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ABSTRACT 

In this paper, fault detection scheme is introduced to improve the security and reliability of the NTRU in 

realistic environments, such as operating over a network. As the NTRU will be working in real 

networks, which have their own set of transient errors, handling such errors in analyzing the NTRU 

becomes a must. A single transient error occurring during the NTRU encryption (or decryption) process 

will likely result in a large number of errors in the encrypted/decrypted data. Such faults must be 

detected before sending data to avoid the transmission and use of erroneous data. Concurrent fault 

detection is important not only to protect the encryption/decryption process from random faults, but it 

will also protect the decryption circuitry from an attacker who may maliciously inject faults in order to 

find the secret key. We first describe the effects that faults may have on NTRU security while operating 

over a network by analyzing the propagation of such faults to the outputs. We then present two fault 

detection schemes: The first is a redundancy-based scheme while the second uses an error detection 

code. The latter present fault detection schemes by using an error detecting code, using one parity bit. 

We will add the parity bits to the polynomials and disable the device output when any of these parity 

checks are violated. This fault detection scheme has more than 99% coverage fault detection in the 

encryption process and in the first part in the decryption process. In the second part in the decryption 



process, it has more than 67 % coverage fault detection. We can increase this ratio to high fault detection 

by adjusting the choices of the parameters of the NTRU network security system. 

1. INTRODUCTION 

Cryptography is the science of writing in secret code. Nth Degree Truncated Polynomial Ring Units, 

known as NTRU cryptography, was developed in 1996 by three mathematicians: Jeffrey Hoffstein, 

Joseph H. Silverman, and Jill Pipher.  Later these three mathematicians in addition to Daniel Lieman 

founded the NTRU Cryptosystems, Inc, Boston, USA. [1] The main target was speeding up the 

encryption process by using NTRU. In 2009, NTRU Cryptosystem has been approved for 

standardization by the Institute of Electrical and Electronics Engineers (IEEE) [1]. NTRU is a lattice-

based alternative to RSA and ECC and is based on the shortest vector search problem in a lattice. Thus 

making it a public key cryptosystem not based on factorization or discrete logarithmic problems.  NTRU 

has many advantages over the other methods of encryption like RSA and DES [2]. For example, NTRU 

is a more efficient encryption and decryption, in both hardware and software implementations [2]. It has 

much faster key generation allowing the use of “disposable" keys (because keys are computationally 

“cheap" to create). It uses small memory size so it allows using it in applications such as mobile devices 

and Smart-cards. NTRU is also secure against chosen plaintext attacks as it is probabilistic cryptosystem 

[3]. NTRU is most naturally described using convolution polynomial rings, but the underlying hard 

mathematical problem can also be interpreted as SVP or CVP in a lattice [3]. Fault detection used to 

detect errors before sending data to avoid the transmission and use of erroneous data [4]. Moreover, fault 

detection is a desirable property for preventing malicious attacks [5], aimed at extracting sensitive 

information, like the secret key, from the device. Fault detection techniques are applied to several 

method of complex and non homogeneous cryptography like AES [6] [7]. In [7] a simple but efficient 

error detection code for AES is developed and evaluated which leads to very efficient and high coverage 

fault detection. In this paper, we present a study of the error propagation behavior of the encryption or 

decryption process. Then we discuss two fault detection schemes which increase NTRU security: The 

first is a redundancy-based scheme while the second uses an error detection code. The latter present fault 

detection schemes by using an error detecting code, using one parity bit. The paper is organized as 

follows: In Section 2, a brief overview of the NTRU algorithm is presented, including the 

implementation details which are necessary for understanding our proposed error detection schemes. 

Section 3 describes the analysis of error propagation in the encryption and decryption units for a simple 

single bit transient fault. This analysis allows us to obtain a rather comprehensive picture of the general 



behavior of NTRU in the presence of faults. Section 4 describes two fault detection algorithms. The first 

is a redundancy-based technique, while the second is based on exploiting error detecting codes, properly 

organized so as to fit NTRU. Finally, Section 5 concludes the paper. Appendices A, B and C outline 

several mathematical proofs for the error detection codes which are proposed in Section 3.  

2. THE NTRU ALGORITHEM 

In this section we describe the NTRU public key cryptosystem. We begin by fixing an integer N ≥ 1 and 

two moduli p and q, and we let R, Rp, and Rq be the convolution polynomial rings 
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We may view a polynomial a(x) ∈ R as an element of Rp or Rq by reducing its coefficients modulo p or 

q. We make various assumptions on the parameters N, p and q. In particular, we require that N be prime 

and that gcd(N, q) = gcd(p, q) = 1 and  q > (6d + 1)p. The parameters N, p and q are chosen in this way 

because if N or p is divisible by q then it is very easy for an attacker to decrypt the message without 

knowing the private key. And the parameter N is chosen to be prime because if it is not prime the 

attacker can recover the private key by solving a lattice problem in dimension N, rather than in 

dimension 2N. The condition q > (6d + 1)p ensures that decryption never fails. 

For any positive integers d1 and d2, we let a(x) has   
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Polynomials in T(d1, d2) are called ternary polynomials. They are analogous to binary polynomials, 

which have only 0’s and 1’s as coefficients. 

Let’s assume that Alice (or some trusted authority) chooses public parameters (N, p, q, d). Alice’s 

private key consists of two randomly chosen polynomials 

( ) ( 1, )f x T d d   and ( ) ( , )g x T d d     (1) 

Alice computes the inverses 

1( ) ( )qf x f x   in Rq and 
1( ) ( )pf x f x   in Rp.     (2) 

Alice chooses f(x) in T (d + 1, d), rather than in T (d, d), because elements in T (d, d) never have inverses 

in Rq. 

Alice next computes 



( ) ( ) ( )qh x F x g x   in Rq.      (3) 

The polynomial h(x) is Alice’s public key. Her private key, which she’ll need to decrypt messages, is the 

pair (f(x), Fp(x)). Alternatively, Alice can just store f (x) and compute Fp(x) when she needs it. 

Bob’s plaintext is a polynomial m(x) ∈ R whose coefficients are between 1

2p
  and 1

2p

. Bob chooses a 

random polynomial (ephemeral key) r(x) ∈ T (d, d) and computes 

( ) ( ) ( ) ( )(mod )e x ph x r x m x q   .     (4) 

Bob’s cipher text e(x) is in the ring Rq. 

On receiving Bob’s cipher text, Alice starts the decryption process by computing 

( ) ( ) ( )(mod )a x f x e x q        (5) 

She then center lifts a(x) to an element of R and does a mod p computation, 

b(x) = Centerlift (a(x))     (6) 

( ) ( ) ( )(mod )pm x F x b x p       (7) 

Table 1 shows some suggested choices for (N; p; q) for different security levels of the original NTRU 

encryption algorithm [8]. 

Table 1. The parameter sets for NTRU in [8] 

 N P Q 

Moderate Security 167 3 128 

High Security 263 3 128 

Highest Security 503 3 256 

 

3. ERROR ANALYSIS:  

In this section, the error propagation behavior of the encryption or decryption process is studied. 

The purpose of this study is to understand the effect of a fault occurring during the execution of the 

algorithm on the final result. This is an important first step when developing fault detection schemes. For 

simplicity, we will study the effect of single faulty bits inserted in each step. 

In the encryption process due to the nonlinearity as shown in Eq. (4) it is possible to see that a faulty bit 

inserted in the encryption causes a large number of erroneous bits in the final encrypted data. 



In the decryption process we have two operations the first operation in Eq. (5) the injection of a single 

faulty bit at the input will cause only single faulty bit at the output but in the second operation in Eq. (6) 

fault spreads considerably. 

4.  FAULT DETECTION TECHNIQUES 

The propose of this paper is to detect a fault in order to prevent the transmission and use of incorrect 

data. This issue is important as any hardware implementation of NTRU is bound to be complex and, 

consequently, likely to be subject to fault occurrences. In this section, two techniques for fault detection 

are presented. The first technique is based on redundancy. The second one is based on error detecting 

codes. 

4.1  Redundancy-Based Technique 

The redundancy-based solution for implementing fault detection in the encryption module is based on 

the idea of performing a test decryption immediately after the encryption and then checking whether the 

original data block is obtained. The overhead is close to 100 percent. The time penalty in either of these 

two cases is the time required to decrypt a data block, plus the time required for the comparison.  

4.2  Error Detecting Codes 

Error detecting codes (EDCs) have been widely used in practice. EDCs may at first seem unsuitable for 

implementing error detection in NTRU since NTRU is strongly nonlinear algorithm and because errors 

spread quickly over the data block (Sections 3). In this section, an efficient EDC scheme for NTRU will 

be described and evaluated. It achieves a high level of fault coverage at a limited hardware overhead 

cost. 

To implement this coding scheme, it is necessary to develop, for each operation in the encryption and 

decryption process, a method for predicting the output parity, given the input operation and the input 

parity. We then need to schedule checkpoints during the encryption and decryption process.  

We next describe the structure of the parity bits’ prediction and checking scheme. Further details about 

the coding scheme, are included in Appendices A through C. 

We present in what follows our proposed parity prediction algorithms for the individual operations. 

4.2.1 Encryption process: 

The prediction of the output parity bits of the encryption process is complex. The detailed solution is 

described in Appendix A.  



To check the parity bits and generate a parity error flag, we need a set of parity generators and 

comparators which will compare the predicted parity bits to the generated parity bits 
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where q is greater than or equal 128 (Table 1)so it has 99% coverage fault detection. 

4.2.2 Decryption process: 

In the decryption process we have two processes (see section 2). In the first process we will work with 

Eq. 5 by adding parity bit for a(x) equal 
1
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   where q is greater than or equal 128 (Table 1) so it has 

99% coverage fault detection. The detailed solution is described in Appendix B. 

In the second process we will add parity bit for b(x) equal  
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are equal then there is no errors (except the case when the summation of errors is multiples of p. ) The 

probability of detecting errors is greater than or equal 1p

p

  where p is greater than or equal 3 (Table 1) 

so it has 67% coverage fault detection. We can increase this ratio to high fault detection by increasing 

the choices of the parameter p. The detailed solution is described in Appendix C. 



5.  CONCLUSIONS 

An analysis of the behavior of the NTRU cryptosystem in the presence of faults has been carried out. We 

presented the effect of a single error on the NTRU encryption (or decryption) process and we found that 

it will cause a large number of errors in the encrypted/decrypted data. Two proposals for fault detection 

have been presented in this paper. The second one, which is based on the use of parity codes, exhibits 

good fault coverage, limited hardware overhead cost. We presented fault detection schemes by using an 

error detecting code (using parity bit). We added parity bits to the polynomials and disable the device 

output when any of these parity checks are violated. The probability of detecting errors equal 1q

q

  in 

the case the encryption process and in the first part of the decryption process. This probability is large 

because (6 1)q d p  . In the case of the second part of decryption process the probability of detecting 

errors equal 1p

p

  and this is may be a small. We can increase it by increasing the value of p. 

APPENDIX A 

PARITY PREDICTION IN ENCRYPTION PROCESS 

In this appendix, we describe the formal construction of the parity prediction scheme for the encryption 

process (see Section 2). 

The parity operator ()p  is a function of the type: 
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We will add parity bit for m(x) equal  
1

( ) mod
n

i

i

m q


  then after the step of calculating e(x) we will add 

the parity bit to 
1 1

( *( )mod *( )mod )mod
n n

i i

i i

p r q h q q
 

   (predicted parity bits)and compare by 

1

( ) mod
n

i

i

e q


  (generated parity bits)if they are equal then there is no errors (except the case when the 

summation of errors is multiples of q. )  

To show that  

1

( ) mod
n

i

i

e q


  = 
1 1

( *( )mod *( )mod )mod
n n

i i

i i

p r q h q q
 

                 (7)     

From Eq. 1 the party of e(x) will be 
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Let  

r(x) = r0 + r1 x + r2 x2 + r3 x3 + ... rn xn 

h(x) = h0 + h1 x + h2 x2 + h3 x3 + ... hn xn 

m(x) = m0 + m1 x + m2 x2 + m3 x3 + ... mn xn 

Substituting in (8) 
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This is complete the proof of (8) 

APPENDIX B 

PARITY PREDICTION IN THE FIRST PART OF DECRYPTION 

PROCESS 
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APPENDIX C  

PARITY PREDICTION IN THE SECOND PART OF DECRYPTION 
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