distribution. Writing 𝑋 − 𝑡 =  ∫ 𝑑𝑢
𝑥

𝑡
 and 

employing Tonelli's therom yields the following formula: 

𝑚(𝑡) =  
1

𝑆(𝑡)
 ∫ 𝑆(𝑡)𝑑𝑡, 𝑠(𝑡) > 0

∞

𝑡

                                                                                    (7.1) 

The MRL of equation (7.1) is called the theoretical mean residual life denoted 

by TMRL. 

The empirical MRL, named EMRL can be computed from a random sample of 

size n drawn from a RU{LL} distribution as follows: TMRL = expected remaining 

life after the unit survived until life t 

=  ∑[𝑥(𝑘): 𝑥𝑛 − 𝑥(𝑘)]

𝑛

𝑘=1

/(𝑛 − 𝑘) 

Where  

𝑥(𝑘)  ≤ 𝑡 <  𝑥(𝑘+1) , 𝑥(𝑘) = 𝑡ℎ𝑒 𝑘𝑡ℎ order statistic. 

The following table provides the first 10 rows of the empirical MRL (EMRL) 

and the theoretical MRL (TMRL) of a random sample of size n = 50 drawn from 

RU{LL} population with parameters a=0 , b=3 and 𝜎 = 2 

Table(3): EMRL and TMRL for different values of death time (a=0, b=3, 

𝝈 = 𝟐) 

No Death time EMRL TMRL 

1 0.9260461 1.1403988 0.36849468 

2 1.1088163 0.9775792 0.27763928 

3 1.1375127 0.9690718 0.26480715 

4 1.4473341 0.6735819 0.14972570 

5 1.5669124 0.5663148 0.11605129 
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6 1.5783727 0.5674648 0.11311216 

7 1.5904157 0.5683386 0.11007586 

8 1.6048469 0.5670957 0.10650713 

9 1.7483093 0.4339658 0.07484403 

10 1.7764270 0.4159943 0.06932960 

Both EMRL and TMRL decreases with increasing death time 

8- Renyi entropy 

The entropy of a random variable is a measure of uncertainty variation and is 

used to measure the randomness of systems. It has been used in various situations in 

science and engineering, [17,27,28,29]. 

If x has RU{LL} (a, b, 𝜎), then the Renyi entropy is defined by: 

𝐼𝑅(𝑝) =  
1

(1 − 𝑝)
 𝑙𝑛 (∫ 𝑔(𝑥)

𝑝

𝑏

𝑎

 𝑑𝑥) 

𝑃 > 0 , 𝑃 ≠ 1 

The following table gives the Renyi entropy (𝐼𝑅(𝑝)) values for a=0, b=3, P=2 

and 7 different values of 𝜎. 

Table (4): 𝑰𝑹(𝒑) values for a=0, b=3 𝝈 = 𝟐 and P=2 

𝑰𝑹(𝒑) 7.615527 10.20296 12.08857 13.56803 

 14.7865 15.82279 16.72456  

 

9- Methods of Estimation  

In this section we estimate the parameters of the RU{LL} distribution by 4 

different methods using complete sample technique. These methods are: maximum 

likelihood (MLE), Least-squares (LS), weighted least squares and percentile based 

estimation. The performance of all methods are studied by the R software. 

9.1 Maximum likelihood estimation (MLE): 

The MLE method is a general method and its estimators have some optimum 

properties such as consistency, asymptotic efficiency and invariance property. 

Let 𝜒1, 𝜒2, … , 𝜒𝑛 be a random sample from RU{LL} population with PDF g(x) 

given in (3.9) with unknown parameters a, b and 𝜎 and the log-likelihood function is 

l(𝑎, 𝑏, 𝜎) then the MLE estimates of a, b and 𝜎 are the simultaneously solution of the 

following equations: 

𝜕 𝑙(𝑎, 𝑏, 𝜎)

𝜕𝑎
= 0 ,

𝜕 𝑙(𝑎, 𝑏, 𝜎)

𝜕𝑏
= 0 ,

𝜕 𝑙(𝑎, 𝑏, 𝜎)

𝜕𝐽
= 0 
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Which gives the MLE estimates (�̂� , �̂�, �̂�). These equations are solved 

numerically using R software.  

9.2 Method of Ordinary Least Squares (LS) 

The best estimates according to LS method are those which minimize the 

following quantity: 

𝑄1 =  ∑ (𝐺 (𝑥(𝑖) −  
𝑖

𝑛 + 1
))

2𝑛

𝑖=1

 

With respect to a, b and 𝜎. 

Where 𝑥(𝑖) is the ith orders statistic of RU{LL} 

9.3 Method of Weighted Least Squares (WLS): 

The WLS estimators of a, b and 𝜎 of RU{LL} distribution can be obtained by 

minimizing the quantity: 

𝑄2 =  ∑
(𝑛 + 1)2 (𝑛 + 2)

(𝑛 − 𝑖 + 1)
(𝐺 (𝑥(𝑖) −  

𝑖

𝑛 + 1
))

2𝑛

𝑖=1

 

With respect to a, b and 𝜎. 

9.4 Method of Percentile Estimation (PCE) 

This method introduced by kao [13,14] the PCEs estimators of a, b and 𝜎 of 

RU{LL} distribution can be obtained by minimizing the quantity: 

𝑄 =  ∑ [𝑥(𝑖) − 𝑎 (
1 − (1 − 𝜎)(𝑖/(𝑛 + 1)

1 −  (𝑖/(𝑛 + 1)
)

1/𝜎

]

2𝑛

𝑖=1

 

Where 𝑥(𝑖) is the ith order statistic of RU{LL} distribution.  

9.5 Simulation Results 

We introduce Monte Carlo simulation results, using R software. The above 4 

methods are applied to estimate the parameters a, b and 𝜎 of RU{LL} distribution. 

The number of Monte Carlo replications was N=5000 for samples of size n = (30, 

100, 200) for a = (0, 1), b= (2, 3) and 𝜎 = (0.5, 2). The average values of estimates 

(AVEs) and mean square error (MSEs) of MLEs, LSEs, WLSEs and PCEs are 

obtained and displayed in table (5-10). From these tables we observe that the MSEs 

decreases as sample size increase, which shows the consistency of all estimates. The 

results show that PCE gives the best results, for estimating a, b and 𝜎, in terms of 

MSEs in all the cases. 
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The ordering of performance of estimates in terms of MSEs (from best to worst) 

is PCEs, WLSEs, LSEs, MLEs. 

Tables of the estimates of the parameters using the four methods of 

estimation according to certain values of the parameters. 

Table (5): The AVEs and their corresponding MSEs (in parentheses) 

For n = 30  and a = 0 

Parameters MLEs LSEs WLSEs PCEs 

𝑏 = 2 

𝜎 = 0.5 

2.8999 (0.0100) 

0.000 (9.0000) 

3.0578 (0.0346) 

0.3688 (6.9375) 

3.0364 (0.0223) 

0.3573 (6.2033) 

3.1365 (0.0825) 

2.7617 (1.2501) 

𝑏 = 2 

𝜎 = 2 

1.8001 (0.0487) 

0.000 (4.0000) 

2.0415 (0.0288) 

0.5451 (2.1508) 

2.0255 (0.0198) 

0.5304 (2.1862) 

2.0879 (0.0462) 

1.9124 (0.5081) 

𝑏 = 3 

𝜎 = 0.5 

1.8970 (1.2375) 

0.000 (0.2500) 

3.6780 (7.2572) 

2.4530 (5.9205) 

3.4367 (4.2816) 

2.3505 (5.1271) 

3.5646 (3.7957) 

0.4853 (0.0526) 

𝑏 = 3 

𝜎 = 2 

4.9443 (3.7805) 

0.000 (4.0000) 

3.0656 (0.0663) 

0.5485 (2.1409) 

3.0409 (0.0452) 

0.5332 (2.1778) 

3.1276 (0.1019) 

1.9248 (0.5484) 

 

Table (6): The AVEs and their corresponding MSEs (in parentheses) 

For n = 30  and a = 1 

Parameters MLEs LSEs WLSEs PCEs 

𝑏 = 2 

𝜎 = 0.5 

1.8618 (0.0239) 

0.000 (9.2500) 

2.2693 (1.5329) 

2.4806 (6.1137) 

2.1948 (1.4870) 

2.4098 (5.6316) 

2.2165 (0.6649) 

0.4813 (0.0541) 

𝑏 = 2 

𝜎 = 2 

2.0326 (0.0179) 

0.000 (4.0000) 

2.0220 (0.0073) 

0.5478 (2.1430) 

2.0135 (0.0050) 

0.5323 (2.1808) 

2.0440 (0.0117) 

1.9187 (0.5374) 

𝑏 = 3 

𝜎 = 0.5 

2.2787 (0.5351) 

0.000 (0.2500) 

3.5368 (5.9008) 

2.5073 (6.2264) 

3.3136 (2.1930) 

2.3944 (5.3702) 

3.3912 (1.8589) 

0.4775 (0.0502) 

𝑏 = 3 

𝜎 = 2 

4.9231 (3.7450) 

0.000 (4.0000) 

3.0443 (0.0275) 

0.5470 (2.1429) 

3.0275 (0.0189) 

0.5332 (2.1811) 

3.0882 (0.0464) 

1.9154 (0.5098) 

 

Table (7): The AVEs and their corresponding MSEs (in parameters) 

For n = 100  and a = 0 

Parameters MLEs LSEs WLSEs PCEs 

𝑏 = 2 

𝜎 = 0.5 

2.043 (0.0217) 

0.000 (0.250) 

2.094 (0.1526) 

2.170 (3.273) 

2.0510 (0.0904) 

2.0984 (2.8806) 

2.0939 (0.0934) 

0.4896 (0.0145) 

𝑏 = 2 

𝜎 = 2 

1.8014 (0.0447) 

0.000 (4.000) 

0.0120 (0.0058) 

0.5127 (2.2193) 

2.0054 (0.0041) 

0.5066 (2.2360) 

2.0298 (0.0098) 

1.9567 (0.151) 

𝑏 = 3 

𝜎 = 0.5 

2.0217 (0.9668) 

0.000 (0.2500) 

3.1446 (0.3716) 

2.1735 (3.3205) 

3.0770 (0.2086) 

2.0993 (2.890) 

3.1405 (0.2134) 

0.4896 (0.0144) 

𝑏 = 3 

𝜎 = 2 

4.9443 (3.7805) 

0.000 (4.000) 

3.0187 (0.0137) 

0.5129 (2.2186) 

3.0072 (0.0097) 

0.5059 (2.2382) 

3.0431 (0.0224) 

1.9613 (0.1522) 
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Table (8): The AVEs and their corresponding MSEs (in parentheses) 

For n = 100   and a = 1 

Parameters MLEs LSEs WLSEs PCEs 

𝑏 = 2 

𝜎 = 0.5 

1.8402 (0.0260) 

0.000 (0.2500) 

2.0428 (0.0344) 

2.1572 (3.2019) 

2.0227 (0.0206) 

2.0892 (2.8275) 

2.0440 (0.2142) 

0.4906 (0.0141) 

𝑏 = 2 

𝜎 = 2 

2.0630 (0.0070) 

0.000 (4.000) 

2.0058 (0.0015) 

0.5127 (2.2194) 

2.0023 (0.0010) 

0.5063 (2.2370) 

2.0147 (0.0024) 

1.9576 (0.1522) 

𝑏 = 3 

𝜎 = 0.5 

2.3893 (0.3849) 

0.000 (0.2500) 

3.0885 (0.1407) 

2.1591 (3.2107) 

3.0448 (0.0826) 

2.0854 (2.8124) 

3.0871 (0.0861) 

0.4917 (0.0144) 

𝑏 = 3 

𝜎 = 2 

4.9435 (3.7790) 

0.000 (4.000) 

3.0125 (0.0062) 

0.5140 (2.2158) 

3.0056 (0.0044) 

0.5076 (2.231) 

3.0303 (0.0101) 

1.9535 (0.1540) 

 

Table (9): The AVEs and their corresponding MSEs (in parentheses) 

For n = 200  and a = 0 

Parameters MLEs LSEs WLSEs PCEs 

𝑏 = 2 

𝜎 = 0.5 

2.0434 (0.0018) 

0.000 (0.2500) 

2.0413 (0.0509) 

2.0765 (2.6543) 

2.0209 (0.0339) 

2.0423 (2.5027) 

2.0473 (0.0349) 

0.4924 (0.0066) 

𝑏 = 2 

𝜎 = 2 

1.7958 (0.0450) 

0.0000 (4.0000) 

2.0058 (0.0028) 

0.5064 (2.2343) 

2.0020 (0.0020) 

0.5029 (2.2441) 

2.0160 (0.0045) 

1.9735 (0.0774) 

𝑏 = 3 

𝜎 = 0.5 

2.0698 (0.8727) 

0.0000 (0.2500) 

3.0706 (0.1230) 

2.0867 (2.6990) 

3.0360 (0.0791) 

2.0480 (2.5259) 

3.0740 (0.0809) 

0.4919 (0.0069) 

𝑏 = 3 

𝜎 = 2 

4.9443 (3.7805) 

0.000 (4.0000) 

3.0081 (0.0067) 

0.5058 (2.2362) 

3.0018 (0.0045) 

0.5019 (2.2470) 

3.0213 (0.0100) 

1.9807 (0.0770) 

 

Table (10): The AVEs and their corresponding MSEs (in parentheses) 

For n = 200  and a = 1 

Parameters MLEs LSEs WLSEs PCEs 

𝑏 = 2 

𝜎 = 0.5 

1.8380 (0.0262) 

0.0000 (9.2500) 

2.2198 (1.0134) 

2.0711 (2.6475) 

2.0085 (0.0087) 

2.0322 (2.4799) 

2.0216 (0.0089) 

0.4952 (0.0070) 

𝑏 = 2 

𝜎 = 2 

2.0784 (0.0080) 

0.0000 (4.0000) 

2.0026 (0.0007) 

0.5055 (2.2371) 

2.0006 (0.0005) 

0.5019 (2.2473) 

2.0066 (0.0011) 

1.9851 (0.0781) 

𝑏 = 3 

𝜎 = 0.5 

2.4429 (0.3156) 

0.0000 (0.2500) 

3.0444 (0.0554) 

2.0805 (2.6817) 

3.0218 (0.0361) 

2.0425 (2.5110) 

3.4813 (0.0365) 

0.4930 (0.0070) 

𝑏 = 3 

𝜎 = 2 

4.9443 (3.7805) 

0.0000 (4.0000) 

3.0052 (0.0027) 

0.5058 (2.2358) 

3.0013 (0.0019) 

0.5022 (2.2460) 

3.0145 (0.0044) 

1.9779 (0.0741) 

 

Conclusion 

We introduced a new distribution, namely, RU {LL} distribution. The main 

structural properties of the new distribution are studied. 
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The parameters of the distribution are estimated using four methods of 

estimation, and the performance of these methods is evaluated using the R software. 
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