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Abstract 

The effects of slip condition and particles concentration are investigated on the 

peristaltic flow of a Newtonian suspended fluid flows through a channel under different 

parameters. The walls of the channel are assumed flexible with an external uniform magnetic 

field applied perpendicular to the walls. The equations of motion are solved analytically using 

the perturbation method to yield the pressure, streamlines and the velocity distributions for 

both fluid and dusty particles. The governing equations of the flow through magnetic field are 

solved under the effect of concentration, wave number, amplitude ratio, Reynolds number and 

slip condition. The resulting relations for velocity and pressure gradient are plotted for various 

pertinent parameters. It was observed that in the case of positive pressure gradient, the reversal 

flow intensity increases with increasing the particle concentration, while it decreases with 

increasing the magnetic field. Furthermore, thereversal intensity increases with positive 

pressure gradient. For negative pressure gradient, the intensity increases with increasing the 

magnetic field. On the other hand, the critical reflux pressure gradient decreases with the 

presence of suspension and magnetic field, while the critical reflux pressure increases with slip 

condition. The streamlines are also computed and drawn for some physical quantities to 

discuss the trapping phenomenon. 
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Introduction 

Peristaltic pumping is a form of fluid transport that occurs when a progressive 

wave of area contraction or expansion propagates along the length of distensible 

duct containing liquid. Peristalsis is used by the body to propel or mix the 

contents of a tube as in ureter, swallowing food through the esophagus, 

movement of chyme in the gastrointestinal tract, movement of ovum in the 

female fallopian tube, motion of spermatozoa in cervical canal, transport of bile 

in bile duct, transport of lymph in the lymphatic vessels and vasomotion of small 

blood vessels such as arterioles, venules and capillaries.In addition, peristaltic 

pumping occurs in many practical applications involving biomechanical systems. 

Also, finger and roller pumps are frequently used for pumping corrosive or very 

pure materials so as to prevent direct contact of the fluid with the pumps internal 

surfaces. Moreover, by using the principle of peristalsis, some biomechanical 

instruments such as heart-lung machine, have been fabricated. The mechanism of 

peristaltic transporthas been exploited for industrial applications like sanitary 

fluid transport, blood pumps in heart lung machine, andtransport of corrosive 

fluids where the contact of the fluid with the machinery parts is prohibited. It is 

alsospeculated that peristalsis may be involved in the translocation of water in 

tall trees. The problem of the mechanism of peristalsistransport has attracted the 

attention of many investigators since the investigation of Latham [1].All 

important literature up to 1978 on peristaltic transport has been documented by 

many researchers. Fung and Yih[2] analyzed the role of Reynolds number and 

wavelength in peristaltic motion of moderate amplitude, making use of 

perturbation method with an amplitude ratio as the perturbation parameter. 

Shapiro et al. [3] have studied peristaltic pumping with long wavelength at low 
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Reynolds number. After these studies,several authors[4 - 7] have studied 

peristalsis under different conditions.The peristaltic couple fluid flow through 

channels with flexible walls has been studied by Ravikumar et al. [8]. Peristaltic 

flow of a couple stress fluids through porous medium in a channel at low 

Reynolds number was studied by RaghunathaRao and Parasad [9].Mishra and 

RamachandraRao[10] have investigated the flow in an asymmetric channel 

generated by peristaltic waves propagating on the walls with different amplitudes 

and phases.The most physiological fluids including blood behave as non-

Newtonian fluids. Hence, the study of peristaltic transport of non-Newtonian 

fluids may help to get better understanding of the biological systems. Several 

researchers studied peristaltic transport of non-Newtonian fluids 

[11].RaghunathaRaoand Prasad [12] have investigated the peristaltic flow of a 

couple stress fluids through porous medium in a channel at low Reynolds 

number. 

 

The magneto hydrodynamic (MHD) flow of a fluid in a channel with contracting 

walls (peristaltic flow) is of interest in connection with certain problems of the 

movement of conductive physiological fluids such as the blood, blood pump 

machines and with the need for theoretical research on the operation of a 

peristaltic MHD compressor. Mekheimerand Al-Arabi[13] studied non-linear 

peristaltic transport of MHD flow through porous medium. Effects of a magnetic 

field on trapping through peristaltic motion for generalized Newtonian fluid in a 

channel has been studiedbyAbd El Hakeem et al. [14]. Peristaltically induced 

transport of a MHD biviscosity fluid in a non-uniform tube has been studied 

byEldabe et al.[15]. Effect of slip on peristaltic transport in an inclined channel 
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with wall effects has been considered in the work of RamanaKumariand 

Radhakrishnamacharya [16].Eldesoky [17]representedthe slip effects on the 

unsteadyMHD pulsatile blood flow through porous medium in an artery under 

the effectof body acceleration.El-Shehawy et al. [18] investigated the slip effects 

on the peristaltic flow of a non NewtonianMaxwellian fluid.Eldesoky[19] 

noticed the influence of slip condition on peristaltic transport of a compressible 

Maxwell fluidthrough porous medium in a tube. Aliet al. [20]discussed the slip 

effects on the peristaltic transport of MHD fluid with variable viscosity.Effects 

of wall properties and heat transfer on the peristaltic transport of food bolus 

through oesophagus was studied using a mathematical model, see Sreenadh et al. 

[21]. 

A particulate flow plays an important role in various industrial and natural 

processes. To predictthe influence of it in a pipeline, channel or a fitting, it is 

essential to characterize the effects in a simple standardized geometry.Powder 

technology, fluidization, sedimentation, combustion, aerosol filtration, 

atmospheric fallout, lunar ash flow and environmental pollution are some 

examples of particulate fluid suspension phenomenon. Peristaltic pumping of a 

particle fluid mixture has been investigated by many researchers.Medhavi and 

Singh [22] noted a two-layered suspension flow induced by peristaltic waves. 

Peristaltic motion of a particle-fluid suspension in a planarchannelhas been 

previously studied by Mekheimer [23]. Srivastava[24] registered the behavior of 

the particlefluid suspension flow induced by peristaltic waves in a circular 

cylindrical tube. 

Because the idea is new and needs reasonable attention for the authors known, 

the present research is aimed to investigate the peristaltic flow of a 
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Newtoniansuspended fluid flows through magnetic field in a flexible channel 

under slip condition parameter. Analytical solution using perturbation method is 

used to obtain the velocities, pressure gradient and streamlines. The governing 

equations of the fluid flow through magnetic field are solved with the presence 

of fluid suspensions. The behaviors of the velocity components, critical pressure, 

streamlines have been analyzed in either case for different sets of parameters. 
 

Mathematical Formulation 

Consider a Newtonian suspended flow of blood in an axisymmetric channel 

artery of mean radius dunder the effect of magnetic field. Thecartesian 

coordinate system x´, y´are introduced, where thex´-axis lies along the center of 

the channel and y´is normal to it, see Fig. 1. Thewalls of the channel are assumed 

to be flexible with travelling sinusoidal wave on the compliant wall of channel. 

The wave shape is expressed as: 

( )2( , ) cos π
λ

 ′ ′ ′ ′ ′= + − 
 

wy x t d a x c t (1) 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1 Geometry of the problem 
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The main governing equations are the momentum and mass for the carrying fluid 
and particulate (suspension) phase, respectively as follows: 
 
For fluid phase: 
(a) x´-momentum 

2(1 ) (1 )ρ σβ
′ ′ ′ ′ ∂ ∂ ∂ ∂′ ′ ′− + + = − − − ′ ′ ′ ′∂ ∂ ∂ ∂ 
f f f

f f f o f
u u u pC u v C u
t x y x  

2 2

2 2(1 ) ( ) ( ),µ
′ ′ ∂ ∂ ′ ′ ′+ − + + − ′ ′∂ ∂ 
f f

s p f
u uC C CS u u

x y (2) 

(b) y´-momentum 

(1 ) (1 )ρ
′ ′ ′ ′ ∂ ∂ ∂ ∂′ ′− + + = − − ′ ′ ′ ′∂ ∂ ∂ ∂ 
f f f

f f f
v v v pC u v C
t x y y  

2 2

2 2(1 ) ( ) ( ),µ
′ ′ ∂ ∂ ′ ′ ′+ − + + − ′ ′∂ ∂ 
f f

s p f
v vC C CS v v
x y                                                    (3) 

(c) conservation of mass 

( ) ( )(1 ) (1 ) 0.∂ ∂′ ′− + − =
′ ′∂ ∂f fC u C v

x y
                                                    (4) 

For particulate phase: 
(a) x´-momentum 

( ),ρ
′ ′ ′∂ ∂ ∂ ′  ∂′ ′ ′ ′ ′+ + = − + − ′ ′ ′ ′∂ ∂ ∂ ∂ 
p p p

p p p f p

u u u pC u v C CS u u
t x y x            (5) 

(b) y´-momentum 

( ),ρ
′ ′ ′∂ ∂ ∂ ′  ∂′ ′ ′ ′ ′+ + = − + − ′ ′ ′ ′∂ ∂ ∂ ∂ 
p p p

p p p f p

v v v pC u v C CS v v
t x y y             (6) 

(c) conservation of mass 

( ) ( ) 0.∂ ∂′ ′+ =
′ ′∂ ∂p pCu Cv

x y
                                                                       (7) 
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In equations from 2 to 7, ( , ) ( , )′ ′ ′ ′
f f p pu v and u v represent fluid phase and 

particulate phase velocities in the x´ and y´ directions, respectively. 

C, S´, , , , p´, σ,  are particles concentration, interaction force between 

fluid and particle, fluid density, particle density, mixture viscosity, pressure, 

thermal conductivity and magnetic parameter, respectively. 

The boundary conditions that must be satisfied by the fluid on the walls are the 

no-slip or slip conditions. 

 
′∂′ = ±
′∂

f
f

uu A
y   

                                           (8) 

 
′∂

′ = ±
′∂
p

p

u
u A

y                                           
(9) 

  η∂′ = ±
′∂fv

t
                                                 (10) 

  η∂′ = ±
′∂pv

t
                                               (11) 

at the wall defined by equation (1). 
 
The stream function relations with velocity are defined as: 

,ψ ′∂′ =
′∂
f

fu
y

,ψ ′∂′ = −
′∂
f

fv
x

,
ψ ′∂

′ =
′∂
p

pu
y

,
ψ ′∂

′ = −
′∂
p

pv
x  

and can be used in equations 2-11 to yield the followings: 
2 2 2 2(1 )ρ ψ ψ ψ ψ ψ σβ ψ∂ ′ ′ ′ ′ ′ ′− ∇ + ∇ − ∇ = − + ′∂ y x x y yyf f f f f f o fC

t
 

4 2 2(1 ) ( ) ( )µ ψ ψ ψ′ ′ ′ ′− ∇ + ∇ −∇s f p fC C CS (12) 
 

2 2 2 2 2( )ρ ψ ψ ψ ψ ψ ψ ψ∂ ′ ′ ′ ′ ′ ′ ′ ′∇ + ∇ − ∇ = ∇ −∇ ′∂ y x x yp p p p p p f pC CS
t

(13) 
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The wall boundary conditions based on the stream function forms can be also 
rewritten as: 

  ,
ψ

ψ
′∂

′ = ±
′∂
y

y

f
f A

y                                                                              (14) 

 
ψ

ψ
′∂

′ = ±
′∂
y

y

p
p A

y                                                                               (15) 

2 2sin ( )π πψ
λ λ

′ ′ ′= ± −
x

w
f w

ac x c t                                                (16) 

2 2sin ( )π πψ
λ λ

′ ′ ′= ± −
x

w
p w

ac x c t                                                 (17) 

where A is the mean free path. 
 
In real characteristic of peristalsis of the ureter, one end of which is joined to 

kidney at the pelvis and the other end is joined to the bladder, the end conditions 

are hydroelastic in nature. The pressure gradient depends on the amplitude of the 

wave motion and can be written as: 

2

0 1 2

  .
′ ′ ′ ′∂ ∂ ∂ ∂       = + +       ′ ′ ′ ′∂ ∂ ∂ ∂       

p p p pa a
x x x x Introducing the following dimensionless 

variables ,yy
d
′

= ,
′

=
xx
d

,ηη
′

=
d

,
 
′

= f
f

w

uu
c

,
 
′

= f
f

w

vv
c

,p
p

w

u
u

c
′

= ,
′

= p
p

w

v
v

c

,ψψ
′

= f
f

wc d
,

ψ
ψ

′
= p

p
wc d

2

,
o

S aS
µ
′

= ,s

o

µµ
µ

= ,
′

= wc tt
d 2 ,

ρ
′

=
f w

pp
c

and consideringthe 

non-dimensional following parameters: 

• Knudsen number =
AKn
d
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• Suspension Reynolds number Re
(1 )

ρ
µ

=
−
w f

s

c d
C

 

• Suspension parameters
2

,
(1 )µ

′
=

− s

S dM
C

2

(1 )
ρ
µ ρ

′
=

−
f

s p

S dN
C

 

• Magnetic parameter
2σβ
ρ

= o

w f

dMm
c

 

• Wave number
2πα
λ

=
d

 

• Amplitude ratioε =
a
d

 

 
Introducing the previous non-dimensional parameters, the equations of the fluid 
and the particle can be written as: 

( )2 2 2 4 2 2 2(1 )Re ψ ψ ψ ψ ψ ψ ψ ψ γ ψ∂ − ∇ + ∇ − ∇ = ∇ + ∇ −∇ − ∂ y x x y yyf f f f f f f p fC CM
t

(18) 

2 2 2 2 2Re ( )ψ ψ ψ ψ ψ ψ ψ∂ ∇ + ∇ − ∇ = ∇ −∇ ∂ y x x yp p p p p f pC CN
t

(19) 

( , ) cos ( )η ε α= −x t x t  

and 2 ReMm.γ =  
 
The non-dimensional boundary conditions are: 

,
ψ

ψ
∂

= ±
∂

y

y

f
f Kn

y                                                                               (20) 

,
ψ

ψ
∂

= ±
∂

y

y

p
p Kn

y                                                                              (21) 

sin ( ),ψ εα α= ± −
xf x t                                                                    

(22) sin ( ),ψ εα α= ± −
xp x t                                                                    (23) 
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at the wall, that can be non-dimensionlized to be: 
1 ( , ).η= ± ±y x t  

The pressure gradient equation is now non-dimensionlized to be: 
2

0 1 2

 ε ε∂ ∂ ∂ ∂       = + +       ∂ ∂ ∂ ∂       
p p p p
x x x x  

 
 
Solution method: 
By assuming the amplitude ratio (ε) of the wave to be small, the solution of the 

stream function can be obtained as a power series in terms of (ε). Using the 

perturbation method, the stream function can be written as: 

 

0 1 2

2 ..........,ψ ψ εψ ε ψ= + + +f f f f (24) 

1 20

2 ..........ψ ψ εψ ε ψ= + + +p p p p                                                             (25) 
 
Substituting the perturbation parameter into the equations 18 to 23. 
By comparing the coefficients of ( , , ) in the equations 18 and 19, the 
following coefficients can be formulated: 
 

Coefficient of 0( )ε : 

( )0 0 0 0 0 0 0 0 0

2 2 2 4 2 2 2(1 )Re ψ ψ ψ ψ ψ ψ ψ ψ γ ψ∂ − ∇ + ∇ − ∇ = ∇ + ∇ −∇ − ∂ y x x y yyf f f f f f p f fC CM
t

(

26) 

0 0 0 0 0 0 0

2 2 2 2 2Re ( )ψ ψ ψ ψ ψ ψ ψ∂ ∇ + ∇ − ∇ = ∇ −∇ ∂ y x x yp p p p p f pC CN
t

(27) 

 

Coefficient of 1( )ε : 

( )1 0 1 1 0 0 1 1 0 1 1 1 1

2 2 2 2 2 4 2 2 2(1 )Re ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ γ ψ∂ − ∇ + ∇ + ∇ − ∇ − ∇ = ∇ + ∇ −∇ − ∂ y x y x x y x y yyf f f f f f f f f f p f fC CM
t

(2

8) 
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1 0 1 1 0 0 1 1 0 1 1

2 2 2 2 2 2 2Re ( )ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ∂ ∇ + ∇ + ∇ − ∇ − ∇ = ∇ −∇ ∂ y x y x x y x yp p p p p p p p p f pC CN
t

  

(29) 
Coefficient 
of 2( )ε :

( )2 0 2 2 0 0 2 2 0 2 2 2 2

2 2 2 2 2 4 2 2 2(1 )Re ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ γ ψ∂ − ∇ + ∇ + ∇ − ∇ − ∇ = ∇ + ∇ −∇ − ∂ y x y x x y x y yyf f f f f f f f f f p f fC CM
t

 

                                                                                                                                                                               
(30) 

2 0 2 2 0 0 2 2 0 2 2

2 2 2 2 2 2 2Re ( )ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ∂ ∇ + ∇ + ∇ − ∇ − ∇ = ∇ −∇ ∂ y x y x x y x yp p p p p p p p p f pC CN
t

 

                                                                                                                (31) 
The boundary conditions can then be expanded as: 

2

.......... 0
2
ηψ ηψ ψ± ± ± =

y yy yyyf f f                                                                                 (32) 
2

.......... 0
2
ηψ ηψ ψ± ± ± =

y yy yyyp p p                                                                                (33) 
2

.......... sin ( )
2
ηψ ηψ ψ αε α± ± ± = ± −

x xy xyyf f f x t                                                     (34) 

2

.......... sin ( )
2
ηψ ηψ ψ αε α± ± ± = ± −

x xy xyyp p p x t                                                    (35) 

 
Implementing the coefficients of (ε0,ε1,ε2) into the wall boundary conditions, 
then: 
 
for(ε0) 

0 0
  ψ ψ= ±

y yyf fKn                                                                                                              (36) 

0 0
ψ ψ= ±

y yyp pKn                                                                                                                (37) 

0
0ψ =

xf                                                                                                                               (38) 

0
0ψ =

xp                                                                                                                    (39) 
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for(ε1) 

1 0 1 0
   cos ( ) ( cos ( ))ψ ψ α ψ ψ α± − = ± + −

y yy yy yyyf f f fx t Kn x t                              (40) 

1 0 1 0
   cos ( ) ( cos ( ))ψ ψ α ψ ψ α± − = ± + −

y yy yy yyyp p p px t Kn x t
                         (41) 

1
   cos ( ) sin ( )ψ ψ α ε α± − = ± −

x xyf f x t x t                                                             (42) 

1 0
   cos ( ) sin ( )ψ ψ α ε α± − = ± −

x xyp p x t x t
                                                      (43) 

 
for (ε2) 

2 1 0 2 1 0

2 2   cos ( ) 0.5  cos ( ) (    cos ( ) 0.5  cos ( ))ψ ψ α ψ α ψ ψ α ψ α± − ± − = ± ± − ± −
y yy yyy yy yyy yyyyf f f f f fx t x t Kn x t x t

 
 (44) 

1 0 2 1 02

2 2   cos ( ) 0.5  cos ( ) (    cos ( ) 0.5  cos ( ))ψ ψ α ψ α ψ ψ α ψ α± − ± − = ± ± − ± −
yy yyy yy yyy yyyyy

p p p p p px t x t Kn x t x t

 
   (45) 

2 1 0

2   cos ( ) 0.5  cos ( ) 0ψ ψ α ψ α± − ± − =
x xy xyyf f fx t x t                 

(46) 2 1 0

2   cos ( ) 0.5  cos ( ) 0ψ ψ α ψ α± − ± − =
x xy xyyp p px t x t          (47) 

 

The first set of differential equations in 0( , )ψ f p subjected to the steady symmetric 

assumption with a constant pressure gradient in the x´-direction, yields the 

following classical Poiseuille flow for the fluid and the particulate phase, 

respectively: 

0

3

3
ψ

 
= − 

 
f

yk y                                                                                                      (48)                                                                                                                                                                  

0

32
3

ψ
 

= + − 
 

p
y yk y

M                                                                                                          (49) 

In which 
 

0

Re ,
2
 = −  
 

dpk
dx is the Poiseuille flow parameter.  
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The second and third sets of differential equations in 
1( , )ψ f p and 

2( , )ψ f p with 
theircorresponding boundary conditions are satisfied by: 
 

1 1 1

( ) ( )0.5( )α αψ φ φ− ∗ − −= +i x t i x t
f f fe e                                                                     (50) 

1 1 1

( ) ( )0.5( )α αψ φ φ− ∗ − −= +i x t i x t
p p pe e                                                                    (51) 

2 20 22 22

2 ( ) 2 ( )0.5( )α αψ φ φ φ− ∗ − −= + +i x t i x t
f f f fe e                                             (52) 

2 20 22 22

2 ( ) 2 ( )0.5( )α αψ φ φ φ− − −= + +i x t i x t
p p p pe e

                                           (53) 
where 

1 1
( )∗φ = φf fconjugate  

1 1
( )∗φ = φp pconjugate  

 

let us consider the case in which the pressure gradient 
0

0∂  = ∂ 

p
x . In this case 

there will be no pump if the wall wave motion stops, k = 0. Then the equations of 

the fluid and the particle can be written as: 

1 1

2 2 2
2 2 2

2 2 2β α φ γ φ
  

− − =  
  

f f
d d d
dy dy dy                                                      (54) 

1 1

2 2
2 2 2

2 2Re
   

− α φ = γ − α φ   − α   
p f

d N d
dy N I dy                                     (55) 

 
 
The first order wall boundary conditions: 

1 1
  1                      φ = ± φ ±

yf fKn                                        (56) 

1 1
  1                     φ = ± φ ±

yp pKn                                  (57) 

1 1
                         φ = ± φ

y yyf fKn                                          (58) 

1 1
                        φ = ± φ

y yyp pKn                                                   (59) 
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After substituting the boundary conditions 56 and 58 into the equation 54 and the 

boundary conditions 57 and 59 into the equation 55, then the equations of the 

fluid and the particle can be written as: 
 

1 1 1 1 2sinh( ) sinh( )φ = +f n b y m b y                                                                                         (60) 
(61) 

 
where 

( )0.5
2 2 2 2 2 2 2 2 2

1
1 (( ) 4 )
2

= α + β + γ + α + β + γ − α βb  

( )0.5
2 2 2 2 2 2 2 2 2

2
1 (( ) 4 )
2

= α + β + γ − α + β + γ − α βb
 

2 ReMmγ =  

2 2 Re 1
Re

 β = α − α − + − α 

CMi C
N i  

2 2 2 2
1

1 1 1 1 2 2 2 2 1 1 1 2 2 2

(cosh sinh )
(cosh sinh )(sinh cosh ) (sinh cosh )(cosh sinh )

− −
=

− − − − −
b b Knb bn

b b Knb b b Knb b b b Knb b b Knb b
 
 

1 1 1 1
1

1 1 1 1 2 2 2 2 1 1 1 2 2 2

(cosh sinh )
(cosh sinh )(sinh cosh ) (sinh cosh )(cosh sinh )

−
=

− − − − −
b b Knb bm

b b Knb b b Knb b b b Knb b b Knb b
 
 

2 2
2

1

1 sinh( )
sinh( )

−
=

m bn
b  

1
2

 
Re  

=
− α
N mm

N i  

 
 

1 2 1 2 2sinh( ) sinh( )φ = +p n b y m b y
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                     On the other hand, substituting the boundary conditions 44 and 46 

into the equation 30 and the boundary conditions 45 and 47 into the equation 31, 

then the second order equations of the fluid and the particle can be written as: 
 

20 1 2 3 4 5 6 7 8 9

1
2

(1 )Re (1 )Re cosh( )( ) ( )
4 4 cosh

2 cosh( )            1
cosh

 α − α − γ ′φ = − + + + − − + + + + −   γ  
  γ
−  γ γ  

f
i C i C yA A A A A A A A A

C y

       (62) 

20 1 2 3 4 1 2 3 4

2
1

5 6 7 8 9 2

(1 )Re Re( ) ( )
4 4
(1 )Re cosh( ) 2 cosh( )( ) 1

4 cosh cosh

p
i C iA A A A B B B B

N
i C y C yA A A A A

M

α − α′φ = − + + + + + + +

    α − γ γ γ − − + + + + − + −      γ γ γ      (63)

1 2 3 4 5 6 7 8 92

1
2

(1 )Re (1 )Re cosh( )( ) ( )
4 4 cosh

2 2 cosh( )1
cosh

  α − α − γ − + + + − − + + + + −    γ  ε  =    γ −   γ γ   

f

i C i C yA A A A A A A A A
u

C y

 
(64) 

1 2 3 4 1 2 3 42

2
1

5 6 7 8 9 2

(1 )Re Re( ) ( )
4 4

(1 )Re cosh( ) 2 cosh( )2 ( ) 1
4 cosh cosh

p

i C iA A A A B B B B
N

u
i C y C yA A A A A

M

α − α − + + + + + + + 
ε  =      α − γ γ γ − − + + + + − + −       γ γ γ      

(65) 

0 0 0 0

2

1 2 3 4 5 6 7 8 9
2 . .

cosh (1 )Re (1 )Re 1( ) ( )
2Re(cosh 1) 4 4 cosh

  ∂ γ γ α − α −   = − + + + − − + + + +     ∂ γ − γ     c v

p i C i CA A A A A A A A A
x

(66) 
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From the equations 50 and 62, the streamlines equation can be obtained as: 
 

1 1 20

( ) ( ) 20.5 ( ) 0.5α αψ ε φ φ ε φ− ∗ − −

−

′= + + ∫
y

i x t i x t
f f f f

y

e e dy
                                 

(67) 

 
where 

2 2 1 1 1 1
1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 1

sinh(( ) ) sinh(( ) )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b y b b yA b b n n n n
C N b b b b b b b b

 

2 2 1 2 2 1
2 2 1 1 1 2 2 2 2 2 2

1 2 1 2 2 1 2 1

sinh(( ) ) sinh(( ) )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b y b b yA b b n m n m
C N b b b b b b b b

 

2 2 2 1 1 2
3 1 2 1 1 2 2 2 2 2 2

2 1 2 1 1 2 1 2

sinh(( ) ) sinh(( ) )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b y b b yA b b m n m n
C N b b b b b b b b

 

2 2 2 2 1 2
4 2 2 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 2

sinh(( ) ) sinh(( ) )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b y b b yA b b m m m m
C N b b b b b b b b

 

2 2 1 1 1 1
5 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 1

sinh( ) sinh( )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b b bA b b n n n n
C N b b b b b b b b

 

2 2 1 2 2 1
6 2 1 1 1 2 2 2 2 2 2

1 2 1 2 2 1 2 1

sinh( ) sinh( )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b b bA b b n m n m
C N b b b b b b b b

 

2 2 2 1 1 2
7 1 2 1 1 2 2 2 2 2 2

2 1 2 1 1 2 1 2

sinh( ) sinh( )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b b bA b b m n m n
C N b b b b b b b b

 

2 2 2 2 1 2
8 2 2 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 2

sinh( ) sinh( )( )
(1 ) ( )(( ) ) ( )(( ) )

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗

   + −
= − + −  − + + − γ − − − γ  

CM b b b bA b b m m m m
C N b b b b b b b b

 



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

April 19-21,2016 

  
8th  International Conference on 
Mathematics and Engineering 

Physics (ICMEP-8) 

 

17 
 

2 2 2 2
9 1 1 1 1 2 2 1 1 1 1 1 10.5( sinh( ) sinh( ) sinh( ) sinh( ))∗ ∗ ∗ ∗ ∗ ∗= + + +A n b b m b b n b b m b b  

2 2 1 1 1 1
1 2 2 1 1

1 1 1 1

sinh(( ) ) sinh(( ) )( )
( ) ( )

∗ ∗
∗ ∗

∗ ∗

 + −
= − − 

+ − 

b b y b b yB n n b b
b b b b  

2 2 1 2 2 1
2 2 2 2 1

1 2 2 1

sinh(( ) ) sinh(( ) )( )
( ) ( )

∗ ∗
∗ ∗

∗ ∗

 + −
= − − 

+ − 

b b y b b yB n m b b
b b b b  

2 2 2 1 1 2
3 2 2 1 2

2 1 1 2

sinh(( ) ) sinh(( ) )( )
( ) ( )

∗ ∗
∗ ∗

∗ ∗

 + −
= − − 

+ − 

b b y b b yB m n b b
b b b b  

2 2 2 2 2 2
4 2 2 2 2

2 2 2 2

sinh(( ) ) sinh(( ) )( )
( ) ( )

∗ ∗
∗ ∗

∗ ∗

 + −
= − − 

+ − 

b b y b b yB m m b b
b b b b  

In which 

2 2( )∗ =b conjugate b  

1 1( )∗ =b conjugate b  
 

Equations 64, 65 (with neglecting the effect of magnetic field on the flow 

behavior)represent the same formula reached by Eldesoky [25]. 

Results and discussions 

The main parameters considered in the present study are particle concentration 

(C), wave number (ε), magnetic parameter (Mm), slip condition (Kn), Reynolds 

number(Re) and pressure gradient 
∂
∂

p
x .The pressurerise is an important 

physical measure in the peristaltic mechanism. The chosen parameter values are 

C=0, 0.2, 0.3, 0.4 and 0.59; Mm=0.0001, 0.1, 0.5 and 1; Re=1, 10 and 50;ε = 0, 

0.2, 0.4 and 0.6; pressure gradient 1, 0.3,0,0.3 0.5∂
= − −

∂
p and
x  .The present study 

includes different cases for Kn=0 (absence of slip condition) and Kn≠0 (presence 
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of slip condition). On the other hand, the variation of amplitude ratio ε is taken 

into consideration.The results include the effects of different parameters on the 

velocity distribution, critical reflux pressure and stream lines. The velocity 

profiles are taken at different positions, x´=0,λ/4 andλ/2. 

 

 

 
Kn=0                                                                          Kn=0.1 

Fig. 2 Mean velocity distributionsat different locations 

1, C 0.4, Mm 0.2,  1,Re 10∂ = − = = α = = ∂ 

p
x  

X=0      
X=0.25 
X=0.5   

X=0          
X=0.25 
X=0.5   
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Fig. 2 shows that,the contraction of the channel enhancesthe velocity because of 

the conservation of mass andvice versa the velocity decreases with the expansion 

of the channel. The presence of slip (Kn=0.1) causes increase in the velocity 

values. 

 
Kn=0                                       Kn=0.1 

Fig. 3Mean velocity distributions with different pressure 
gradient ( )0.25, C 0.4, Mm 0.1,  1,Re 10= = = α = =x  
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The reversal flow appears withthe adverse pressure gradient 0p
x
∂ > ∂ 

, with 

delaying of back flow in the presence of slip. The approached velocity profile 

takes the known parabolic form of laminar flow 0p
x
∂ < ∂ 

, while with adverse 

pressure gradient, back flow velocity profiles appearwith increasing back 

intensity at higher adverse pressure gradient. The slip condition causes the 

decreasing of the reversal flow, see Fig. 3. 

The presence of particle concentration strongly affects the velocity. For both slip 

and no-slip conditions, the reversal flow increases with increasing suspension 

concentration (C), see Fig. 4. This appears in our life such as urine in which 

solute particles are suspended (urine of a diseased kidney) is more susceptible to 

reversal flow in ureter, in comparison to pure urine without solute particles. 

However, comparing the present case (very low magnetic field effect) and that 

for case of high magnetic field (see Fig. 5), the magnetic field increases the back 

flow intensity. 
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Kn=0                                                                 Kn=0.1 

Fig. 4 Mean velocity distributions with particle 

concentration 0.3,  0.25, Mm 0.00001,  1,Re 10∂ = = = α = = ∂ 

p x
x  
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Kn=0                                                                 Kn=0.1 
Fig. 5Mean velocity distribution with magnetic field

 

1, C 0.4, Re 10, 1, 0.25∂ = − = = α = = ∂ 

p x
x  
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Kn=0                                       Kn=0.1 

Fig. 6 Mean velocity distribution with magnetic field
 

0.3, C 0.4, Re 10, 1, 0.25∂ = = = α = = ∂ 

p x
x  
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Kn=0                                                                 Kn=0.1 

Fig. 7Mean velocity distributions with Reynolds number 

0.5, C 0.4, Mm 0.2,  1, 0.25∂ = = = α = = ∂ 

p x
x  
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Fig. 8 Mean velocity distributions with Knudsen number 

0.3, C 0.2, Mm 1,  1,Re 10∂ = = = α = = ∂ 

p
x  

The velocity decreases with the magnetic field awayfrom the wall, while the 

velocity increases with the magnetic field approaching the wallat negative 

pressure gradient, see Fig. 5. Fig. 6 shows that withadverse pressure gradient 

0p
x
∂ > ∂ 

and without slip condition, the reversal velocity decreases with 

increasing the magnetic field. However, the presence of slip condition causes a 

little effect of magnetic field on the velocity distribution a way of the wall. The 

influence of Reynolds number on the mean velocity distribution is investigated 

in Fig.7. For both slip condition and no-slip condition the velocity profiles are 

approached to each other at high Reynolds number. However, the difference 

between slip condition and no slip condition appears at low Reynolds 

number.Fig. 8 represents the effect of Knudsen number on the mean velocity 

distribution. The presence of the slip condition causes increasing in the mean 

velocity. 
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Kn=0                                                                 Kn=0.1 

Fig. 9 Critical reflux pressure gradient with wave number at different values of C 
(Re=10, Mm=0.00001). 
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Kn=0                                                                 Kn=0.1 

Fig. 10 Critical reflux pressure gradient with wave number at different values of 
Mm (Re=10, C=0). 
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Fig. 11Critical reflux pressure with Knudsen number (Mm=0.2, C=0.2, α=1, 
Re=10). 

For both slip condition and no-slip condition, the values of critical reflux 

pressure for different values of C, Mm,Kn and α are shown in Figs. 9, 10 and 11. 

Fig. 9 represents the values of critical reflux pressure with the wave number for 

different values of C. The critical reflux pressure decreases with increasing the 

particle concentration. However, the fluid suspension has significant influence 

on the critical reflux pressure at 0.5≤α≤1.At the absence of fluid suspension 

(C=0), the variation of the critical reflux pressure at slip condition is higher than 

at no-slip condition. On the other hand,Fig. 9 shows generally that the presence 

of slip increases the critical reflux pressure and the presence of particle 

concentration causes flow reversal. The effect of magnetic field is shown in Fig. 

10. The variationof the critical reflux pressure at no-slip condition is higher than 

that at slip condition for different values of magnetic field. At no-slip condition, 

the critical reflux pressure decreases with increasing the wave number at 
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highervalues of the magnetic field, but approaching the case of (Mm=0.00001), 

the critical reflux pressure increases with increasing the wave number. However, 

with slip condition, the critical reflux pressure increases with increasing the 

wave number at all values of the magnetic field. The effect of Knudsen number 

on the critical reflux pressure is analyzed in Fig. 11, where the critical reflux 

pressure decreases with increasing the wave number at different values of the 

Knudsen number. 

 
Mm=0                                                                 Mm=1 

Fig. 12 Streamlines at different values of Mm
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0.3, C 0,  1,Re 10, 0∂ = − = α = = = ∂ 

p Kn
x  

 
Re=10                               Re=20 

Fig. 13Streamlines at different values of Re 

0.3, C 0, Mm 0.2,  1, 0∂ = − = = α = = ∂ 

p Kn
x  
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α=1                                                                 α=0.5 

Fig. 14Streamlines at different values of α 

0.3, C 0, Mm 0.2, Re 10, 0∂ = − = = = = ∂ 

p Kn
x  

 

The effect of magnetic field on the streamlines is illustrated in Fig. 12. As 

noticed, the streamlines without magnetic field are crowded than that with 

magnetic field. The streamlines at different values of Reynolds number are 
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shown in Fig. 13. It can be concluded that increasing Reynolds number causes 

increasing the velocity of the flow. The influence of the wave number on the 

streamlines is analyzed in Fig. 14,in which the streamlines approach to each 

other with decreasing the wave number. 

Conclusions 
This study represents the effects of slip conditions on a particulate fluid 

suspension with peristaltic transport in flexible channel under the influence of 

MHD.The perturbation method has been used for the solution of the fluid and 

particle equations. The analytical solution has been developed and used for 

extracting velocity,critical reflux pressure and streamlines of the fluid for 

uniform flexible channel.The features of the flow characteristics have been 

analyzed using graphs and discussions. For both slipping and no slipping, main 

points are obtained from the present study: 

• Approaching the contraction, velocity increases, while with the expansion, 

velocity decreases. 

• For negative pressure gradient,the velocity increases, while the velocity 

decreases and back flow appears with adverse pressure gradient. 

• The presence of particle concentration and magnetic fieldreduces the 

velocitywith negative pressure gradient, while the velocity increases with 

positive gradients. 

• In the presenceof adverse pressure gradient, the Reynolds number has 

negative effects on the velocity values. 

• The presence of slip has positive effect on the velocity. 

• The critical reflux pressure gradient decreases with the presence of 

suspension and magnetic field, which strongly affects the streamlines. 
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