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This paper presents the use of a Taylor series for multiobjective integer linear fractional 

programming problem having grey parameters in the right-side of the constraints 

(GMOILFP). To deal with the grey parameters in the right-side of the constraints the 

positioned programming should be used. An equivalent grey multiobjective linear 

fractional programming problem (GMOLFP) is formulated using Gomory's cutting 

plane method. The Taylor series, which is a series expansion that a representation of            

a function, is applied to convert the fractional functions into polynomials. In the proposed 

approach a white value of each grey parameter is determined, Taylor series is applied 

and the functions are unified by using the nonnegative weighted sum method. Thus, the 

problem is reduced to a single linear objective with grey parameter in the right side of the 

constrains. An algorithm for solving GMOILGP problem with grey interval coefficients 

using positioned programming and Taylor series polynomials is proposed. A numerical 

example is provided to demonstrate the efficiency and feasibility of the proposed 

approach. A special case study for handling the environmental economic energy dispatch 

problem also is included in this paper, the main goal of this problem is how to schedule 

committed generators to meet the load required to minimize the pollution emissions and 

fuel cost. The model formulation for               a special case study problem is presented, 

the mathematical model will be considered as (GMOLFP) and the problem is solved 

according to the proposed solution algorithm. 
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1. INTRODUCTION 

Multiobjective optimization problems (MOPs) are 

come across in many fields, such as energy systems [1-5], 

scheduling [6-8], management [9], and structural optimum 

design [10,11]. Generally, many problems can be 

modelled as multiobjective optimization problems, in 

which multiple conflicting objectives are to be optimized 

simultaneously. Optimization problems, which frequently 

appear in scientific research and engineering, are often 

MOPs. Yin et al. [12] studied the crashworthiness and 

reliability of a foam-filled bionic thin-walled structure 

based on bio inspired design. The optimization of a 

vehicle door structure with a hybrid material was 

investigated to achieve lightweight design [13]. To obtain 

better performance, various multiobjective optimization 

strategies have been proposed and widely applied to 

engineering problems [14-15].  

Numerous existent problems of human society are 

expressed by Mathematical modelling of several 

objectives, and these objectives are connected and so 

interfered to one another. Usually, they are fractional 

functions and need simultaneous optimization under some 

equality or inequality constraints. The multiobjective 

linear fractional programming problems consist of linear 

constraints and linear fractional objective functions which 

contain affine functions in its numerators and 

denominators. The multiobjective linear fractional 

programming problems are widely used in many real-life 

situations [16]. Usually, there is no single feasible solution 

which optimizes allthe objective simultaneously, so the 

notion of Pareto optimal solution was considered [17]. 

The Pareto optimal solutions of a multiobjective 

geometric programming problem were derived by Ojha 

and Biswal [18, 19].   
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In 1960, to convert the fractional objectives into 

linear ones, a transformation technique was sophisticated 

by Charnes and Cooper [20].  For solving the linear 

fractional programming problems, a method which is 

greatly used, was suggested by Bitran and Novaes [21],  

the method of Dinkelbach approach [22] was considered, 

and the method of conjugate gradient was used by 

Tantawy [23].  The non-linear fractional programming 

problem was solved by Wolf  [24]. The multiobjective 

linear fractional programming problems were solved by 

Costa [25], Valipour et al. [26], Chakrobarty and Gupta 

[27] and Dangwal [28]. The multiobjective linear 

fractional programming problem with interval 

coefficients was suggested by Pal and Sen [29]. The 

single objective linear fractional programming problem 

was considered by Borza et al. [30] and by Almogy and 

Levin [31]. Miettinen [32] clarified several methods to 

solve multiobjective optimization problems [17]. The 

mixed integer fractional programming problems were 

solved by Zhixia and Fengqi [33]. The fuzzy linear 

fractional programming problems were considered by 

Das et al. [34] and by Chinnadurai and Muthukumar 

[35]. The multilevel multiobjective fractional 

programming problems were solved by Osman et al. 

[36]. The fuzzy multiobjective linear fractional 

programming problems were considered by Chang [37]  

and Toksari [38]. The geometric programming with 

fuzzy parameters, was suggested by Liu [39].  

The theory of grey systems was established by 

professor Julong Deng which has been studying 

problems, with uncertain systems, that involved partially 

known information [40,41]. Two papers on grey systems 

were published by professor Julong Deng in 1982 (Deng 

1982a, b) [42,43].  After that date, a lot of publications, 

that involved the theory of grey systems, were published 

around the world [44]. The grey systems curriculums 

have been set up for undergraduate, Master and PhD 

programs in many universities around the world. As          

a result of uncertainty in the real world, so the 

expressing of the crisp coefficients, in mathematical 

programming problems, is impossible. The theory of the 

grey systems has been used to screen uncertainty and 

currently it is used for decision-making, forecast 

modelling, control, and appraisal [45-49].   

In order to world population grows and developing 

countries, the electric energy became one of the most 

environmental economic energy resources in the world. 

The electric energy, in any one location, can be 

generated by the fossil fuelled energy plants which are 

plentiful on the earth [50,51]. The aim for the generation 

of the economic electric energy dispatch [ 52, 53] is the 

scheduling for the output units of the generating, such 

that the load demand is satisfied at minimum pollutant 

emissions [54] and minimum operating cost, while 

satisfying all system constraints. Thus, the 

environmental economic energy dispatch (EEED) 

problem can be handled as a Multiobjective optimization 

problem with multiple conflicting objectives [55, 56]. 

In this work, a new framing is sophisticated to 

address with multiobjective integer linear fractional 

programming problem that have grey parameters 

(GMOILFP) in the right-hand side of the constraints. 

The problem is formulated and the method with the 

proposed solution algorithm to solve (GMOILFP) is 

introduced. The positioned programming [57,58] is used 

to deal with the grey parameters in the right-side of the 

constraints. Gomory's cutting plane method [59] is 

considered, therefore, an equivalent grey multi-objective 

linear fractional programming problem (GMOLFP) is 

formulated. The proposed method applied 1st order 

Taylor series polynomial [60,61] to obtain the 

polynomial objective function that equivalent to the 

fractional objective function. The nonnegative weighted 

sum [62] is used and the multiple objective linear 

programming problem (GMOLPP) with grey is reduced 

to a single-objective linear programming problem with 

grey that could be solved [63]. The paper is divided into 

7 sections. Section 2 contains some basic definitions for 

the theory of grey systems. Section 3 focused on              

a definition of multiobjective integer linear fractional 

programming problem that have grey parameters 

(GMOILFP) in the right-hand side of the constraints. 

The proposed approach is presented in Section 4. An 

illustrative example is solved by using the proposed 

procedure in Section 5. A special case study for handling 

the environmental economic energy dispatch problem is 

given in section 6. Finally, conclusions are presented in 

section 7. 

2. THEORY OF GREY SYSTEMS 

The information in the theory of the grey systems is 

distributed into three types, which are totally known, 

incomplete and completely uncertain information that 

are denoted by white, grey and black respectively [64]. 

The basic concepts for the theory of grey systems are the 

interval grey numbers.  
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Definition 1: (Interval grey number 𝑎(⨂)) 

𝑎(⨂) ∈ [𝑎, 𝑎], 𝑎 < 𝑎  is called an interval grey number, 

where 𝑎and 𝑎 are the upper and lower limits. It has an 

unknown exact value, but its upper and lower limits are 

defined [65,66]. It has just singular number in that interval   

[𝑎, 𝑎], which differ to the meaning of the interval value 

but the arithmetic of both are the same [67].   

Definition 2: (The length of interval grey number  𝐿 (𝑎(⨂))  

Supposing that interval grey number𝑎(⨂) has the upper 

limit of 𝑎 and the lower limit of 𝑎, the length of 𝑎(⨂) 

interval grey number is defined as the following 

Equation [68].  

L(𝑎(⨂)) =  𝑎 − 𝑎 

Definition 3: (The “kernel” of interval grey number𝑎̂(⨂)) 

 Suppose an interval grey number𝑎(⨂),𝑎 < 𝑎, 

then𝑎̂(⨂) = 0.5(𝑎 + 𝑎) is called the “kernel” of grey 

number 𝑎(⨂) .     

Definition 4: (White number 𝑎(⨂) = 𝑎  ).  

The white number  𝑎(⨂) = 𝑎 is an interval grey 

number𝑎(⨂),𝑎 < 𝑎 when 𝑎 = 𝑎 = 𝑎 .     

Definition 5: (The degree of greyness) 

The degree of greyness of 𝑎(⨂)is calculated as in the 

following equation. If Ω represents the background of 

grey numbers, while μ represents the measurement of 

grey numbers [69, 70].   

𝑔0(𝑎(⨂)) = μ(𝑎(⨂)) /μ (Ω) 

3. PROBLEM FORMULATION 

The basic definition for the problem of multiobjective 

integer linear fractional programming that have grey 

numbers (GMOILFP) in the right-hand side constraints 

is shown here. The problem formulation is stated as the 

below statements 

max (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥))          (3.a) 

Subject to 

𝑥 ∈ 𝑀where, 𝑀 =  {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏(⨂), 𝑥 ≥

0 and integer}  (3.1b) 

where          𝑓𝑖(𝑥) =
𝑐𝑖

𝑇𝑥+𝛼𝑖

𝑑𝑖
𝑇𝑥+𝛾𝑖

      for i = 1, 2, …,k         (3.1c)    

In addition, 𝑐𝑖 𝑎𝑛𝑑 𝑑𝑖are n-vectors, and 𝛼𝑖 𝑎𝑛𝑑 𝛾𝑖are 

scalar constants, A is an (𝑚 × 𝑛) matrix, x is an n-vector 

of the decision variables, 𝑏(⨂) is an n-vector of grey 

constraints right hand side for resources, and 𝑑𝑖
𝑇𝑥 + 𝛾𝑖 >

0 for all 𝑥 ∈ 𝑀. 

The n-vector of grey right hand side constraints for 

resources 𝑏(⨂) were given [58] and could be written as: 

         𝑏(⨂) = [𝑏1(⨂), 𝑏2(⨂), … , 𝑏𝑚(⨂)]𝑇             (3.2) 

where 𝑏𝑖(⨂) are the interval grey numbers and 

            𝑏𝑖(⨂) ∈ [𝑏𝑖 , 𝑏𝑖] , 𝑏𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑚        (3.3) 

4. THE PROPOSED ALGORITHM FOR SOLVING 

PROBLEM (GMOILFP) 

In an earlier work, the solution algorithm to the 

problem of multiobjective integer linear fractional 

programming (MOILFPP) was presented [71]. The 1st 

order Taylor series polynomial was applied, and then the 

polynomial objective function that is equivalent to the 

fractional objective function was obtained. Then, the 

nonnegative weighted sum method was used and the 

multiobjective integer linear programming problem 

(MOILPP) was reduced to a single-objective problem. 

Thus, an optimal integer solution has been be found via 

the branch and bound method [72]. 

In this section, we suggest a proposed method for 

solving problem (GMOILFP) with grey numbers in the 

right hand -side constraints. In the first step the 

positioned programming should be used to deal with the 

grey parameters in the right-side of the constraints. Then 

by using Gomory's cutting plane method, an equivalent 

grey multi-objective linear fractional programming 

problem (GMOLFP) is formulated. The proposed 

method applied 1st order Taylor series polynomial to 

obtain the polynomial objective function that equivalent 

to the fractional objective function. After that, the 

nonnegative weighted sum is used and the multiple 

objective linear programming problem (GMOLPP) with 

grey is reduced to a single-objective linear programming 

problem that could be solved.  

Definition 6: (White values of grey numbers) 

The white values of grey numbers were considered and 

given by  

   𝑏̃𝑖(⨂) =  𝛽𝑖𝑏𝑖 + (1 − 𝛽𝑖)𝑏𝑖   ;  𝑖 = 1,2, … , 𝑚      (4.1) 

Such that 𝛽𝑖 is the positioned coefficients of the 

constraint vector for resources. The coefficient 𝛽𝑖 reflects 

market supplies of the ith resource. Where low and high 

𝛽𝑖express short and enough supplies respectively. Such 
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that  0 ≤ 𝛽𝑖 ≤ 1 and  𝑖  𝑡𝑎𝑘𝑒 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 1, 2, … , 𝑚. And 

𝑏̃𝑖(⨂) are the whitened values of the vector of 

constraints for resources.  

Then, the positioned grey multiobjective integer linear 

fractional programming (GMOILFP) is formulated as:  

  Max (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥))                          (4.2a) 

                      Subject to  

     𝐴𝑋 ≤ 𝑏̃(⨂), 𝑋 ≥ 0and integer                      (4.2b)    

Now, by using (Eq. 4.1) the problem (GMOILFP) (4.2 a) 

- (4.2b) can be rewritten in the following:  

                     Max 𝑓1(𝑥) =
𝑐1

𝑇𝑥+𝛼1

𝑑1
𝑇𝑥+𝛾1

 

                     Max 𝑓2(𝑥) =
𝑐2

𝑇𝑥+𝛼2

𝑑2
𝑇𝑥+𝛾2

                    (4.3a) 

                                                                                         ⋮  

                    Max 𝑓𝑘(𝑥) =
𝑐𝑘

𝑇𝑥+𝛼𝑘

𝑑𝑘
𝑇𝑥+𝛾𝑘

 

                    Subject to 

𝑥 ∈ 𝑀    where ,  𝑀 =  {𝑥 ∈ 𝑅𝑛|∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 ≤

𝑏̃𝑖(⨂), (𝑖 = 1, … , 𝑚), 𝑥𝑗 ≥ 0 and integer}         (4.3b) 

As was mentioned [73] that the cutting-plane method 

was used, and then the equivalent (GMOLFP) can be 

rewritten in the following form: 

                     Max 𝑓1(𝑥) =
𝑐1

𝑇𝑥+𝛼1

𝑑1
𝑇𝑥+𝛾1

  

                     Max 𝑓2(𝑥) =
𝑐2

𝑇𝑥+𝛼2

𝑑2
𝑇𝑥+𝛾2

                   (4.4a) 

⋮ 

                    Max 𝑓𝑘(𝑥) =
𝑐𝑘

𝑇𝑥+𝛼𝑘

𝑑𝑘
𝑇𝑥+𝛾𝑘

 

             Subject to 

𝑥 ∈ [𝑀]    where,  𝑀 =  {𝑥 ∈ 𝑅𝑛|∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 ≤

𝑏̃𝑖(⨂), (𝑖 = 1, … , 𝑚), 𝑥𝑗 ≥ 0 and integer}     (4.4b) 

Where [𝑀] is the convex hull of the feasible region M. If 

the problem (GMOLFP) (4.4) is solved for each 

objective function one by one then the suitable values of 

the variables are resulted 

At that point, the 1st order Taylor series is used then, 

the objective functions in (4.4a) are transformed to the 

polynomial objective functions that equivalent to the 

fractional objective functions. After that, the nonnegative 

weighted sum is used and the multiple objective linear 

programming problem (GMOLPP) with grey is reduced 

to a single-objective linear programming problem with 

grey that could be solved [58,63].  

The proposed Solution Algorithm: 

The position programming [58], Gomory's cutting 

plane method [59], the algorithm that have been used 

[73] to solve (MOLFP) and the method that have been 

used [63] to solve linear programming with grey 

parameters are applied here. The steps of the proposed 

approach to solve (GMOILFP) are described in the 

following manner: 

1) The positioned programming is used to deal with 

the grey parameters in the right-side of the 

constraints. Gomory's cutting plane method is 

considered, therefore, an equivalent grey multi-

objective linear fractional programming problem 

(GMOLFP) is formulated as follows :                               

Max (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)) s.t 𝑥 ∈ [𝑀] where, 

𝑀 =  {𝑥 ∈ 𝑅𝑛|∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗 ≤  𝛽𝑖𝑏𝑖 + (1 −

 𝛽𝑖)𝑏𝑖 , (𝑖 = 1, … , 𝑚), 𝑥𝑗 ≥ 0 and integer}      (4.5) 

2) Determine 𝑥𝑟
∗ =  (𝑥𝑟1

∗ , … , 𝑥𝑟𝑛
∗ )  which is value 

when the rth objective function, 𝑓𝑟(𝑥), ( 𝑟 =

1,2, … , 𝑘) , are maximized where n is number of the 

variables. 

3) Transform the objective functions 𝑓𝑟(𝑥), ( 𝑟 =

1,2, … , 𝑘) by using the following 1st order Taylor 

series to polynomial functions in the following that 

was stated [60,61] as: 

𝑓𝑟(𝑥) ≃ 𝑓𝑟(𝑥)̅̅ ̅̅ ̅̅ ̅ = 𝑓𝑟(𝑥𝑟
∗) + ∑ (𝑥𝑗

𝑛
𝑗=1 −

𝑥𝑟𝑗
∗ )

𝜕𝑓𝑟(𝑥𝑟
∗)

𝜕𝑥𝑗
, ( 𝑟 = 1,2, … , 𝑘)                   (4.6) 

4) Use the nonnegative weighted sum method [62] to 

convert the multiobjective linear programming 

problems with grey parameters in the right hand 

side of the constraints to single objective. 

5) So the problem (4.4a) and (4.4b) will become    

Max ∑ 𝑤𝑟𝑓𝑟(𝑥)𝑘
𝑟=1   s.t 𝑥 ∈ [𝑀] where, , 𝑀 =

 {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏(⨂), 𝑥 ≥ 0 and integer},  Which 

is a single-objective linear programming problem 

with grey parameter in the right side of the 

constraints that could be solved. 

6) Find the satisfactory solution by using any 

applicable software. 

7) While changing the weights, a new optimal solution 

appeared.    
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5.  EXAMPLE  

Now, an example of (GMOILFP) with grey numbers 

in the right- hand side constraints is provided then solved 

using the proposed algorithm. The problem to be solved 

here is the multiobjective integer linear fractional 

programming problem that has grey parameters in the 

right side of the constraints (GMOILFP): 

(GMOILFP):        𝑀𝑎𝑥 𝑓1(𝑥1, 𝑥2) = (
2𝑥1+3𝑥2

𝑥1+4𝑥2+6
) 

                            𝑀𝑎𝑥 𝑓2(𝑥1, 𝑥2) = (
3𝑥1+4𝑥2

6𝑥1+4𝑥2+3
) 

                           𝑀𝑎𝑥 𝑓3(𝑥1, 𝑥2) = (−𝑥1 − 𝑥2) 

                          Subject to  

2𝑥1 − 𝑥2 ≤ [8,11] 

−𝑥1 + 3𝑥2 ≤ [10,13] 

                                             𝑥1, 𝑥2 ≥ 0      and integer. 

According to the proposed solution algorithm by 

conducting the following steps: 

With the help of the position and the Gomory cutting-

plane method, an equivalent problem of multiobjective 

linear fractional programming that have grey numbers 

(GMOLFP) in the right-hand side constraints 

corresponding to the problem (GMOILFP) can be 

formulated as follows: 

(GMOLFP):               𝑀𝑎𝑥 𝑓1(𝑥1, 𝑥2) = (
2𝑥1+3𝑥2

𝑥1+4𝑥2+6
) 

                             𝑀𝑎𝑥 𝑓2(𝑥1, 𝑥2) = (
3𝑥1+4𝑥2

6𝑥1+4𝑥2+3
) 

                                    𝑀𝑎𝑥 𝑓3(𝑥1, 𝑥2) = (−𝑥1 − 𝑥2) 

                         Subject to  

2𝑥1 − 𝑥2    ≤  11𝛽1 + 8(1 − 𝛽1) 

−𝑥1 + 3𝑥2 ≤  13𝛽2 + 10(1 − 𝛽2) 

                                                                              𝑥1 ≤ 4      

                                                                              𝑥2 ≤ 3 

0 ≤ 𝛽1 ≤ 1 

                                           0 ≤ 𝛽2 ≤ 1 

                                                                     𝑥1, 𝑥2 ≥ 0 . 

If the problem (GMOLFP) is solved for each 

objective function one by one, then𝑓1(4,0) = 0.8, 

𝑓2(0,3) = 0.8, 𝑓3(0,0) = 0. Then the 1st order Taylor 

series is used to transform the objective functions into 

polynomial functions as following: 

    𝑓1(𝑥1, 𝑥2) ≃ 𝑓1̅(𝑥1, 𝑥2) = 0.12𝑥1 − 0.02𝑥2 + 0.32 

   𝑓2(𝑥1, 𝑥2) ≃ 𝑓2̅(𝑥1, 𝑥2) = −0.12𝑥1 + 0.053𝑥2 + 0 

𝑓3(𝑥1, 𝑥2) ≃ 𝑓3̅(𝑥1, 𝑥2) = −𝑥1 − 𝑥2 

If The weighted sum method is used with 𝑤1 =

0.6, 𝑤2 = 0.4 𝑎𝑛𝑑 𝑤3 = 0.0  , 𝑤1 + 𝑤2 + 𝑤3 = 1, then 

the problem of multiobjective linear fractional 

programming that have grey numbers (GMOLFP) in the 

right-hand side constraints can be rewritten as a grey 

single objective linear problem as follows: 

(GLP): 

 𝑀𝑎𝑥 [0.6𝑓1̅(𝑥1, 𝑥2) + 0.4𝑓2̅(𝑥1, 𝑥2) + 0.0𝑓3̅(𝑥1, 𝑥2)]   =

0.024 [𝑥1, 𝑥1] + 0.0092 [𝑥2, 𝑥2] + 0.448 

                     Subject to  

2 [𝑥1, 𝑥1] − [𝑥2, 𝑥2]    ≤  [8,11] 

− [𝑥1, 𝑥1] + 3 [𝑥2, 𝑥2] ≤ [10,13] 

                                                         [𝑥1, 𝑥1] ≤ [4, 4] 

                                                         [𝑥2, 𝑥2] ≤ [3, 3] ≤ 

                                                         [𝑥1, 𝑥1] , [𝑥2, 𝑥2] ≥ 0. 

Therefore, the solution can be obtained as [𝑥1, 𝑥1] =

 [3.9587, 4] 𝑎𝑛𝑑 [𝑥2, 𝑥2] =  [2.9990, 3] with the 

optimum objective value functions: 

𝑓1
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2] ) = [0.768836, 0.77432167],    

𝑓2
∗ ([𝑥1, 𝑥1]  , [𝑥2, 𝑥2]) = [0.6121051282, 0.6193836101]    

, 𝑓3
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2]) = [−7, −6.9577],     

And the crisp solution can be obtained as (𝑥1
∗, 𝑥2

∗)=(4,3) 

with the optimum objective value functions: 

𝑓1
∗(𝑥1

∗, 𝑥2
∗) = 0.74,    𝑓2

∗(𝑥1
∗, 𝑥2

∗) = 0.319, 𝑓3
∗(𝑥1

∗, 𝑥2
∗) = −7 

Now, changing the weights with the values 𝑤1 =

0.5, 𝑤2 = 0.5 𝑎𝑛𝑑 𝑤3 = 0.0, the solution can be 

obtained as [𝑥1, 𝑥1] =  [0.0, 0.04128] 𝑎𝑛𝑑 [𝑥2, 𝑥2] =

 [2.9990, 3] with the optimum objective value functions:  

𝑓1
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2] ) = [0.4986896717, 0.504698822],    

𝑓2
∗ ([𝑥1, 𝑥1]  , [𝑥2, 𝑥2]) = [0.7867426389, 0.8084715924]    

, 𝑓3
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2]) = [−3.04128, −2.999],     
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And the crisp solution can be obtained as (𝑥1
∗, 𝑥2

∗) =(0,3) 

with the optimum objective value functions:  

𝑓1
∗(𝑥1

∗, 𝑥2
∗) = 0.26,    𝑓2

∗(𝑥1
∗, 𝑥2

∗) = 0.799, 𝑓3
∗(𝑥1

∗, 𝑥2
∗) = −3 

Again, choosing the weights with the values 𝑤1 =

0.7, 𝑤2 = 0.25 𝑎𝑛𝑑 𝑤3 = 0.05, the solution can be 

obtained as [𝑥1, 𝑥1] =  [3.958717, 4] 𝑎𝑛𝑑 [𝑥2, 𝑥2] =

 [0.0, 0.001] with the optimum objective value 

functions: 

𝑓1
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2] ) = [0.79142682939, 0.8036175744], 

𝑓2
∗ ([𝑥1, 𝑥1]  , [𝑥2, 𝑥2]) = [0.43979229, 0.4487090494]    , 

𝑓3
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2]) = [−4.001, −3.958717],   

And the crisp solution can be obtained as (𝑥1
∗, 𝑥2

∗) =(4,0) 

with the optimum objective value functions: 

𝑓1
∗(𝑥1

∗, 𝑥2
∗) = 0.8,    𝑓2

∗(𝑥1
∗, 𝑥2

∗) = 0.16, 𝑓3
∗(𝑥1

∗, 𝑥2
∗) = −4 

And, also choosing the weights with the values 𝑤1 =

0.4, 𝑤2 = 0.3 𝑎𝑛𝑑 𝑤3 = 0.3, the solution can be 

obtained as [𝑥1, 𝑥1] =  [0.0,0.04128] 𝑎𝑛𝑑 [𝑥2, 𝑥2] =

 [0.0, 0.001]  with the optimum objective value 

functions: 

𝑓1
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2] ) = [0.0, 0.01426],    

𝑓2
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2]) = [0.0, 0.042613]    , 

𝑓3
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2]) = [−0.04228, 0.0],     

And the crisp solution can be obtained as (𝑥1
∗, 𝑥2

∗) =(0,0) 

with the optimum objective value functions: 

𝑓1
∗(𝑥1

∗, 𝑥2
∗) = 0.32,    𝑓2

∗(𝑥1
∗, 𝑥2

∗) = 0.64, 𝑓3
∗(𝑥1

∗, 𝑥2
∗) = 0. 

Again, choosing the weights with the values  𝑤1 =

0.8, 𝑤2 = 0.2 𝑎𝑛𝑑 𝑤3 = 0.0, the solution can be 

obtained as [𝑥1, 𝑥1] =  [3.999, 4] 𝑎𝑛𝑑 [𝑥2, 𝑥2] =

 [0.0, 0.1061] with the optimum objective value 

functions: 

𝑓1
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2] ) = [0.7672384022, 0.8319131913], 

𝑓2
∗ ([𝑥1, 𝑥1]  , [𝑥2, 𝑥2]) = [0.4374571549, 0.4602311454]    

, 𝑓3
∗ ([𝑥1, 𝑥1] , [𝑥2, 𝑥2]) = [−4.1061, −3.999],   

6. A CASE STUDY FOR THE ENVIRONMENTAL 

ECONOMIC ENERGY DISPATCH PROBLEM 

6.1 A survey of model formulation of the environmental 

economic energy dispatch [74].  

The main goal of the problem of environmental 

economic energy dispatch (EEED) is to schedule 

committed generators to meet the load required to 

minimize the total pollution emissions and fuel cost of 

the thermal energy system. To achieve an environmental 

economic energy dispatch scheme, Chen et al [75] 

considered a thermal energy dispatch system that include 

N fossil fuelled energy plants. In order to simply, the N 

fossil fuelled power plants were referred to by 

generators. The total fuel cost of the thermal energy 

system (TC), in dollar per hour, was expressed by [76]  

𝑇𝑐 = ∑ (𝑎𝑖 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖
2)𝑁

𝑖=1                     (6.1) 

The total pollutant emissions (TM) caused by the fossil 

fuelled generators, in ton per hour, was given by [77]  

TM = ∑  [0.01(𝛼𝑖 + 𝛽𝑖𝑥𝑖 + 𝜈𝑖𝑥𝑖
2) + 𝜉𝑖 exp(𝜆𝑖𝑥𝑖)]𝑁

𝑖=1   (6.2)  

Such that 𝑁 was the number of generators, 

𝑎𝑖 , 𝑏𝑖  𝑎𝑛𝑑 𝑐𝑖  were the coefficients for the cost of the ith 

generator, and so, 𝛼𝑖 , 𝛽𝑖 , 𝜈𝑖 , 𝜉𝑖 and 𝜆𝑖 were the 

coefficients for the pollutant emissions of the ith 

generator’s emission characteristics.  𝑥𝑖 was the ith 

component of the vector x and it was the energy output 

of the ith generator, then the vector x could be written as  

𝑥 = [𝑥1,𝑥2, … 𝑥𝑁]𝑇                                (6.3) 

The system constraints, that were considered in that 

study, were only two constrains. The first one could be 

written as an equation to describe the balance of the 

energy and the second one could be written as an 

inequality to describe the capacity of the generation. At 

the first, the equality constraint of energy balance 

demonstrated that the total energy was given as the 

following 

∑ 𝑥𝑖 =  𝐸𝑑
𝑁
𝑖=1 + 𝐸𝑙                              (6.4) 

Such that 𝐸𝑑 and 𝐸𝑙 were the total demand and the 

energy transmission loss in the transmission lines, 

respectively. 𝐸𝑑 was expressed by number mentioned to 

the total demand and 𝐸𝑙 was expressed as the following 

𝐸𝑙 = ∑ ∑ 𝑥𝑖Β𝑖𝑗
𝑁
𝑗=1 𝑥𝑗 + ∑ Β𝑜𝑖

𝑁
𝑖=1 𝑥𝑖 +  Β00

𝑁
𝑖=1       (6.5) 

Such that Β𝑖𝑗 , Β𝑜𝑖 , 𝑎𝑛𝑑 Β00,  were Kron’s loss 

coefficients of transmission lines [78]. In the second, the 
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inequality constraint of Generation capacity indicated 

that the energy output of ith generator was limited as the 

following: 

𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥           ∀𝑖                  (6.6) 

Such that the minimum and maximum values of the 

energy output of the ith generator were denoted by 

𝑥𝑖
𝑚𝑖𝑛and 𝑥𝑖

𝑚𝑎𝑥, respectively. 

Table (1): The Definitions of the used symbols 

The symbols Definitions 

N The number of generators 

𝑎𝑖 , 𝑏𝑖  𝑎𝑛𝑑 𝑐𝑖  The coefficients for the cost of the ith 

generator 

 𝛼𝑖 , 𝛽𝑖 , 𝜈𝑖 , 𝜉𝑖 and 𝜆𝑖 The coefficients for the pollutant 

emissions of the ith generator’s 

emission characteristics 

𝑥𝑖 The ith component of the vector x and 

it is the energy output of the ith 

generator 

𝑥 = [𝑥1,𝑥2, … 𝑥𝑁]𝑇 The vector x 

𝐸𝑑 The total demand 

𝐸𝑙  The energy transmission loss in the 

transmission lines 

Β𝑖𝑗 , Β𝑜𝑖 , 𝑎𝑛𝑑 Β00,   Kron’s loss coefficients of 

transmission lines 

𝑥𝑖
𝑚𝑖𝑛and 𝑥𝑖

𝑚𝑎𝑥 The minimum and maximum values 

of the energy output of the ith 

generator 

 

6.2 The model formulation for a special case study 

Problem 

In the current section, the model formulation for a 

special case study problem is presented. In equations 

(6.1), (6.2) and (6.5), which were given in the last 

section, suppose that  𝑐𝑖, 𝜈𝑖 , 𝜉𝑖 , 𝜆𝑖, and Β𝑖𝑗 are considered 

equal zero in this special case study. This consideration 

can be written as the following:  

𝑐𝑖 =  𝜈𝑖  =   𝜆𝑖 =  Β𝑖𝑗= 0                         (6.7) 

Therefore, the mentioned equations will become as the 

following: 

𝑇𝑐 = ∑ (𝑎𝑖 + 𝑏𝑖𝑥𝑖)𝑁
𝑖=1                                 (6.8) 

TM = ∑  [0.01(𝛼𝑖 + 𝛽𝑖𝑥𝑖)]𝑁
𝑖=1                   (6.9) 

𝐸𝑙 = ∑ Β𝑜𝑖
𝑁
𝑖=1 𝑥𝑖 + Β00                           (6.10) 

In case the right hand side of the constrains include grey 

interval parameters, then the mathematical model for the 

special case study will be considered as (GMOLFP) and the 

problem will be formulated as follows:  

Min 𝑍1 =  
TM

𝑇𝑐
=

∑  [0.01(𝛼𝑖+𝛽𝑖𝑥)]𝑁
𝑖=1

∑ (𝑎𝑖+𝑏𝑖𝑥)𝑁
𝑖=1

                   (6.11) 

Min 𝑍2 =  𝑇𝑐 = ∑ (𝑎𝑖 + 𝑏𝑖𝑥)𝑁
𝑖=1                      (6.12) 

Min 𝑍3 =  TM =  ∑  [0.01(𝛼𝑖 + 𝛽𝑖𝑥)]𝑁
𝑖=1        (6.13) 

Subject to 

∑ 𝑥𝑖 = 𝐸𝑑
𝑁
𝑖=1 + ∑ Β𝑜𝑖

𝑁
𝑖=1 𝑥𝑖 + Β00                (6.14) 

𝑥𝑖
𝑚𝑖𝑛(⨂) ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥 (⨂)    ∀𝑖      or                

[𝑥𝑖
𝑚𝑖𝑛, 𝑥𝑖

𝑚𝑖𝑛] ≤ 𝑥𝑖 ≤ [𝑥𝑖
𝑚𝑎𝑥, 𝑥𝑖

𝑚𝑎𝑥]     ∀𝑖        (6.15) 

where the minimum and maximum grey interval values 

of the energy output of the ith generator are denoted by 

𝑥𝑖
𝑚𝑖𝑛(⨂)and 𝑥𝑖

𝑚𝑎𝑥 (⨂), respectively. The position 

programming and the 1st order Taylor series polynomial 

is applied, and then the polynomial objective functions 

that is equivalent to the objective functions of the 

problem are obtained. So, the (GMOLFP) is converted 

into (GMOLP).  Then, the non-negative weighted sum 

method is used and the multiobjective linear 

programming problem (GMOLP) is reduced to a single-

objective problem. After that the position linear 

programming is applied thus, an optimal solution has 

been be found.  

6.3 Example 

The mathematical model for the special case study, 

that is given in equations (6.11) to (6.15), is applied here 

for the standard IEEE 30 bus six generators test system, 

this system has six generators connected through           

41 tranmission lines and supplies power for 21 load 

buses [79], for more information see [75]. The 

nonnegative weighted for the three objective functions 

𝑍1, 𝑍2 𝑎𝑛𝑑 𝑍3 are 0.3, 0.3 and 0.4 respectively. The 

minimum and maximum grey interval values of the 

energy output of the ith generator are shown in Table 3. 

Using equation (6.7), the total system demand is       

𝐸𝑑 = 2.834 𝑝. 𝑢 that was given in [75], and the 

coefficients of the system that were reported in [53,75]. 

The coefficients of cost, pollutant emissions and the 

Kron’s transmission, that were given in [75], are 

presented in Table 2 and 4.  
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Table (2): The coefficients of the cost and pollutant emissions of the ith generators 

           𝑥1                         𝑥2                          𝑥3                       𝑥4                      𝑥5                   𝑥6 

Cost 

a        10                         10                           20                      10                      20                   10 

b        200                       150                         180                    100                   180                150  

Emission 

𝛼      4.091                      2.543                          4.258                    5.326                   4.258            6 .131 

𝛽      -5.554                   - 6.047                       -5.094                 - 3.550                  - 5.094           -  5.555 

 

 
Table (3): The minimum and maximum grey interval values of the energy output of the ith generator (in p.u) 

                     𝑥1                          𝑥2                     𝑥3                     𝑥4                             𝑥5                   𝑥6 

 

𝑥𝑖
𝑚𝑖𝑛      [0.04,0.06]    [0.045,0.055]       [0.045,0.05]     [0.0455,0.0505]     [0.046,0.062]     [0.044,0.061]   

            

𝑥𝑖
𝑚𝑎𝑥      [0.45,0.55]        [0.54,0.7]             [0.93,1.1]           [1.12,1.3]             [0.91,1.1]           [0.56,0.7] 

 

 
Table (4): The coefficients of Kron’s loss transmission 

                1                  2                            3                        4                           5                      6  

𝐵𝑜𝑖        -0.0107          0.006                  -0.0017               0.0009                 0.0002             0.003 

𝐵𝑜𝑜       0.000986                                       

 
Table (5): The solution of the mathematical model for the special case study.  

 

The energy outputs of the generators (in p.u)                                     𝑥1                                 0.04                                               

                                                                                                            𝑥2                               0.7 

                                                                                                            𝑥3                                0.05594183 

                                                                                                            𝑥4                                 1.3 

                                                                                                            𝑥5                                 0.05 

                                                                                                           𝑥6                                 0.7 

𝑍1Total emission/ Total fuel-cost (ton/$)                                                                             0.000286408 

𝑍2Total fuel-cost ($/h)                                                                                                          446.3495294 

𝑍3Total environmental-emission (ton/h)                                                                               0.127838076 
 

 

The main goal of this problem is to schedule 

committed generators to meet the load required to 

minimize the pollution emissions and fuel cost. The 

model formulation for a special case study problem is 

presented, the mathematical model will be considered as 

(GMOLFP) and the problem 6.11-6.15 will be  

Min 𝑍1 =  
TM

𝑇𝑐
=

 [0.01(26.607−5.54𝑥1−6.047𝑥2−5.094𝑥3−3.550𝑥4−5.094𝑥5−5.555𝑥6)]

(80+200𝑥1+150𝑥2+180𝑥3+100𝑥4+180𝑥5+150𝑥6)
     

                                                                                        (6.16) 

Min 𝑍2 =  𝑇𝑐 =  (80 + 200𝑥1 + 150𝑥2 + 180𝑥3 +

100𝑥4 + 180𝑥5 + 150𝑥6)                                         (6.17) 

Min 𝑍3 =  TM =   [0.01(26.607 − 5.54𝑥1 − 6.047𝑥2 −

5.094𝑥3 − 3.550𝑥4 − 5.094𝑥5 − 5.555𝑥6)]  (6.18)                                                                                                 

Subject to 

1.0107 𝑥1 + 0.994𝑥2 + 1.0017𝑥3 + 0.9991𝑥4 +

0.9998𝑥5 + 0.997𝑥6 = 2.83498573                    (6.19) 

[0.04,0.06]     ≤ 𝑥1 ≤ [0.45,0.55]                         (6.20) 

[0.045,0.055]     ≤ 𝑥2 ≤ [0.54,0.7]                       (6.21) 

[0.045,0.05]      ≤ 𝑥3 ≤ [0.93,1.1]                        (6.22) 

[0.0455,0.0505]     ≤ 𝑥4 ≤ [1.12,1.3]                  (6.23) 

[0.046,0.062]     ≤ 𝑥5 ≤ [0.91,1.1]                      (6.24) 

[0.044,0.061]     ≤ 𝑥6 ≤ [0.56,0.7]                      (6.25) 
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The mathematical model for the special case study is 

analysed and solved according to the proposed solution 

algorithm. Therefore, the solution of the mathematical 

model for the special case study that applied here for the 

standard IEEE 30 bus six generators test system is 

presented in Table 5. 

7. CONCLUSION  

In this paper, we proposed an algorithm for solving 

GMOILGP problem with grey interval coefficients using 

positioned programming and Taylor series polynomials. 

In this method, we modified the shortcomings of              

a solving method, in which some variables solutions 

have the interval with lower bounds greater than their 

upper bounds. In addition, in our method, one can 

determine different weights for each objective function. 

To deal with the grey parameters in the right-side of the 

constraints the positioned programming should be used. 

An equivalent grey multi-objective linear fractional 

programming problem (GMOLFP) is formulated using 

Gomory's cutting plane method. The Taylor series is 

applied to convert the fractional functions into 

polynomials. In the proposed approach a white value of 

each grey parameter is determined, Taylor series is 

applied and the functions are unified by using the 

nonnegative weighted sum method. Thus, the problem is 

reduced to a single linear objective with grey parameter 

in the right side of the constrains. Numerical example is 

provided to demonstrate the efficiency and feasibility of 

the proposed approach. According to the mentioned 

examples, in the current work, the proposed method is 

both simple in use and suitable for solving different 

problems. The mathematical model for the special case 

study is applied here for the standard IEEE 30-bus test 

system at our special case study. The main goal of this 

problem is to schedule committed generators to meet the 

load required to minimize the pollution emissions and 

fuel cost. The model formulation for a special case study 

problem is presented. In case the right hand side of the 

constrains include grey interval parameters, then the 

mathematical model is considered as (GMOLFP) and the 

problem is solved according to the proposed solution 

algorithm. 

It should be noted that the decision variable of the 

solution of (GMOILFP) with the grey parameters in the 

right- hand side of the constraints is interval grey 

number. It is nearly as the same solution of (MOILFP) if 

the interval grey number contains the crisp number. 

When the interval grey number not includes the crisp 

number then the deferent solution is resulted, and it is 

interval grey number. 

There are many other points of research in the field of 

grey multi-objective optimization. Some of this research 

work can be summarized as follows: 

(i)An algorithm is needed to solve large-scale grey 

multi-objective integer linear and integer linear 

fractional programming problems. 

(ii)An algorithm is required to deal with multilevel 

multi-objective integer linear and integer linear 

fractional programming problems. 

(iii)It is a promising point of research to study some 

real-life applications in nature of grey system. 
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