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Abstract 
The important step in studying the qualitative behavior of non-linear dynamical 
system is how to detect the presence of chaos. There are several methods that used 
to determines the presence of chaos signature. This paper presents a novel method 
in detecting the presence of chaos. The method combined two techniques namely: 
the normal form analysis and largest Lyapunov exponent (LLE). Computerized 
algebraic programs were generated to investigate these two techniques. An 
example was given to furnish the herein given computer algebra techniques based 
on real applications. The results obtained in this work were verified with results 
published by other researchers. The suggested method can provide highly active 
and efficient ability when studying the nature of non-linear dynamical systems and 
its chaotic presence. 
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1. Introduction 
 

 Many tools can be used to study the qualitative behavior of linear or non-linear 
dynamical systems. In general non-linear systems cannot be analyzed completely in a 
systematic manner. Therefore, some approaches and techniques can be used to 
represent the non-linear system as follows: describing function approach can be used 
when a transfer function of the linear part of the non-linear system is available; but Volterra 
series where used in the case of weakly non-linear systems, while harmonic balance can 
be used when single non-linearity exists. Other numerical techniques with advantages and 
disadvantages to analyze non-linear systems were developed in [1-4]. Many problems and 
limitations arise when using the above approaches and techniques. The biggest problem 
is how to find an algorithm that enables the solution of the non-linear dynamical system 
and keeps errors minimum; besides, it should also offer simplicity in use as well as quick 
convergence.  
 

This paper focuses on two approaches for studying the qualitative behavior of the non-
linear system. The first one is the normal form theory [5-10] and the second is the LLE 
technique [11-14]. The normal forms are used to facilitate and help in diagnosing the onset 
of chaos in non-linear systems while calculations of Lyapunov exponents are a way to 
study where a system is chaotic or not. In the speaking about Lyapunov exponents, the 
largest one is meant. A positive LLE indicates that the system is chaotic, while a negative 
one indicates the non-chaotic behavior.  The LLE can also be used to analyze the stability 
of non-linear systems [15-18]. A new algorithm was created to satisfy the idea of the 
suggested methodology; as illustrated in fig.1. This algorithm gives some advantages as:  
fast convergence to steady state solutions, easy implementation, reliable for higher 
dimensional systems and low number of iterations required. Section 2 gives an outline of 
normal forms method for non-linear dynamical systems. The computation procedures for 
the LLE are presented in section 3. Section 4 illustrates the suggested methodology. While 
section 5 gives a comparative study with an applicable example to show the validity of the 
adopted algorithm. 
 

2. Normal forms for non-linear dynamical system 
 
       Consider the autonomous non-linear system given by the following state equation: 
 

( )
( ) ( ( ))                                   (1)  n

dx t
Ax t BF x t

dt
 

 
Where, 
A and B are real matrices of constant coefficients and compatible dimensions, and Fn (x (t)) 
is the vector of non-linear functions that satisfy some regularity conditions such as 
smoothness, continuity, and should be totally Lipchitz. 
 

The normal form theory depends upon successive coordinate transformations to construct 
a simple form and find a new system with a topologically that conjugate to the original 
system in a simple canonical form.  However there are many techniques for finding the 
normal forms and most of these techniques lack generality. Hartman-Grobman method 
uses the eigenvalues of the linearized system. If one of the eigenvalues lies on the 
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imaginary axis, the linearization fails, and the process is terminated.  The Poincare’ 
method does not work when there are resonance relation between the eigenvalues. Both 
Poincare’ and Taken methods give the same result for vector fields having a 
diagonalizable linear part. Poincare’ method not applied to non-diagonalizable vector 
fields. Ushiki normal form method which is the most suitable technique; is based on the Lie 
brackets and the K-jets [6],[7].   
 

Ushiki method may be considered as a refinement of Takens’ method. The advantage of 
this method is that it does not need an eigenvalue decomposition technique. In what 
follows the adaptation of the Ushiki method in the calculation of the normal form of non-
linear system described by equation (1) is presented. The   Kth order normal form of the 
non-linear system in (1) can be obtained by solving the following equation: 
  

1 1( ) ([ , ( )] )                       (2)   k k

k k k k

d
g t Y V g t

dt
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K    Is the natural projection of Hk along Bk by k: Hk  Gk, 0 ,YK K

K KV x H   
11

[ , ]
kk

VY


      Is the   bracket of Y k -1 and V k -1 , 

0x                           Be the vector space of all smooth vector fields (i.e., C ), 

0

Kx                             Be the vector space of all K-jets of the vector fields in 0 at 0 (obtained by 

truncating      all terms of degree greater than k), 

KH                    Is the subspace consisting of all vector fields described by a homogeneous 

polynomial of degree K,
0

K

KH x , 

KB             Is the subspace of Hk consisting of the image of the linear map, K KB H  , 

KG            Is the complementary subspace to
KB . 

 

3. Lyapunov exponents 
 
There is dependency between Lyapunov exponents and the chaotic properties of 
dynamical systems. There are several techniques for finding the Lyapunov exponents of 
the non-linear systems given by equation (1) [11-15]. However, no single technique 
appears to be optimal for calculating the Lyapunov exponents. For calculating the LLE 
depends upon the time domain solution of the state equation, some methods can be 
described as: 
 

3.1 The standard method 

 
This method is most popular method to compute the Lyapunov exponents that combines 
the numerical integration of the linear evaluation equation with the Gram-Schmidt 
reorthonormalization process applied periodically. To find the approximate exponents λi (t) 
at time t = τ, the renormalization internal T was picked, so that   τ = rT with r   N, the linear 
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evaluation equation is integrated over T and the Gram-Schmidt process applied. This is 
repeated a total r times keeping the norms from the Gram-Schmidet (GS). The GS 
ensures that the direction and rates of growth are measured correctly [11-15]. The 
Lyapunov exponents are: 
 

1

log( ( ))

lim                                   (3) 




r

i

m

i r

N m

rT
 

 
Where: 
 Ni (m)              is the norm of the distance between two trajectory points  
 r                       is the number of  iterations, 
T                       is the interval period of renormalization. 
This method needs a good choice of T and large number of iterations since a bad choice 
of T may cause the algorithm to fail. 
 
  
 3.2 The Q –R algorithm 
 
 It is another technique for finding the Lyapunov exponents. This method depends upon 
decomposition of the fundamental solution of the system. The fundamental solution is 
expressed as M(t) = Q(t) R(t) , where Q(t) is an orthogonal matrix and R(t) is an upper 
triangular matrix which are functions of both Q(t) and the Jacobian matrix of the system (1) 
[11-15]. The Lyapunov exponents are obtained from the diagonal elements of the matrix   
R (t) and are given by: 
 

1
lim log ( ),1                             (4)   i t iiR t i n

t
 

 
This method needs accurate evaluation of the orthogonal matrix, since the error in 
orthogonality leads to a break down in the computations of Lyapunov exponents due to 
numerical over and under flows. The two methods require rescaling, reorthogonalization 
and large number of iterations. 

 

A new algorithm based on combining the normal form theory and the numerical calculation 
of the LLE to satisfy the qualitative behavior of non-linear systems is illustrated in the next 
section. 

 

4. The suggested methodology: 
 
This method don’t need rescaling or re-orthogonalization so it lends itself to fast 
computation, easy implementation and reliable for all systems of higher order.  It also 
avoids numerical over flow and takes the advantage of making use of all available data in 
the time series solution of the differential equation. Fig.1 illustrates the proposed algorithm 
procedures as follows: The normal form expressions obtained from the system of 
differential equations are used to convert the non-linear dynamical system to simple 
equivalent one. Time series data were generated from the equivalent system to evaluate 
LLE. Then the presence of chaos can be detected.  
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Fig. 1 Block diagram of the proposed algorithm 
 
The proposed approach proceeds as follows:- 
 
- Obtain the normal form expressions as given in (2). 
-Use the normal form expressions to obtain the time domain solution with the advantage 
of fast conversion.  

-Calculate the LLE from time domain solution. 
 

The outcome of this algorithm is the Lyapunov exponents of the system, the largest of 
which λi is of special interest in diagnosing dynamical systems, while zero values of λi 

indicate periodic behavior. Negative values of λi indicate stable fixed points, while positive 
values of λi indicate chaotic behavior and presence of chaos[12], [16], and [18]. The i

th 
Lyapunov exponent is given by: 
 

1

1
log                                                 (5)



 
N

i

i

i o

d

N d  

                                                                                              
Where: 
 N  is the number of solution points obtained by direct integration. 

do  is the initial separation between two nearby points along the trajectory. 
di          is the ith distance between two nearby points  on the trajectory. 
 

Examples for attractors of a three dimensional system are given in table.1. 
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Table.1. Examples of attractors of a three-dimensional system 
 

Attractor Sign of Lyapunov exponents Asymptotic dynamics 

Stable equilibrium (-,-,-) Stationary 

Stable periodic orbit (0,-,-) Periodic 

Attracting torus (0,0,-) Quasi-periodic 

Strange attractor (+,0,-) Chaotic 

 

The next section introduces some examples to illustrate the procedure. A Computer 
algebra program is designed using package (Maple) to find normal forms. The calculation 
of the LLE is carried out using an algorithm designed specially in C++ to handle the 
computation task. 
 

5- Applicable example 
 

This example introduces a studying Chua’s system as follows: 
  

a) Comparison between the analytical solution as normal form and numerical 
computing one as Runge-Kutta-4 method.  

b) Comparison between LLE calculated using previous methods (Q-R algorithm and 
standard method) and such calculated based on the proposed method. 

 

5.1 Chua’s oscillator 

  
Chua’s oscillator is one of the simplest electronic circuits that are capable of producing 
chaos. It can exhibit a wide array of behavior including a great variety of attractors, 
bifurcations, and routes to chaos[19]. 
 
5.1.1 Chua’s system representation 
 
The Chua, s system with cubic nonlinearity is described by[20].            

:       

3( )

                                                     (6)





  

  

 

dx
y cx x

dt

dy
x y z

dt

dz
y

dt
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 Where, β, α, and c are system parameters. For the set of parameters (α =10, β =16, and 
c=0.143) the system was shown to display Chaos (double scroll attractor) [20]. 
 
The local Lyapunov exponents can be calculated from the Jacobian matrix at equilibrium 
point (x=y=z=0) which is given by: 
 

0

1 1 1                                              (7)

0 0

 



 
 

 
 
  

c

J
                                                                                           

The sum of the Lyapunov exponents is given by: 

3

1 0

1
lim sup ( ( ))                      (8) 



 
t

i t

i

Trace J s ds
t

 

The result of the calculation gives,  

43.21
3

1




c
i

i   

This result indicate that the system is dissipative                                            
 

5.1.2 Normal form of Chua's  system 

For the Chua's  system, the 3rd order normal form is given by: 

3 ( ) ( )       (9)   
    

    
    

x y y x z
x y x y z

 

Where: ω, δ and σ are the arbitrary constants from the integration of the Ushiki normal 
form.   
 

5.2 The comparative analysis 
 
5.2.1 System behavior using normal form method: 
 
To check the validity of the proposed algorithm, a further illustration of the phase plane 
and time domain solution using the normal form expressions were illustrated in figure (3): 
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Fig.2 (a) The phase plan plot (x(t), y(t)) of Chua's  system using Normal form method 
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Fig.2 (b) The time response x(t) of Chua's  system using Normal form method. 

 

5.2.2 System behavior using Runge-Kutta-4 method: 
 
The numerical solution of the system using the Runge-Kutta-4 method [4] with step size 
h=0.01 is shown in the phase plane plot and time domain solution of fig.3. 
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Fig. 3(a) The phase plane plot (x(t), y(t)) of Chua's  system using Runge-Kutta-4 method 
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Fig. 3(b) The time response x(t) of Chua's  system using Runge-Kutta-4 method 
 
Figures 2, 3 illustrate that the qualitative behavior of analytical solution is the same as that 
obtained by the numerical methods with the advantages of fast convergence to steady 
state behavior. However solutions give the same response, the solution satisfied by the 
normal form is free from transient that shown in fig.3 (b). 
 
 
 

5.2.3 LLE calculations for Chua's  system 
 
The standard method and the Q-R algorithm are both used to calculate the LLE, N=10000 
iterations as shown in table (2).  
 
Table.2. Comparison between existing technique and the proposed approach  
 

Algorithm Standard method Q-R algorithm Proposed approach 

LLE 0.1332 0.1328 0.1317 

Run time  (sec) 3.09 3.99 1.84 

 
 
From this table; the % reduction in Run time about 49% to 59%. The calculations give 
positive value of the LLE which indicates chaotic behavior (double scroll attractor) and is in 
agreement with the results in [12],[16],[20]. 
  
It is seen from table (2) that the calculated λ1 as LLE by using the proposed approach is in 
good agreement with the existing algorithms with the advantage of minimum run time.   
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Conclusions 

 
 Many numerical techniques are used to investigate the qualitative behavior of the 

non-linear systems and computing the LLE. 

 Most of the used methods have the disadvantages of lack of generality, less 
accuracy, difficult implementation, and numerical overflows/underflows for higher 
dimensional systems and give unreal behavior especially in chaotic systems.  

 The proposed algorithm that combined the normal form method and the numerical 
method can provide active solutions to many challenges, avoids most computational 
errors encountered in other  numerical methods, besides  it is fast, and easily 
implemented.  

 

References: 
 
[1] M. W. Hirsch and S. Smale, “Differential equations, Dynamical system and linear Algebra,” 

Academic, New York, (1974). 
[2]  J. M.Thompson and H.B. Stewart, “ Non-linear dynamics and Chaos,” (Wiley, new 
york,1986).   
[3] J.Guckenheimer and P.J.Holmes, “Non-linear oscillations, Dynamical systems, and 

Bifurcations of   vector fields,”   NewYork: Springer-verlag, 2nd  printing,  (1983). 
 [4]John H. Mathews,”Numerical methods for Mathematics Science, and Engineering,” 2

nd
 

EditionPrentice-Hall, Inc. (1992). 
 [5] J.Della Dora, L.Stolovitch, “Normal forms of differential systems”, London Mathematical              
Society, Lecture   note Series (193), CAMBRIDGE UNIVERISITY PRESS. 
[6] S.Ushiki, “Normal form for singularities of non-linear differential equations,” in computing 

methods in applied science and engineering, VI, R. Glowinski and J. L. Lions, 
Eds.Amesterdam, the Netherlands:     North Holand, (1984). 

[7]  S.Ushiki, “Normal form for singularities of vector fields,” Japan J.Appl.Math.,Vol.pp-1-37, 
1984.                   
[8] L.O.Chua and H.Kokubu, “Normal forms for non-linear vector fields-part 1: Theory and 

Algorithm,”  ”IEEE Circuits syst.,vol.35,pp 863-880, (1987). 
 [9] J. Basto-Gon¸calves, A.C. Ferreira, “Normal forms and linearization of vector fields with 

multiple eigenvalues,”  J. Math. Anal. Appl. 301 (2005), 219-236. 
[10] Takens F., Vanderbauwhede A., ”Local invariant manifolds and normal forms,” Eds 

Handbook of dynamical systems, vol. 3, North-Holland, (2009). 
[11] Michael T. rosestain, James J. collins and carlo J. De Luca, “A practical method for 

Calculating Largest Lyapunov exponents from small data setes,” Neuro muscolar research 
center and Department of biomedical    Engineering, November (1992). 

[12] J.C.Sprott, “Numerical calculation of Largest Lyapunov Exponent,”october13, (1998).  
[13] K. Ramasubramanian and M. S. Sriram,” Acomparative study of computation of Lyapunov 

spectra with different algorithms,” arXiv:chao-dyn/99909029 v1 17 sep (1999). 
[14] Fridaus E. Udwadia and Hubertus F. von Bremen, “An efficient and stable approach for 

computation of characteristic exponents for continuous dynamical system,” Applied 
Mathematics and computation 121(2001)219-259.  

[15] D. Guégan, J. Leroux, “Forecasting chaotic systems: The role of local Lyapunov 
exponents,” Chaos, Solutions and Fractals, 41 (2009a) 2401-2404. 

[16] D. Guégan, J. Leroux, “Local Lyapunov Exponents: A New Way to Predict Chaotic 
Systems, forthcoming in Topics on Chaotic Systems,” World Scientific, Eds., (2009)b. 



11 

 

[17]Gavrylyak M.S., Maksimyak A.P. and Maksimyak P.P. , “Correlation method for measuring 
the largest Lyapunov exponent in optical fields,” Ukr. J. Phys. Opt. (2008), V9, №2 pp119-
127 

[18] M. Sano and Y. Sawada,” Measurement of the Lyapunov spectrum from a chaotic time 
series,” PHYSICAL REVIEW LETTERS, vol35.No10, Sep(1985). 

[19]Brown, R. [1992] "Generalizations of the Chua Equations," International Journal of 
Bifurcation & Chaos in Applied Sciences & Engineering, vol.2, no.4, pp.889-909. 

[20]A. Huang, L, Pivka, C. W. Wu and M. Franz, .Chua, s equation with cubic   
nonlinearity,. Int. J.Bifurcation and Chaos, vol. 6, pp. 2175-2222, 1996. 

 
 


