

Journal of International Society for Science and Engineering

Vol. 5, No. 1, 08-14 (2023)

--

--
www.jisse.journals.ekb.eg www.isse.org.eg 8

JISSE

ISSN: 2636-4425 JISSE

E-ISSN:2682-3438

FPGA Design and Implementation for Pseudorandom Number Generator based square root (SR-PRNG)

Ghada Elsayed
1,*

, Somaya Kayed
2

1 Assistant Professor, Electrical Department, MTI University, Egypt

2 Associate Professor, Electrical Engineering Department, Obour High Institute for Engineering and Technology, Egypt

A R T I C L E I N F O A B S T R A C T

Article history:

Received:16-01-2023

Accepted:10-03-2023

Online:01-03-2023

 Randomness has been used as a seed for cryptographic algorithms and wireless communication

protocols, and today, it is used as a tool or a feature in data preparation that maps input data to

output data to make predictions in machine learning. Randomness importance is our research

motivation. We introduce an efficient FPGA Design and Implementation for a mathematical

calculation of the square root of irrational numbers. We adopted this Square Root Pseudo-Random

Number Generator (SR-PRNG). This SR-PRNG is already designed, simulated, and tested for

randomness. The advantage of FPGA implementation is to use it as a module in a modular design

either in cryptographic applications or machine learning applications. We propose First Order

Recursive Generation and Second-order Recurrence Generation design and FPGA implementation.

We compare their utilizations for the target FPGA. The target FPGA is Xilinx Spartan 6 XC6SLX4-

2CPG196. MATLAB HDL Coder is used for the design. The Maximum frequency is 244.499MHz

for the two designs. The utilization of the second-order design versus the first-order design is 262

vs. 169 in the Number of Slice Registers, 368 vs. 207 in the Number of Slice LUTs, 227 vs. 133 in

the Number of fully used LUT-FF pairs, 2 vs. 1 in the Number of Block RAM/FIFO, however, they

are equal in the Number of bonded IOBs and the Number of BUFGs.

Keywords:

FPGA

MATLAB HDL CODER

VHDL

1. Introduction

Today and tomorrow are the eras of artificial intelligence and

machine learning. One of the most important parts of success is

testing. When the machine is huge and has many Predictors

(Inputs) and consequently has huge samples (observation) it

would be very difficult to cover the whole scenario. The use of

randomness is an obligation here. In addition, PRNG (Pseudo

Random Number Generator) has been used for cryptographic

algorithms and wireless communication protocols. We already

have worked in both eras in which we need PRNG implemented

over an FPGA. We adopted the Square Root Pseudo-Random

Number Generator (SR-PRNG) algorithm. This algorithm uses

the decimal places of irrational numbers. First Order Recursive

Generation and Second-order Recurrence Generation are

expressed by equation (1) and equation (2).

xi +1=√(xi)mod 1 × 10n (1)

xi +1=√(xi+xi-1)mod 1 ×10n (2)

It takes the square root of the current n-digit number and the

first n digits in its decimal place are the next number, where, x0 is

not a perfect square number, and n is the number of digits needed

to generate each iteration. Tests show a disadvantage of the first

order equation (1). There is an absorbing state with a frequency

of 1/√10n. The second order was presented to avoid absorbing

states and periods. The overhead of the second order in the

software implementation was speed [1]. This method was

published and tested for the two basic empirical tests of statistical

randomness: the equidistribution test and the serial test [1] by the

department of mathematics Rose-Hulman institute of technology.

In section 2 we discuss the related works. Next, in section 3 we * Ghada Elsayed, Electrical Department, MTI University, Egypt, +201002337149,

ghada.farouk@eng.mti.edu.eg

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed et al. / Journal of International Society for Science and Engineering Vol. 5, No. 1, 08-14 (2023)

--
www.jisse.journals.ekb.eg www.isse.org.eg 9

present the workflow of designing FPGAs using MATLAB HDL

Coder. . In section 4 we propose the hardware design and

implementation to it. In section 5 we discuss the testing result.

Finally, we highlighted the conclusion.

2. Related Works

Many PRNGs are implemented over FPGA for example

“Reconfigurable SR-PRNG pseudo-random number generator

based on FPGA” [2]. They also adopted and implemented an

already published and tested algorithm. Their target was

XC5VLX50T FPGA which is larger than our target. Their

implementation has utilized 1.4% and 16.7% of the available

slices and DSP blocks respectively. The Maximum frequency

was 78 MHz which is much slower than ours. They didn't use

MATLAB HDL CODER. There are many ways for the PRNG,

the most famous one is by chaotic [3], [4], and [5], Elliptic curves

can be found in [6] and [7]. An example of implementing PRNG

using for design is “'FPGA Design and Implementation for

Adaptive Digital Chaotic Key Generator “[3]. They also adopted

and implemented an already published and tested algorithm. They

use the same targeted FPGA. The Maximum frequency was

15.711MHz. The area utilization was 189 slice registers, 2303

slice LUTs (lookup tables), 126 fully used LUT, 68 IOs, and 16

DSP blocks. Our utilization is smaller than their utilization for the

same target except, we use approximately double the number of

slice registers. There are many other implementations of different

PRNGs over FPGA for many applications like [8], and [9].

3. Fpga Design Using Matlab Hdl Coder

HDL Coder™ software enables the high-level design of

FPGAs, SoCs, and ASICs by generating portable, composable

Verilog® and VHDL® code from MATLAB® functions,

Simulink® models, and Stateflow® diagrams. The generated

HDL code can be used for FPGA programming, ASIC models,

and production design [10]. Its workflow is shown in Figure 1.

This paper is based on a Matlab script. Matlab HDL Coder

project uses two files; the first one is the top-level function of the

design and the second one is its test. Then the HDL CODER

converts this script to an HDL file. The HDL file is then

forwarded to the integrated FPGA synthesizer. The generation of

the HDL code from the MATLAB script requires understanding

the I/O types. This is necessary for the FPGA pins. It also

requires making all types compatible with each other. All the

used functions and libraries should be mapped into hardware.

Functions like printf and scanf are examples of not supported

functions. The Matlab HDL Coder as a tool for FPGA Design

was a subject for evaluation by many researchers. They first

recommended using it for only fast proofing of the idea. This was

the result of area utilization and speed compared to the VHDL is

not encouraging [11]. They compare the two methods, the VHDL

method versus the MATLAB HDL CODER method. The number

of Slice Registers in the VHDL path is 49% versus 8% in

MATLAB coder which is much higher because of using the

pipeline method. But the Number of Slice LUTs is 40% in VHDL

while it exceeds the maximum in MATLAB which is 410 percent.

According to timing, the Clock frequency in VHDL was a

Maximum Frequency: 120.279MHz while in MATLAB HDL

Coder Maximum Frequency: 24.353MHz. However, the latest

research has proposed an Optimization technique to dramatically,

improve that result [12]. They compared the MATLAB HDL

Coder by itself with and without the proposed optimization

technique. The Number of Slice LUTs requirements improved

from 366% to 72%. The frequency improved from 26.574MHz to

185.355MHz. They proposed a technique for optimizing loops

and introducing pipelining at the same time. Based on that

recommendation we here design and implement the generation

over the FPGA using MATLAB HDL Coder.

Figure 1: MATLAB HDL Coder Workflow [10]

In the following section, we will propose the FPGA Design from

bottom to top scripts for the first and second-order designs.

4. Fpga design and implementation of square root

calculation

 MathWorks introduces a very good script for calculating the

square root as an example for MATLAB HDL Coder [13]. HDL

Code Generation from A Non-Restoring Square Root System

Object is an example that shows how to check, generate and

verify HDL code from MATLAB® code that instantiates a non-

restoring square root system object. We start with this example as

a core of our design. Figure 2 shows the architecture of this

example. Figure 3 illustrates the Matlab script for this example

and its tester is shown in Figure 4.

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed et al. / Journal of International Society for Science and Engineering Vol. 5, No. 1, 08-14 (2023)

--
www.jisse.journals.ekb.eg www.isse.org.eg 10

[13]

Figure 2: Non-Restoring Square Root Script overall architecture

The feedback in figure 2 is implemented in the code using the

persistent keyword in figure 3. There are two outputs one is

logical. When it becomes true it means the output is ready after

certain iteration. The other is the square root output. Also, the

input has one logical. Even if it is false means that it's loading

time otherwise, it iterates and takes the feedback instead of the

initial loaded value

Figure 3: Non-Restoring Square Root Script

This function needs to be within for loop that makes the iteration.

This is illustrated in the tester code of Figure 4. The tester loop

for nsamp generates nsamp PRNG output words. Inside each

cycle of the tester loop there exist 20 times loop for iteration to

get one output PRNG word. The number 20 is achieved by an

empirical method.

Figure 4: Test for non-restoring root script

In the following section, we will propose the design by

MATLAB script to the First Order Recursive Generation code

then its tester results, and its rtl top-level view. This will be

repeated in the Second-order Recurrence Generation code.

5. Random number generator using matlab hdl coder

for fpga design res

In this section we present the First Order Recursive Generation

and Second-order Recurrence Generation consequently, we here

illustrate the code and its tester without and with storage. We

should mention here that our design is reconfigurable because

we can just change the generic values for the base number "b",

Number of shifts "nshifts", fixed point word length "nbits", and

fixed point fraction length "nfrac".

Figure 5 illustrates the code for the first order SR-PRNG

equ(1). We used the fixed-point numeric object to unify almost

all the types. Inside the condition that tests that the output is

ready; i.e. vld is true, the calculation of equ (1) is performed.

Figure 5: SR-PRNG Script for first-order design

Here we call the MathWorks example [13] and then apply

equation (1) to the example's output. The tester of this design is

shown in Figure 6, taking into consideration the type casting.

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed et al. / Journal of International Society for Science and Engineering Vol. 5, No. 1, 08-14 (2023)

--
www.jisse.journals.ekb.eg www.isse.org.eg 11

Figure 6: Test for SR-PRNG Script for first-order design

In the tester of Figure 6, we first call the rand_sqrt_1st for

loading by setting the load/Calc signal to true, then call it many

times with load/Calc be false until the vld output turn true. At

this time we take the output of the function.

 Then we want to store the output random number in

memory and plot the stored value. The script of the memory is

shown in Figure 7, the design with memory is shown in Figure 8,

the tester for that design is shown in Figure 9, the output plot is

shown in figure 10, and the top view of the design is shown in

figure 11.

Figure 7: Matlab script for memory design

To implement memory we can write the code of Figure 7. You

can find memory examples in [13].

Figure 8: SR-PRNG Script for first order design with output stored

in memory

The diffraction here is that we just add two lines for writing and

reading the memory.

Figure 9: Tester for first order SR-PRNG with memory

The output plot in figure 10 shows that the output varies

randomly. However, the randomness tests are already performed

within a thesis at the Department of Mathematics Rose-Hulman

Institute of Technology [1].

Figure 11 illustrates that for generating 32-bit PRNG and

storing up to 256 words of it. We need 80 I/O pins. 8 bits for a

memory address, 32 bits for the input non-square number, and

32 big for the output PRNG. We need also 4 input bits for the

clock, the clock reset, and the Load/Calc control signal. We need

also two output bits for indicating that the output is calculated

successfully. The area utilization of the target FPGA and the

maximum frequency are discussed in section 5.

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed et al. / Journal of International Society for Science and Engineering Vol. 5, No. 1, 08-14 (2023)

--
www.jisse.journals.ekb.eg www.isse.org.eg 12

Figure 10: Plot of the output of the first-order SR-PRNG output

Figure 11: Top view of first-order SR-PRNG design

The second-order design SR-PRNG of equation (2) script is

shown in Figure 12, the design with memory is shown in Figure

13, the second order SR-PRNG with memory tester is shown in

Figure 14, the plot of the output of the second-order design is

shown in Figure 15 and the top level view of the second order

design is shown in Figure 16.

Figure 12: SR-PRNG Script for second order design

In this function, we just replace the lines calculate equation (1)

by equation (2). This is to overcome the weakness of absorption

and periods [1].

Figure 13: SR-PRNG Script for second order design with output

stored in memory

Figure 14: Tester for second order SR-PRNG with memory

Figure 15: Plot of the output of the second-order SR-PRNG output

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed et al. / Journal of International Society for Science and Engineering Vol. 5, No. 1, 08-14 (2023)

--
www.jisse.journals.ekb.eg www.isse.org.eg 13

Figure 16 Top view of second-order SR-PRNG design.

Figure 16 illustrates that for generating 32-bit PRNG and storing

up to 256 words of it we need 80 I/O pins. 8 bits for a memory

address, 32 bits for the input non-square number, and 32 big for

the output PRNG. We need also 4 input bits for the clock, clock

enable reset, and Load/Calc control signal. We need also two

output bits for indicating that the output is calculated

successfully. The area utilization of the target FPGA and the

maximum frequency are discussed in section 5

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The authors would like to acknowledge Electronics Research

Institute (ERI), Egypt for supporting us with the simulation tool

(MATLAB).

6. RESULTS

The Target Device is Xilinx Spartan 3 xc6slx9-2-cpg196 FPGA

[14]. The estimated values for device utilization for the first-

order design and the second-order design are illustrated in table

1 and a histogram illustration for the two designs is illustrated in

figure 17. The Maximum frequency for the first and the second

order designs are the same which is 244.499MHz.

Table 1: Device Utilization Summary (estimated values)

Logic Utilization
Utilization for 1st
order

Utilization for 2nd
order

Number of Slice Registers 1% 2%

Number of Slice LUTs 3% 6%

Number of fully used LUT-FF pairs 54% 56%

Number of Block RAM/FIFO 3% 6%

Number of
BUFG/BUFGCTRL/BUFHCEs

6% 6%

Figure 17 Top view of second-order SR-PRNG design.

The utilization of the first order design is the Number of Slice

Registers 262, the Number of Slice LUTs is 368, No. of fully

used LUT-FF pairs is 227 Number of bonded IOBs is 80. No. of

Block RAM/FIFO is 2, No. of BUFG/BUFGCTRL/BUFHCEs 1.

The utilization of the second order design Number of Slice

Registers is 169, the Number of Slice LUTs is 207 Number of

fully used LUT-FF pairs is 133, the Number of bonded IOBs 48,

the Number of Block RAM/FIFO is 1, and the Number of

BUFG/BUFGCTRL/BUFHCEs 1

7. Conclusion

In this paper, we proposed a design and implementation of the

first and second-order SR-PRNG generators over the FPGA. The

target device was xc6slx9-2-cpg196. The design and its

implementation were done by using MATLAB HDL Coder. The

target FPGA was Xilinx Spartan 3 xc6slx9-2-cpg196. We

introduced the two designs. The Maximum frequency is

244.499MHz for the two orders which are very fast compared to

the other in the literature. The utilization of the second order

versus the first order designs is 262 vs 169 in the Number of

Slice Registers,368 vs 207 in the Number of Slice LUTs, 227 vs

133 in the Number of fully used LUT-FF pairs, 80 vs 80 in the

Number of bonded IOBs, 2 vs 1 of Number of Block

RAM/FIFO, and 1 vs 1 of Number of

BUFG/BUFGCTRL/BUFHCEs. We proposed a reconfigurable

and very efficient PRNG design in terms of both speed and Area

utilization.

References

[1] Su, J. and McSweeney, J. (2019) Square Root Pseudo-Random Number
Generators. thesis. Department of Mathematics Rose-Hulman Institute of
Technology.

[2] Ahmed A. Rezk a, Ahmed H. Madian d, Ahmed G. Radwan c,a, Ahmed M.
Soliman b, "Reconfigurable SR-PRNG pseudo random number generator
based on FPGA", Int. J. Electron. Commun. (AEÜ) 98 (2019) 174–180.

[3] Elsayed, G., Kayed, S. (2022). 'FPGA Design and Implementation for
Adaptive Digital Chaotic Key Generator', AEAS 49th annual conference,
https://aeas2022.asu.edu.eg.

0%
10%
20%
30%
40%
50%
60%
70%

First order

Second Order

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

Ghada Elsayed et al. / Journal of International Society for Science and Engineering Vol. 5, No. 1, 08-14 (2023)

--
www.jisse.journals.ekb.eg www.isse.org.eg 14

[4] Sambas, A. et al. (2022) “A novel 3D chaotic system with line equilibrium:
Multistability, Integral Sliding Mode control, electronic circuit, FPGA
implementation and its image encryption,” IEEE Access, 10, pp. 68057–
68074. Available at: https://doi.org/10.1109/access.2022.3181424..

[5] Tutueva, A.V. et al. (2020) “Adaptive SR-PRNG maps and their application
to pseudo-random numbers generation,” Chaos, Solitons & Fractals,
133, p. 109615. Available at: https://doi.org/10.1016/j.chaos.2020.109615..

[6] AbdElHaleem, S.H., Abd-El-Hafiz, S.K. and Radwan, A.G. (2022) “A
generalized framework for elliptic curves based PRNG and its utilization in
image encryption,” Scientific Reports, 12(1). Available at:
https://doi.org/10.1038/s41598-022-17045-x.

[7] Syafalni, I. et al. (2022) “Efficient homomorphic encryption accelerator with
integrated PRNG using low-cost FPGA,” IEEE Access, 10, pp. 7753–7771.
Available at: https://doi.org/10.1109/access.2022.3143804.

[8] Al-Musawi, W.A., Wali, W.A. and Al-Ibadi, M.A. (2021) “Implementation
of SR-PRNG system using FPGA,” 2021 6th Asia-Pacific Conference on
Intelligent Robot Systems (ACIRS) [Preprint]. Available at:
https://doi.org/10.1109/acirs52449.2021.9519360.

[9] DRIDI, F. et al. (2021) “Design, FPGA-based implementation and
performance of a pseudo random number generator of chaotic sequences,”
Advances in Electrical and Computer Engineering, 21(2), pp. 41–48.
Available at: https://doi.org/10.4316/aece.2021.02005.

[10] Eda techchannel OpenSystems Media. Available at:
http://tech.opensystemsmedia.com/eda/2012/03/mathworks-introduces-hdl-
coder-and-verifier-for-matlab/ (Accessed: January 8, 2023).

[11] Elsayed, G., Kayed, S. (2022). 'A Comparative Study between MATLAB
HDL Coder and VHDL for FPGAs Design and implementation', Journal of
International Society for Science and Engineering, 4(4), pp. 92-98. DOI:
10.21608/jisse.2022.136645.1056 available at
https://jisse.journals.ekb.eg/article_260808.html

[12] Kayed, S., Elsayed, G. (2022). 'Optimizing Techniques for using MATLAB
HDL CODER', AEAS 49th annual conference, https://aeas2022.asu.edu.eg

[13] MathWorks, HDL code generation from a non-restoring square root system
object, HDL Code Generation from A Non-Restoring Square Root System
Object - MATLAB & Simulink. Available at:
https://www.mathworks.com/help//hdlcoder/ug/hdl-code-generation-from-a-
non-restoring-square-root-system-object.html (Accessed: January 15, 2023).

[14] Cmod S6™ FPGA Board Reference Manual, Revised June 13, 2017. 1300
Henley CourtPullman, WA 99163 509.334.6306 www.digilentinc.com

Abbreviation and symbols

BUFG Global buffer

FPGA Field programmable Gate Arrays

HDL Hardware Description Language

LUT Look Up Tables

http://www.jisse.journals.ekb.eg/
http://www.isse.org.eg/

