

Article Information

Received: February 24th

Revised: March 22nd 2023

Accepted: March 24th

Published: June 30th 2023

2023

2023

Effectiveness of Some Bio-insecticides on *Spodoptera frugiperda* (J. E. Smith) and *Sesamia cretica* Lederer (Lepidoptera: Noctuidae).

Mohammed M. R. Attia, Adnan A. E. Darwish and Awatef S. Mansy Plant protection department, Faculty of Agriculture, Damanhour University, Egypt

DOI: 10.21608/JALEXU.2023.196001.1122

ABSTRACT: In this study, different bio-insecticides treatments were evaluated for their influence against larvae of Spodoptera frugiperda (J. E. Smith) and Sesamia cretica Lederer (Lepidoptera: Noctuidae) under laboratory and field conditions. The tested bio-insecticides were Tracer 24% SC (Spinosad), Vertemic 18% EC (Abamectin), BioPower (Beauveria bassiana), Bio-Catch (Lecanicillium lecanii) and Priority (Paecilomyces fumosoroseus). The obtained results revealed that the tested treatments on S. frugiperda and S. cretica varied under laboratory conditions. The insecticidal efficiency of the entomopathogenic fungi BioPower showed the highest toxic effect against larvae of S. frugiperda and S. cretica while the Priority insecticide showed the lowest. Abamectin was more effective for both larval species than spinosad. As well as the larvae of S. frugiperda were more susceptible to the tested bioinsecticides than the larvae of S. cretica. In the field study, all the treatments were found effective in reducing the larvae of S. frugiperda and S. cretica population and protecting maize plants compared with the control. The insecticide Vertemic 18% EC was found to be the best, followed by Tracer 24% SC, BioPower, Bio-Catch and finally Priority.

Keywords: Spodoptera frugiperda; Sesamia cretica; Entomopathogenic fungi products; Spinosad; Abamectin

INTRODUCTION

The family Noctuidae (order: Lepidoptera) is the second largest family in Noctuoidea, with about 1,089 genera and 11,772 species worldwide (Zhang, 2011). The Fall Armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Fam: Noctuidae) is a polyphagous insect pest that feeds on leaves and stems of more than 80 plant species such as maize, rice, sorghum, sugarcane, cotton and other vegetable crops (Pogue, 2002; Nagoshi, et al. 2007; Bueno et al., 2010; Barros, et al.,2010; Gamil, 2020). Maize is the preferred host for FAW in the countries where it has been recorded. In the absence of control methods, S. frugiperda can reduce the corn annual production by 21-53% (Huang et al., 2020). S. frugiperda has a high ability to spread to new areas (Mohamed et al., 2022), it was detected in the Nile Delta of the northern part of Egypt, since it was transferred from the Upper Egypt governorates (Rashed, et al., 2022). The greater sugarcane borer (GSB), Sesamia cretica (Fam: Noctuidae) is one of the most important sugarcane and corn borers species in Egypt. This insect pests attacks the maize plants at about 4 – 7 weeks old (Soliman & Mihim 1997; Ezzeldin, et al., 2009; Darwish, et al., 2019). Its damage to young maize plants ranges from feeding on the whorl leaves (causing dead-heart) to feeding on older plants causing longitudinal tunnels (Soliman & Mihim 1997). To avoid harmful effects of the intensive use of chemical insecticides on environment and/or the non-target organisms,

alternative materials have been initiated using safe and effective insect pathogens such as microbial insecticides (Crickmore 2006). Microbial pathogens such as bacteria and pathogenic fungi are good bio-control agents. Due to their ecofriendliness and bio-persistence behavior and their easy preference to kill insect pest species at different developmental stages, crop protection based on biological control of insect pests with microbial agent has been recognized as a valuable tool in integrated pest management programs and therefore utilization of bio-insecticides has increased day-by-day in the recent years (Lomer, et al. 2001; Bhattacharya et al., 2003, Goettel, et al. 2005; Pell, 2007; Hajek, et al., 2012). Keeping in view the above-mentioned information, the current experiment was undertaken to study the effect of five bio-insecticides on the larvae of FAW and GSB under laboratory and field conditions.

MATERIALS AND METHODS

1- Laboratory studies

The tested bio-insecticides includes:

- Spinosad (Tracer 24%SC) from Dow AgroSciences Co.,
- Abamectin (Vertemic 18% EC) from Syngenta Co.,
- BioPower (containing 1x10⁹ Beauveria bassiana spores/ml) (T. Stanes Co. limited, India)

Journal Article © 2022 by (JAAR) is licensed under CC BY-NC 4.0

- Bio-Catch (containing 1x10⁹ Lecanicillium lecanii spores/ml) (T. Stanes Co, limited, India)
- Priority (containing 1x10⁹ Paecilomyces fumosoroseus spores/ml) (T. Stanes Company limited, India)

Insects used

The newly moulted 3^{rd} instars larvae of *Spodoptera frugiperda* and *Sesamia cretica* were obtained from a sensitive reared culture for several generations under laboratory conditions and used in this experiment (27.0 ± 1.0 °C & 70.0 ± 5.0%RH).

Bioassay

Serial concentrations were prepared for each bioinsecticides as follow; $0.25X10^9$, $0.5x10^9$, $1x10^9$ and $1.5x10^9$ spores / 1000 ml (in 1000 ml distilled water) from BioPower, Bio-Catch and Priority, 1, 5, 10 and 20 ppm of Spinosad and 1, 2, 4 and 8 ppm of Abamectin.

Concerning the entomopathogenic fungi (BioPower, Bio-Catch and Priority), ten newly moulted 3rd instar larvae of S. frugiperda and S. cretica were placed in a Petri dish (9 cm in diameter) lined with filter paper were sprayed with 2.0 ml from each concentration per treatment using hand sprayer. After air drying, the treated larvae were transferred carefully to a 2-L flask containing fresh new corn leaves. Each concentration was repeated three times. Ten larvae sprayed with distilled water served as a control. The leaf dip technique was used as described by Aydin et al. (2005) for spinosad and abamectin. Mortality percentages were measured after two, four and six days and they were corrected by Abott's formula (1925). The LC₂₅, LC₅₀ and LC₉₅ values and 95% confidence limits were calculated according to Finney (1971) by using LdP-line, Ehab Software (http://www.ehabsoft.com/ldpline/). Also, the percentage of pupation and moth emergence were recorded for each bio-insecticide and the different used concentrations.

The susceptibility indexes

In this study, the toxicity index method (Sun, 1950) which used to determine the degree of toxicity of different insecticides by comparing them with a standard one was adopted to find out the degree of susceptibility insect to an insecticide than the other insect to the same insecticides by dividing the LC_{25} , LC_{50} or LC_{90} for less susceptible insect by the LC_{25} , LC_{50} or LC_{90} for the more susceptible one.

2- Field studies

Efficacy of five bio-insecticides against the *Spodoptera frugiperda* and *Sesamia cretica*:

Field experiments were carried out in a private farm at El-Bostan, El-Delengat district, Beheira Governorate, Egypt throughout two successive seasons of 2021 and 2022. The experiments were planned to evaluate the efficacy of five bioinsecticides against S. frugiperda and S. cretica on maize plants (cv. yellow single cross 168). An area of about one feddan was divided into 48 plots of 60 m2 each (24 plots for each insect). Each treatment (bio-insecticide) was replicated four times in addition to four control plots. The replicates were separated from the adjacent ones by about one meter as a belt to minimize the interference of spray drift among them. The maize plants were sown in the beginning of May. The treatments for S. cretica were achieved after one month from the sowing date while the treatments for S. frugiperda were achieved in 24 separated plots after 45 days from the sowing date. The number of alive larvae of S. frugiperda or S. cretica on randomly selected ten maize plants from each plot were examined and recorded before treatment and after 1, 4, 7 and 14 days of the treatment. Tracer 24% SC and Vertemic 18% EC were applied at a rate of 0.5 ml/l, while both BioPower, Bio-Catch and Priority were applied at rates of 5ml/L. The reduction percentages of population of S. frugiperda larvae or S. cretica were calculated according to the Henderson and Tilton equation (1955) as follows: % reduction = 100*1- ((n in Co before treatment*n in T after treatment) / (n in Co after treatment*n in T before treatment))

Data analysis:

The collected data were statistically analyzed using analysis of variance (ANOVA) and the means were separated by the Least Significant Difference (LSD test) (SAS Statistical, 1988).

RESULTS AND DISCUSSION Laboratory studies:

Data presented in Table (1) show the lab effectiveness of five bio-insecticides on the 3rd instar of Spodoptera frugiperda. After 48 h, the most effective entomopathogenic fungus was Bio-Power insecticide where LC₅₀ and LC₉₀ values were 0.764×10^9 and 5.662×10^9 spores/1000ml, respectively. Followed by the entomopathogenic fungi Priority ($LC_{50} = 1.503 \times 10^9$) while Bio-Catch was the least and achieved LC₅₀=1.78x10⁹ spores/1000ml. On the other hand, LC_{50} and LC_{90} values of spinosad were 6.982 and 49.801 ppm, respectively while these values for the abamectin insecticide were 3.038 and 20.607 ppm. After 96 h exposure time (Table 2), the toxicity of the entomopathogenic fungi was increased and recorded 0.463 x10⁹, 1.474 x10⁹ and 1.229 x10⁹ as LC₅₀ for Bio-Power, Bio-Catch and Priority, respectively. The toxicity of spinosad and abamectin also increased after 96 h and recorded LC₅₀ of 4.885 and 2.327 ppm, respectively. After 144 h (Table 3), the toxicity of the bio-insecticides significantly increased with increasing exposure time whereas the LC₅₀ values were 0.487×10^9 , 0.659 x10⁹, 1.108 x10⁹, 3.537 ppm and 1.966 ppm for Bio-Power, Priority, Bio-Catch, spinosad and abamectin, respectively.

Concerning the GSB, as shown in Table (1) the effectiveness of the five bio-insecticides on the 3rd instar after 48 h, clearly demonstrated that the most effective entomopathogenic fungus was Bio-Power whereas the LC_{50} and LC_{90} values were 7.288x10⁹ spores/1000ml, 1.277×10^9 and respectively. Followed by the entomopathogenic fungi, Priority ($LC_{50} = 2.412 \times 10^9$) while Bio-Catch was the least and achieved $LC_{50}=2.627 \times 10^9$ spores/1000ml. On the other hand, the LC_{25} , LC_{50} and LC₉₀ values of Tracer were 3.598, 9.962 and 68.96 ppm, respectively. These values for the Vertemic insecticide were 1.615, 5.19 and 47.73

ppm. After four days post treatment (Table 2), the toxicity of the entomopathogenic fungi was increased and recorded 0.822×10^9 , 1.655×10^9 and 3.055×10^9 as LC₅₀ for Bio-Power, Priority and Bio-Catch respectively. The toxicity of spinosad and abamectin also increased after four days and recorded LC₅₀ of 8.079 and 4.446 ppm, respectively. After 144 h (Table 3), the toxicity of the bio-insecticides significantly increased with increasing of the exposure time whereas the LC₅₀ values were 0.578×10^9 , 1.199×10^9 , 2.164×10^9 , 4.913 ppm and 2.927 ppm for Bio-Power, Priority, Bio-Catch, Tracer and Vertemic, respectively.

Table 1. Lab effectiveness of five bio-insecticides against *Spodoptera frugiperda* and *Sesamia cretica* 3rd instar larvae at 48 h post treatment.

	Spodoptera frugiperda						Sesamia cretica				
Treatments	IC	LC50 Values Confid		ence limits	nce limits Slope		LC ₅₀	Confide	ence limits	- Slope	X ²
	LC	50 values	Lower	Upper	Slope	X ²	LC30	Lower	Upper	Slope	Λ
Biopower	LC ₉₀	5.662	2.532	76.24			7.288	3.211	85.785		
(Spore/1000 ml	$1C_{50}$	0.764	0.516	1.252	1.473	1.3	1.277	0.905	2.651	1.694	0.929
distilled water)	$1C_{25}$	0.266	0.077	0.418			0.511	0.278	0.711		
Biocatch	LC ₉₀	8.75	3.662	122.045			12.1	4.353	732.076	1 022	0.244
(Spore/1000 ml	$1C_{50}$	1.78	1.217	4.725	1.878	0.258	2.627	1.603	15.339	1.932	0.244
distilled water)	$1C_{25}$	0.779	0.522	1.113			1.176	0.83	2.291		
Priority	LC ₉₀	20.08	5.236	1316.76			17.99	5.067	5538.73		
(Spore/1000ml	$1C_{50}$	1.503	0.76	3.12	1.138	0.153	2.412	1.394	20.584	1.469	0.092
distilled water)	$1C_{25}$	0.384	0.14	0.717			0.838	0.511	1.494		
Culture 1	LC ₉₀	49.8	26.15	189.48			68.96	33.703	337.45		
Spinosad ppm	$1C_{50}$	6.982	4.682	10.574	1.502	0.0094	9.962	6.835	16.249	1.525	0.225
PPm	$1C_{25}$	2.483	1.146	3.825			3.598	1.813	5.36		
Abamaatin	LC ₉₀	20.61	10.29	125.54			47.73	17.166	1349.37		
Abamectin ppm	$1C_{50}$	3.04	2.071	4.605	1.541	0.143	5.19	3.428	12.217	1.33	0.022
P.P.	$1C_{25}$	1.11	0.423	1.702			1.615	0.609	2.476		

	Spodoptera frugiperda							Sesamia cretica					
Treatments	IC		Confide	nce limits	Slong	X ²	IC	Confid	ence limits		X ²		
	LC ₅₀ v	Values	Lower	Upper	Slope	Λ-	LC ₅₀	Lower	Upper	- Slope	Λ-		
Biopower	LC ₉₀	4.228	1.949	71.804	1 22 4	1.000	6.492	2.733	124.34	1 400	1 1 6 0		
(Spore/1000 ml	$1C_{50}$	0.463	0.218	0.694	1.334	1.096	0.822	0.555	0.443	1.428	1.168		
distilled water)	$1C_{25}$	0.145	0.015	0.275			0.277	0.076	0.435				
Biocatch	LC ₉₀	10.498	3.817	395.88	1 502	0.275	35.34	5.56	1978.7	1.205	0.050		
(Spore/1000 ml	$1C_{50}$	1.474	0.983	4.346	1.503	0.275	3.055	1.74	22.59		0.056		
distilled water)	1C ₂₅	0.524	0.256	0.761			0.842	0.29	2.62				
Priority	LC ₉₀	19.74	4.62	712.15	1.072	1.371	14.58	4.393	2540.28	1.356	0.056		
(Spore/1000 ml	$1C_{50}$	1.229	0.4	3.56	1.063		1.655	1.04	7.704				
distilled water)	$1C_{25}$	0.285	0.01	0.91			0.527	0.223	0.797				
g • 1	LC ₉₀	44.281	22.497	186.78	1 220	0 (72	54.65	28.442	215.791	1 5 4 4	0.651		
Spinosad ppm	$1C_{50}$	4.885	2.974	7.484	1.339	0.672	8.079	5.524	12.394	1.544	0.651		
ppm	$1C_{25}$	1.531	0.544	2.596			2.954	1.445	4.447				
Abamaatin	LC ₉₀	19.355	9.286	162.113	1 202	0.450	43.71	15.888	1275.52	1.291	0.010		
Abamectin ppm	$1C_{50}$	2.327	1.379	3.491	1.393	0.459	4.446	2.926	9.548		0.019		
ppm	1C ₂₅	0.763	0.179	1.311			1.335	0.412	2.117				

Table 2. Lab effectiveness of five bio-insecticides against *Spodoptera frugiperda* and *Sesamia cretica* 3rd instar larvae at 96 h post treatment.

Table 3. Lab effectiveness of five bio-insecticides against *Spodoptera frugiperda* and *Sesamia cretica* 3rd instar larvae at 144 h post treatment.

	Spodoptera frugiperda							S	esamia creti	ca	
Treatments	LC ₅₀ v		Confide	nce limits	- Slope	X^2	LC ₅₀	Confidence limits		- Slope	X ²
	LC30	values	Lower	Upper	blope		L C30	Lower	Upper	blope	28
Biopower	LC ₉₀	2.571	1.482	32.02	1 772	1 022	7.158	2.582	917.88	1 172	0.95
(Spore/1000 ml	$1C_{50}$	0.487	0.181	0.666	1.773	1.032	0.578	0.25	0.975	1.173	0.85
distilled water)	$1C_{25}$	0.203	0.014	0.359			0.154	0.0076	0.304		
Biocatch	LC ₉₀	13.15	3.832	5741.96	1 102	0.450	23.61	5.417	92144.4	1 225	0.004
(Spore/1000 ml	$1C_{50}$	1.108	0.708	3.751	1.193	0.459	2.164	1.217	31.492	1.235	0.094
distilled water)	$1C_{25}$	0.302	0.046	0.498			0.615	0.255	1.027		
Priority	LC ₉₀	7.425	2.714	629.191	1 0 1 0	0.504	8.524	3.519	90.254	1 504	0.000
(Spore/1000 ml	$1C_{50}$	0.659	0.372	1.158	1.218	0.524	1.199	0.833	2.518	1.504	0.226
distilled water)	$1C_{25}$	0.184	0.016	0.34			0.427	0.25	0.596		
C	LC ₉₀	45.01	21.005	266.656	1.16	1 (01	39.43	21.064	141.731	1 417	1 772
Spinosad	$1C_{50}$	3.537	1.79	5.692	1.16	1.621	4.913	3.075	7.364	1.417	1.773
ppm	$1C_{25}$	0.927	0.202	1.822			1.642	0.643	2.699		
	LC ₉₀	12.47	7.054	51.08	1 507	0.466	22.43	10.607	179.9	1 4 4 0	0.424
Abamectin	$1C_{50}$	1.966	1.191	2.775	1.597	0.466	2.927	1.925	4.533	1.449	0.434
ppm	1C ₂₅	0.744	0.23	1.218			1.002	0.32	1.6		

The current results concluded that the Biopower insecticide (*Beauveria bassiana*) was the most effective entomopathogenic fungi insecticides on FAW and GSB larvae than Bio-Catch (*Lecanicillium lecanii*) and Priority (*Paecilomyces fumosoroseus*). The results of **El-Hawary and Abd El-Salam**, 2009 are in agreement with our results, they found that *B. bassiana* (Bio-Power) was more effective against the larvae of

Spodoptera littoralis and P. fumosoroseus (Priority) was more potent against the larvae of Agrotis ipsilon. Also, **Metwally**, **2010** investigate the effect of B. bassiana on the three corn borers, Ostrinia nubilalis (Hbn.), Sesamia cretica (Led.) and Chilo agamemnon (Bles.), and found that all the tested concentrations induced different mortalities. **Idrees**, et al, **2022** tested the pathogenicity of 12 isolates of B. bassiana in the immature stages and feeding efficacy of the FAW, S. frugiperda, they found that the B. bassiana isolates caused significant mortality rates ranging from 71.3 to 93.3% at two weeks' post-treatment and reduced the efficacy of larval feeding consumption from 69.4 to 77.8% at two days' posttreatment. Sabbour and Singer, 2014, found that the LC50 of Paecilomyces fumosoroseus and Paecilomyces lilaceous recorded 122X10⁴ and $106X10^{4}$ conidia/ml, respectively against Phthorimaea operculella under laboratory conditions. On the other side, Abd El-Salam, et al., 2012 investigated the effect of Beauveria bassiana, Verticillium lecanii, Metarhizium anisopliae and Paecilomyces fumosoroseus compared with Nimbecidine against the cowpea aphid, *Aphis craccivora* in broad bean field and found that *V. lecanii* was the most effective insecticide followed by Nimbecidine, Bio-Magic, Priority and the least effective was *B. bassiana*.

The susceptibility indexes

As shown in Tables (4) the 3^{rd} instar FAW larvae were more susceptible to the five bio-insecticides than the 3^{rd} instar larvae of GSB. Concerning the entomopathogenic fungi, the FAW was more susceptible by 1.19, and 1.95 and 1.82 fold than the GSB according to the LC₅₀ after 144 h for Biopower, Biocatch and Priority. These ratios reach 1.39 and 1.49 for Tracer and Vertemic, respectively.

Table 4. The susceptibility index of <i>Spodoptera frugiperda</i> compared with <i>Sesamia cretica</i> 3 rd instar	
larvae to the tested bio-insecticides:	

Treatments		After 48 h	After 96 h	After 144 h
Dionowar	LC ₉₀	1.29	1.54	2.78
Biopower	1C50	1.67	1.78	1.19
	$1C_{25}$	1.92	1.91	0.76
Biocatch	LC ₉₀	1.38	3.37	1.8
Diocatchi	1C50	1.48	2.07	1.95
	$1C_{25}$	1.51	1.61	2.04
Duiquity	LC ₉₀	0.9	0.74	1.15
Priority	1C ₅₀	1.6	1.35	1.82
	$1C_{25}$	2.18	1.85	2.32
Spinogod	LC ₉₀	1.38	1.23	0.88
Spinosad	1C50	1.43	1.65	1.39
	$1C_{25}$	1.45	1.93	1.77
A harres a stim	LC ₉₀	2.32	2.26	1.8
Abamectin	1C ₅₀	1.71	1.91	1.49
	$1C_{25}$	1.45	1.75	1.35

The effectiveness of the tested insecticides on the development of *S. frugiperda* and *S. cretica*:

Data in Tables 5 and 6 showed the effect of five bio-insecticides with serial concentrations on the 3^{rd} instar larvae and the effect on the developmental (pupation and moth emergencies) of *S. frugiperda* and *S. cretica* under laboratory conditions. The obtained results showed that for all bio-insecticides used there was a regular direct relationship for each concentration between the percentage of mortality and the increase in the period of exposure. For the effect on insect developmental, the five bio-insecticides showed fluctuations in both the percentage of pupation and the percentage of moth emergency, all the treated FAW larvae died before pupation in the case of treating by each of Biopower ($1x10^9$ and $1.5x10^9$ spores / 1000ml), Tracer (10 and 20 ppm) and Vertemic (8 ppm). Also, all the GSB larvae treated with Biopower ($1.5x10^9$ spores / 1000ml), spinosad (20 ppm) and abamectin (8 ppm) died before pupation.

			%]	Mortality	after	Develo	Development effect		
Insecticides		Concentration	2 days	4 days	6 days	% Pupation	% Moth emergency		
Biopower		0.25	30	40	46.67	20	6.67		
(Spore/1000	ml	0.5	36.67	46.67	56.67	6.67	3.33		
distilled water)		1	53.33	63.33	66.67	0	0		
		1.5	73.33	80	83.33	0	0		
Biocatch		0.25	6.67	13.33	23.33	26.67	13.33		
(Spore/1000	ml	0.5	13.33	23.33	33.33	20	10		
distilled water)		1	30	36.67	43.33	13.33	6. 67		
		1.5	46.67	53.33	60	3.33	0		
Priority		0.25	20	26.67	33.33	26.67	16. 7		
(Spore/1000	ml	0.5	26.67	30	40	16.67	10		
distilled water)		1	43.33	40	56.67	6.67	6.67		
		1.5	50	60	70	3.33	0		
Tracer		1	13.33	20	30	33.33	23.33		
(ppm)		5	43.33	46.67	50	20	6.67		
		10	60	63.33	66.67	0	0		
		20	76.67	83.33	86.67	0	0		
Vertemic		1	26.67	33.33	36.67	30	6.67		
(ppm)		2	40	43.33	50	10	3.33		
		4	56.67	60	66.67	6.67	0		
		8	76.67	80	86.67	0	0		

Table (5): Effect of five bio-insecticides on 3rd instar larvae of the fall army worm, *Spodoptera frugiperda* **under laboratory conditions.**

Table (6): Effect of five bio-insecticides on 3rd instar larvae of the greater sugarcane borer, *Sesamia* cretica under laboratory conditions.

		% I	Mortality	after	Development effect		
Insecticides	Concentration	2 days	4 days	6 dova	%	% Moth	
		2 uays 4 uays	6 days	Pupation	emergency		
Biopower	0.25	13.33	26.67	36.67	33.33	13.33	
(Spore/1000ml	0.5	23.33	33.33	43.33	23.33	6.67	
distilled water)	1	36.67	50	56.67	13.33	3.33	
	1.5	60	70	73.33	3.33	0	
Biocatch	0.25	3.33	10	13.33	50	20	
(Spore/1000 ml	0.5	6.67	16.67	20	33.33	10	
distilled water)	1	20	26.67	33.33	23.33	3.33	
	1.5	33.33	36.67	43.33	16.67	3.33	
Priority	0.25	6.67	13.33	16.67	26.67	10	
(Spore/1000 ml	0.5	16.67	23.33	30	26.67	10	
distilled water)	1	30	40	43.33	16.67	6.67	
	1.5	40	46.67	56.67	13.33	3.33	
Tuesser	1	6.67	13.33	20	43.33	23.33	
Tracer	5	30	33.33	43.33	30	10	
(ppm)	10	53.33	53.33	63.33	6.67	3.33	
	20	66.67	76.67	86.67	0	0	
	1	16.67	20	26.67	33.33	13.33	
Vertemic	2	30	33.33	40	20	6.67	
(ppm)	4	43.333	46.67	53.33	13.33	3.33	
	8	60	63.33	76.67	0	0	

Field studies:

Data presented in Tables 7 and 8 showed the efficacy of five bio-insecticides on the numbers of larvae of FAM which were recorded before and after treatment 1, 4, 7 and 14 days in 2021 and 2022. There were significant differences between

the treatments with respect to the reduction percentages of FAW larvae. The general means of reduction percentages of FAW larvae could be arranged in descending order as follows: Vertemic 18% EC (87.26), Tracer 24%SC (82.49), BioPower (76.92), Bio-Catch (71.87) and Priority (67.59) in the 2021 season. These reduction percentages were increased in the 2^{nd} season 2022 and recorded 90.48, 88.01, 80.29, 75.49 and 71.15 %, respectively. Among the tested insecticides, Vertemic 18% EC and Tracer 24%SC gave the highest reduction percentages (lowest number of *S. frugiperda* per plant) after 1, 4, 7 and 14 days of application as compared to BioPower, Bio-Catch and Priority. The current results are in agreement with the results of Bajracharya, *et al.* 2020, who

tested spinosad, chlorantraniliprole, emamectina benzoate, imidacloprid and azadirachtin against FAW, and found that the spinosad, chlorantraniliprole and emamectin benzoate were found promising for FAW management in maize. Mian *et al.*, (2022), found that deltamethrin insecticide was recorded the most toxic insecticide followed by chlorantraniliprole and the bioinsecticides emamectin benzoate insecticides.

Table 7: Efficacy of the tested bio-insecticides on the fall army worm populations under field conditions during the 2021 season.

Die imageticides		Concertain			
Bio-insecticides	1	4	7	14	General mean
Priority	55.54±2.62°	68.85±2.64°	80.27±2.5ª	65.71±2.34°	67.59±2.54°
Bio-Catch	61.38±1.11b ^e	74.95±1.08b ^c	82.16±2.29 ^a	68.99±2.19°	71.87±2.13 ^{bc}
BioPower	68.1±1.49 ^b	79.52±1.74 ^b	85.22±2.01ª	74.85±2.6b ^c	76.92±1.85 ^b
Tracer 24%SC	82.97±6.22ª	89.71±2.55ª	79.44±2.73ª	77.84±2.25a ^b	82.49 ± 2.07^{ab}
Vertemic 18% EC	$89.46{\pm}2.27^{\mathbf{a}}$	93.17±1.7ª	$83.74{\pm}2.43^{a}$	82.65±2.11ª	$87.26{\pm}1.46^{\mathbf{a}}$
F values	19.008	24.879	.990	8.677	14.998
L. S. D.	9.91545	6.11885	7.24145	6.9429	5.74955

Means followed by the same letter(s) within the same column are not significantly differ ($P \le 0.05$)

Table 8: Efficacy of the tested bio-insecticides on the fall army worm populations under field conditions during the 2022 season.

Die imageticides		Comonal maam			
Bio-insecticides	1	4	7	14	- General mean
Priority	64.96±4.59 ^b	74.24±5.52 ^c	76.98±4.59 ^b	68.42±3.43°	71.15±2.39°
Bio-Catch	68.71 ± 2.2^{b}	78.72±1.01b ^c	79.89±2.22 ^b	74.66±2.06b ^c	75.49±1.42°
BioPower	74.86±5.39 ^b	83.48±2.21 ^b	83.82±2.71ª	79.04 ± 2.02^{ab}	$80.29 {\pm} 1.78^{b}$
Tracer 24%SC	90.03±3.7ª	$93.63{\pm}1.27^{a}$	$85.47{\pm}2.96^a$	$82.88 {\pm} 2.01^{a}$	$88.01{\pm}1.6^{a}$
Vertemic 18% EC	$92.92{\pm}0.88^{a}$	$94.09{\pm}1.68^{a}$	$89.14{\pm}1.8^{a}$	$85.76{\pm}2.18^{\mathbf{a}}$	$90.48 {\pm} 1.14^{a}$
F values	11.393	9.624	2.495	8.115	22.616
L. S. D.	11.23325	8.61795	9.07605	7.25185	4.8372
1 6 11 1 1	1 ()	• • • • •	1 .		$(\mathbf{D} < \mathbf{O} < \mathbf{O})$

Means followed by the same letter(s) within the same column are not significantly differ ($P \le 0.05$)

On the other hand, the data presented in Tables 8 and 9 illustrated the effect of the five bioinsecticides on the larvae of *S. cretica*. The GSB larvae were more resistant to the treatment than the larvae of FAW, whereas the recorded general means of reduction percentages were recorded 56.66, 65.31, 69.63, 76.89 and 81.17% during the first season (2021). During the 2nd season, 2022 these percentages recoded 58.81, 63.74, 67.81, 81.28 and 84% for Priority, Bio-Catch, BioPower, Tracer and Vertemic, respectively. The current results are in agreement with El- Sappagh, (2016) and Darwish, et al. (2019), who tested the effect of different bio and chemical insecticides on the GSB (S. cretica) and found that all the treatments were effective in reducing the infestation rates by this insect. The 1st author found that the chemical insecticide Neomyl was found the most effective insecticide against S. cretica followed by Bestban and Tempo Xl, respectively. While the 2nd author recorded that the emamectin benzoate was the most followed effective insecticide bv chlorantraniliprole, lufenuron. **Bacillus** thuringiensis and finally spinetoram insecticide.

Bio-insecticides		Concerl moon			
Dio-msecticides	1	4	7	14	- General mean
Priority	51.94±2.27°	56.97±1.23°	58.03±1.3°	59.72±1.66 ^c	56.66±1.05 ^e
Bio-Catch	56.99±2.42°	68.74±3.29 ^b	69.83±1.43 ^b	$65.68 \pm .63^{b}$	$65.31 {\pm} 1.63^{d}$
BioPower	$64.84{\pm}.47^{\mathbf{b}}$	$71.95 {\pm} 1.85^{b}$	73.7±2.31 ^b	$68.03 {\pm} 1.97^{b}$	69.63±1.2°
Tracer 24%SC	$80.69 {\pm} 1.82^{a}$	$79.49 \pm .74^{a}$	$81.09{\pm}1.65^{a}$	66.31±1.74 ^b	76.89±1.73 ^b
Vertemic 18% EC	81.94±1.99 ^a	$82.7{\pm}2.42^{\mathbf{a}}$	$84.74{\pm}2.29^{a}$	$75.29{\pm}1.61^{a}$	81.17 ± 1.31^{a}
F values	50.167	22.986	32.109	12.364	46.961
L. S. D.	5.79615	6.34205	5.5598	4.79405	3.96585

 Table 8: Efficacy of the tested bio-insecticides on the greater sugarcane borer populations under field conditions during 2021 season.

Means followed by the same letter(s) within the same column are not significantly differ ($P \le 0.05$)

 Table 9: Efficacy of the tested bio-insecticides on the greater sugarcane borer populations under field conditions during 2022 season.

Bio-insecticides		- General mean			
Dio-msecticides	1	4	7	14	General mean
Priority	55.14±.28°	57.71±3.11°	61.67±1.35°	60.7±3.54 ^b	58.81±1.28°
Bio-Catch	54.01±.31°	$62.98 {\pm} 2.93^{bc}$	$65.04 \pm .64^{\mathbf{d}}$	$72.95 {\pm} 2.55^{ab}$	63.74±1.95 ^b
BioPower	62.39±2.61 ^b	67.09 ± 2.94^{b}	73.27±1.37°	$68.51 {\pm} 2.68^{b}$	67.81±1.49 ^b
Tracer 24%SC	84.03±.72 ^a	$86.62{\pm}.65^{\mathrm{a}}$	$80.13{\pm}1.6^{b}$	$74.34 \pm .83^{ab}$	$81.28{\pm}1.28^{a}$
Vertemic 18% EC	83.68 ± 2.5^{a}	$86.18 \pm .68^{a}$	87.51 ± 1.88^{a}	78.65 ± 4.86^{a}	$84{\pm}1.57^{a}$
F values	81.476	32.546	55.210	4.592	51.602
L. S. D.	4.9958	7.11065	4.3111	9.58275	4.3237

Means followed by the same letter(s) within the same column are not significantly differ ($P \le 0.05$)

REFERENCES:

Abd El-Salam, A.M.E.; S.A. Salem and M.Y. El-Kholy (2012). Efficiency of Nimbecidine and certain entomopathogenic fungi formulations against bean aphids, Aphis craccivora in broad bean field. Archives of Phytopathology and Plant Protection Vol. 45, No. 19, 2272–2277.

Abott, W. S. (1925). A method of computing effectiveness of an insecticides.J.Econ.Entomol.18:265-267.

Aydin, H.; Oktay, M. and Rkan, G.(2005). The efficacy of spinosad on different strains of *Spodoptera littoralis* (Boisduval) (Lepidoptera: Noctuidae). Turk. J. Biol. 30: 5-9.

Barros, E.; Torres, J. B.; Ruberson, J. R. and Oliveira, M. D. (2010). Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomologia Experimentalis et Applicate, 137: 237-245.

Bajracharya, A.S.R.; Bhat, B.; Sharma, P. (2020). Field efficacy of selected insecticides against fall armyworm, Spodoptera frugiperda (J.E. Smith) in maize. J. Plant Prot. Soc., 6, 127–133.

Bhattacharya, A.K.; Mondal, P.; Ramamurthy, V.V. and Srivastava, R.P. (2003). *Beauveria bassiana*: a potential bioagent for innovative

integrated pest management programme. In: Srivastava, R.P. (Ed.), Biopesticides and Bioagents in Integrated Pest Management of Agricultural Crops. International Book Distributing Co. Lucknow 860 pp.

Bueno, R.C.O.F., Carneiro, T. R., Bueno, A. F., Pratissoli, D., Fernandes, O.A., Vieira, S.S. (2010). Parasitism capacity of Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) eggs. Brazilian Archives of Biology and Technology, 53: 133-139

Crickmore N (2006). Beyond the spore—past and future developmentsof Bacillus thuringiensis as a biopesticide. J ApplMicrobiol101:616–619.

Ezzeldin, H. A., Sallam, A. A. A., Helal, T. Y. and Fouad, H. A.(2009). Effect of some materials on Sesamia cretica infesting some maize and sorghum varieties', Archives Of Phytopathology And Plant Protection, 42:3,277 — 290. DOI: 10.1080/03235400601037180

Darwish, A. A. E.; M. M. R. Attia and A. M. Khozimy (2019). Influence of Sowing Dates, Varying Hybrids of Maize, *Zea mays* L. and Application of some Insecticides on the Population Density of the Greater Sugarcane Borer, *Sesamia cretica* Led. (Lepidoptera: Noctuidae). J. of Plant Protection and Pathology, Mansoura Univ., Vol 10 (10):477 – 482.

El-Hawary, F.M and Abd El-Salam, A.M.E (2009). Laboratory bioassay of some entomopathogenic fungi on *Spodoptera littoralis* (Boisd.) and *Agrotis ipsilon* (Hufn.) larvae (Lepidoptera: Noctuidae). Egypt. Acad. J. biolog. Sci., 1(1): 1-6.

El-Sappagh, I.A, (2016). Effect of certain bio and chemical insecticides on *Sesamia cretica* Led. and *Ostrinia nubilalis* Hub. in maize field in Qaliubiya Governorate, Egypt. Annals of Agric. Sci., Moshtohor. 54(3), 659–668

Finney, S. J. (1971). Probit analysis. Astatistical treatment of the sigmoid response curve.7th Ed. Campridge Univ. Press, Cambridge, England.

Gamil, Walaa E., (2020). Fall Armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) Biological Aspects as A New Alien Invasive Pest in Egypt. Egypt. Acad. J. Biolog. Sci., 13(3):189-196 (2020)

Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A. and Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE, 11, e0165632. doi:10.1371/journal.pone.0165632

Goettel MS, Eilenberg J, Glare TR. (2005). Entomopathogenic fungi and their role in regulation of insect population. In: Gilbert LI, Latrou K, Gill S (Eds) Comprehensive molecular. Ins. Sci. 6:361-406.

Hajek A.E., Papierok B., Eilenberg J. (2012). Methods for study of the entomophthorales. In: Lacey, L.A. (Ed.), Manual of Techniques in Invertebrate Pathology. Academic Press, San Diego. 2012, 285-316.

Henderson C. and Tilton E. (1955). Tests with acaricides against the brown wheat mite. Journal of Economic Entomology, 48:157-161.

Huang, Y., Dong, Y., Huang, W., Ren, B., Deng, Q., Shi, Y., Bai, J., Ren, Y., Geng, Y. and Ma, H. (2020). Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects, 11(11), 805.

Idrees, A.; Afzal, A.; Qadir, Z.A.; Li, J. (2022). Bioassays of *Beauveria bassiana* Isolates against the Fall Armyworm, Spodoptera frugiperda. J. Fungi, 8, 717. https://doi.org/ 10.3390/jof8070717

Lomer C.J., Bateman R.P., Johnos D.L., Langewald J., Thomas M. (2001). Biological control of grasshoppers and locusts. Ann. Rev. Ento.; 46:667-702. Mian, F. M., Khan, I., Ullah, N., Gondal, A. H., Ajmal, M. S., Qureshi, M. S., Ihsan, A., Raziq, M., Qazi, I., & Jabbar, A. (2022). Efficacy of Insecticides against Fall Armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae) in Maize, Journal of Bioresource Management, 9 (2). 133-139

Metwally, M. M., (2010). Entomopathogencity of Beauveria bassina (Bals.) Vuillemin to certain larval instars of three corn borers under laboratory conditions. J. Plant Protection and Pathology, Mansoura Univ., Vol. 1 (6): 331 – 339

Mohamed, H.O., El-Heneidy, A.H., Dahi, H.F. and Awad, A.A. (2022). First Record of the Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on Sorghum Plants, A new invasive pest in Upper Egypt. Egyptian Academic Journal of Biological Sciences. A, Entomology, 15(1), 15-23.

Nagoshi, R.N.; Adamczyk, J.J.; Meagher, J.; Gore, R.L. and Jackson, R. (2007). Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. Journal of Economic Entomology, 100: 1569-1576.

Pell J.K. (2007). Ecological approaches to pest management using entomopathogenic fungi: concepts, theory, practice, and opportunities. In: Ekesi S, Manianai N (Eds) use of entomopathogenic fungi in pest management. Res. Signpos. 2007, 145-177.

Pogue, G.M. (2002). A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). Memoirs of the American Entomological Society, 43: 1-202.

Rashed, Hadeer S. A.; Maha S. Khalil; K. M. Khalwy and I. A. El-Ghbawy (2022). Appearance of Fall Armyworm, Spodoptera frugiperda as A New Invasive Insect Pest on Maize Plants in the Nile Delta, Egypt. J. of Plant Protection and Pathology, Mansoura Univ., Vol. 13 (10):231 -234.

Sabbour M. M. and Singer, S. M. (2014). Evaluations of Two Isolated Paecilomyces Against *Phthorimaea operculella* (Lepidoptera:Gelechiidae) Under Laboratory and Field Conditions. International Journal of Science and Research (IJSR). Volume 3 Issue 9. 1136-1139

SAS Institute (1988). SAS user's guide: Statistics. SAS Institute, Cary, N.C.

Soliman M, Mihim JA. (1997). Corn borers affecting maize in Egypt. Insect resistant maize: recent advances and utilization, proceeding of International symposium held at the International Maize and Wheat Improvement Center (Abstract).

Sun, u.p. (1950). Toxicity index – an improved method of comparing the re;ative toxicity of insecticides . J. Econ. Entomo., 43 : 45-53

Zhang, Z. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa. 3148. Magnolia Press. p. 217.

الملخص العربى

التأثير السام لبعض المبيدات الحشرية الحيوية علي حشرتي دودة الحشد الخريفية ودودة القصب الكبيرة Spodoptera frugiperda

محمد مبروك رجب عطية ، عدنان عبدالفتاح السيد درويش، عواطف سعد منسي قسم وقاية النبات - كلية الزراعة - جامعة دمنهور - جمهورية مصر العربية

تم هذه الدراسة تقييم فعالية بعض المبيدات الحشرية الحيوية علي حشرتي دودة الحشد الخريفية Spodoptera تم هذه الدراسة تقييم فعالية بعض المبيدات الحشرية الحيوية علي حشرتي دودة الحشد الخريفية Inagiperda ودودة القصب الكبيرة Sesamia cretica تحت الظروف المعملية والحقلية. المبيدات الحشرية المختبرة كانت الاسبينوساد Sesamia cretica، الابامكتين Vertemic 18% EC، بيوباور Reauveria المختبرة كانت الاسبينوساد Paecilomyces fumosoroseus ، بريوريتي Vertemic 18% EC، بيوباور Paecilomyces fumosoroseus، بيوكاتش Paecilomyces fumosoroseus ، بريوريتي Paecilomyces fumosoroseus ، أشارت النتائج الي ان التأثير السام للمبيدات المستخدمة اختلف من مبيد الي اخر ومن حشرة الي اخري. فكان مبيد بيوباور النتائج الي المبيدات الحشرية الحيوية الفطرية علي يرقات كلتا الحشرتين بينما كان أقلها هو المبيد بريوريتي. كما كان أعلي المبيدات الحشرية الحيوية الفطرية علي يرقات كلتا الحشرتين بينما كان أقلها هو المبيد بريوريتي. كما كان مبيد الإبامكتين اكثر فعالية من الاسبينوساد. وأشارت النتائج أيضا الي أن يرقات دودة الحمد الخريفية كانت أكثر مبيد الرامكتين اكثر فعالية من الاسبينوساد. وأشارت النتائج أيضا الي أن يرقات دودة الحشد الخريفية كانت أكثر مبيد الإبامكتين اكثر فعالية من الاسبينوساد. وأشارت النتائج أيضا الي أن يرقات دودة الحمد الخريفية كانت أكثر مسيد الرامكتين اكثر فعالية من الاسبينوساد. وأشارت النتائج أيضا الي أن يرقات دودة الحمد الخريفية كانت أكثر مبيد الإبامكتين اكثر فعالية من الاسبينوساد. وأشارت النتائج أيضا الي أن يرقات دودة الحمد الخريفية كانت أكثر مسيد الابامكتين اكثر فعالية من الاسبينوساد. وأشارت النتائج أيضا الي أن يرقات دودة الحمد الخريفية كانت أكثر مسيد الروف الحمد الخريفية الحشرتين علي محصول الذرة الشامية ماليدات المختبرة المني المبيدات الحمد الخريفية المبيدات المختبرة الحيوية المختبرة. ولما يروري فعالية في خفض تعداد يرقات الحشرتين علي محصول الذرة الشامية مقارة بالكنترول. وكان المبيد الحيوي ابامكتين الاكثر فعالية وتلاه مبيد الاسبينوساد ثم البيوباور ثم بيوكاتش واخيرا بريوريتي.