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 As one of the remarkable cathode materials for lithium-ion batteries, the disordered rocksalt Li-excess Li1.3Nb0.3Mn0.4O2 

(LNMO) revealed attractive behaviors. Herein, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric 

analysis (TGA), and differential scanning calorimetry (DSC) for the as-prepared LNMO were reported. The symmetrical 

bending and stretching vibrations of Li-O and Mn-O appeared in the range 480-700 cm-1. The reaction enthalpy (∆𝐻) is 

found to be 306.78 J/g. The dielectric properties were also studied at various frequencies and temperatures. At low 

frequencies, the LNMO has high permittivity as well as losses. The AC conductivity and the dielectric modulus at various 

frequencies and temperatures were also discussed. Different dielectric parameters were given for the LNMO sample. All 

general outcome results of LNFO emphasize the importance of such lithium-ion battery cathode material in the 

applications.   

 

1. Introduction 

Within the past few decades, the demands for sources of energy storage satisfying high performance as well as safety have increased. Rechargeable 

lithium-ion batteries (LIBs) are among these sources that are characterized by remarkable features, such as high capacity, working voltage, safety, and 

large cycle period [1-5]. Remarkably, there is an energy gap between the cathode and the anode materials that LIBs performance is restricted by the 

energy densities associated with cathode materials [6, 7]. A huge number of attempts have been done to synthesize cathode materials to provide high 

energy density with several factors being taken into the cost [8-10].  

Among the recently revealed cathode materials, the cation-disordered rocksalt Li-excess (DRX) cathode materials have an intense attraction due to 

their characteristics [11-14].  The DRX cathode materials can deliver energy densities over about 1000 (Wh/kg) [15]. Urban et al. [16] reported a 

considerable cation disordering and Li excess in the rocksalt structure (NaCl-structure) lead to DRX materials that can produce high capacities compared 

to other commercial materials [16]. The cation disordering which means the random distribution of Li and transition metal (TM) at the cation sublattice 

4a sites creates zero-TM channels. Such channels have no TMs in the face-sharing octahedra and act as the main channel for Li diffusion [16-18]. It is 

suggested that the existence of the d0 transition metal is vital for creating disordered rocksalt phases [17].  

In 2015, Yabuuchi et al. [19] reported the niobium-based high-capacity cathode material, Li1.3Nb0.3Mn0.4O2 that delivers high noticeable reversible 

capacities up to 300 mAh.g−1. The output high capacity refers to applying a Mn2+/Mn4+ redox couple that utilizes a redox reaction of two electrons (2e−) 

[12, 19]. Recently, Kamel et al. [20] reported the optical, magnetic, and thermodynamic properties of this compound.  

Since most studies are directed toward electrochemistry performance, there are few concerning fundamental studies such as thermal and dielectric 

properties. Furthermore, the thermal analysis for cathode materials of LIBs is very important to understand their behavior at elevated temperatures 

[21]. This work aimed to throw light on the thermal analysis up to 995 °C, FTIR spectra, and the electrical properties of LNMO at different temperatures 

as well as different frequencies.  
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2. Experimental part 

2.1. Synthesis  

The synthesis of the LNMO was previously reported [20, 22]. For the dielectric measurements, the as-prepared LNMO powder sample is pressed 

using a hydraulic press at about 3 tons into a round pellet of diameter and thickness of 1 cm and 2.7 mm, respectively. The pellet is then sintered at 950 

°C for 12 h in an argon atmosphere. Then, the two round sides of the pellet were coated with silver paste. 

2.2. Characterization  

The attenuated total reflectance Fourier Transform Infrared (ATR-FTIR) spectrum was collected on an Invenio-R FTIR spectrometer (Bruker). The 

measurements were performed using a Bruker Platinum ATR with a diamond crystal. The thermogravimetric analysis (TGA), and differential scanning 

calorimetry (DSC) data were obtained using Simultaneous Thermal Analyzer (STA) 6000 (PerkinElmer) in a range of temperatures ranging from 303 to 

1268 K in a nitrogen atmosphere, and a heating rate of 10 °C/min. The dielectric properties were measured at different temperatures by using the LCR 

meter (Hioki IM 3536) in a frequency range from 100 Hz to 8 MHz with an accuracy of ± 1 × 10−4 pF. 

3. Results and discussion  

3.1. Characterization  

The structure of the polycrystalline LNMO sample has a disordered structure with the space group Fm-3m (number 225) as reported previously by 

Kamel et al. [20].  Fig. 1 illustrates the FTIR spectrum of the LNMO sample in the wavenumber range of 400-4000 cm−1. Table 1 summarizes the main 

peaks at different wavenumbers.  

 

Fig. 1. FTIR spectrum of Li1.3Nb0.3Mn0.4O2. 

 
The symmetrical bending and stretching vibrations of Li-O and Mn-O, and Nb-O appear in the wavenumber range of 480 and 700 cm−1  [23-26]. The 

peaks (867, 1071, and 1224 cm−1) are attributed to the Li2CO3 impurity released from the reaction between unreacted carbon dioxide and Li salt on the 

surface of Li-excess particles [27, 28]. The bands 1443 and 3736 refer to the O-H stretching vibrations, and the bands 2358, 2896, and 2986 cm−1  can 

be assigned to the C-H stretching vibrations [29]. 

 

Table 1: The FTIR mean peaks and corresponding assignments for Li1.3Nb0.3Mn0.4O2 

Wavenumber (cm−1) Assignments 
480 Li-O and Mn-O, and Nb-O bending and stretching vibrations [23-26] 
700 Li-O and Mn-O, and Nb-O bending and stretching vibrations 
867 Li2CO3 impurity [27, 28] 

1071 Li2CO3 impurity 
1224 Li2CO3 impurity 
1443 O-H stretching vibrations [29] 
2358 C-H stretching vibrations [29] 
2896 C-H stretching vibrations 
2986 C-H stretching vibrations 
3736 O-H stretching vibrations 
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3.2. Thermal analysis 

The thermogravimetric analysis (TGA), derivative thermogravimetric (DTG), differential scanning calorimetry (DSC), and the specific heat (Cp) of the 

LNMO sample are shown in Fig. 2(a-d). One noted that the TGA curve (Fig. 2(a)) can be divided into different loss parts. The first part started to 

decompose at room temperature due to the heating-up process leading to the evaporation of water molecules in the compound [30-32]. The weight is 

continued to decrease with increasing temperature.  The weight loss is estimated to be 4.81 %. at 613 K. Another weight loss is 5.16 % at 789 K and 

occurred with further increasing temperature owing to the decrease in the density of the compound. A sudden increase in the weight that occurred from 

802 to 895 K could be attributed to some oxides being released. This sudden increase or weight gain (0.7 %) is due to the oxidation process. Finally, the 

last weight loss (2.37 %) appeared at 1004 K to 1100 K, and then the weight was almost stable at high temperatures up to 1264 K. Fig. 2(b) indicates 

the derivative of the weight (DTG) to demonstrate the weight losses.  

Besides, the DSC curve (Fig. 2(c)) showed a weak endothermic peak around 1055 K, where the reaction enthalpy (∆𝐻) was calculated to be 306.78 

J/g. This indicates the thermal stability of the LNMO sample. Fig. 2(d) depicts the specific heat (Cp) as a function of the temperature. The initial 

temperature (Ti) of the reaction is found to be 1020 K, and the specific heat corresponding to this temperature is 5.44 kJ/mol K. Also, the end of this 

reaction or the final temperature (Tf) is 1105 K and Cp = 3.13 kJ/mol K. This observed peak in the DSC and associated specific heat curve may be due to 

the change of the oxidation state in the LNMO compound [33, 34]. 

 

 

Fig. 2. (a) Thermogravimetric analysis (TGA); (b) the derivative thermogravimetric (DTG); (c) differential scanning calorimetry (DSC) (heat flow endo 
down). The inset in (c) indicates such a weak endothermic peak for the reaction; (d) the specific heat Cp against the temperature. The inset in (d) 

illustrates the initial temperature for the reaction Ti and the final temperature Tf   for Li1.3Nb0.3Mn0.4O2. 

3.3. Dielectric properties  

       Frequency dependence   

The dielectric measurements are considered a potent tool to study the dynamic properties of the sample such as conductance, permittivity, and loss 

factor [35, 36]. Through the dielectric properties, we can obtain some information about the grain and grain boundaries of the studied compound and 

its structure [37]. The complex permittivity (𝜀∗) as well as the dielectric loss tangent (tan ) of a substance is described as [38, 39]:    

𝜀∗ =  𝜀′ − 𝑖𝜀′′                                                                                                                        (1) 

𝑡𝑎𝑛 𝛿 = 𝜀′′/𝜀′                                                                                                                        (2) 

where 𝜀′, 𝜀′′ are the real (dielectric constant) and imaginary parts of complex permittivity. The dielectric loss is associated with the energy loss and 

takes place in case there are shifts of the polarization behind the applied electric field owing to the grain boundaries [37]. There are three featured 

factors responsible for the dielectric loss of the materials: (i) space charge migration, (ii) direct current conduction, and (iii) dipole loss or the molecular 

dipoles movement [40]. Fig. 3 (a-d) presents 𝜀′, 𝜀′′, tan  and AC conductivity ( 𝜎𝐴𝐶) against the frequency ( f ) at different temperatures. Regarding 𝜀′ 

against log f  plot (Fig. 3(a)), 𝜀′ deceases with increasing the frequency and its value became constant at high frequencies. This behavior is similar for 𝜀′′ 
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against log f  (Fig. 3(b)). On the other hand, the change of dielectric loss tangent (tan ) with the frequency (Fig. 3(c)) showed that tan  decreases as the 

frequency increases. Then, it slightly increases and exhibits a broad peak. It is noticed that the peak shifts as the temperature raised which gives evidence 

for the temperature dependence of tan . The high values of 𝜀′, 𝜀′′, and tan  in the low frequencies range refer to the accumulations of the space charge 

polarization [39]. Such high values at low frequencies are related to Li+ ions at the electrode interface and increased polarization in addition to the high 

resistivity of grain boundaries compared to the grains [37, 39]. However, according to Jonscher's universal power law,  the 𝜎𝐴𝐶(𝑓) is expressed according 

to Jonscher's universal power law [41]:   

𝜎𝐴𝐶(𝑓) =  𝜎𝑡−𝜎𝐷𝐶 ≈ 𝐴𝑓𝑚                                                                                                     (3) 

where 𝜎𝐷𝐶  is the 𝜎𝐴𝐶  at 𝑓 → 0, 𝐴 is a constant that depends on temperature, 𝜎𝑡  is the total conductivity, and 𝑚 is known as the frequency exponent. The 

frequency dependence of 𝜎𝐴𝐶  at different temperatures is illustrated in Fig. 3(d). There is an obvious gradual increase of 𝜎𝐴𝐶  as the frequency increases. 

The 𝜎𝐴𝐶  curves at various temperatures merge to one single curve at high frequencies region (𝑓 > 6 MHz).  

 

Fig. 3. The variation of (a) dielectric constant (𝜀′); (b) dielectric loss (𝜀′′); (c) the loss factor (tan ); (d) log 𝜎𝐴𝐶  with log f at various temperatures. 

For further understanding of the conduction mechanism of LNMO sample, Fig. 4(a) displays log 𝜎𝐴𝐶  against the angular frequency, log (𝜔), at various 

temperatures. As 𝜔 increases, 𝜎𝐴𝐶  has a linear increase. Jonscher’s power law (Eq. 3) was used to fit the data. Table 2 listed the frequency exponent (𝑚) 

at different temperatures. As shown in Table 2, the values of 𝑚 are located between 0 and 1. Hence, the conduction mechanism is associated with the 

correlated barrier hopping (CBH) model [42-44]. In this model as the temperature increases the frequency exponent (𝑚) decreases, and (𝑚) is descibed 

as [45-47]:  

𝑚(𝑇) = 1 −
6𝑘𝐵𝑇

𝑊𝑀+𝑘𝐵𝑇 𝑙𝑛(𝜔𝜏0)
                                                                                                  (4) 

where 𝑊𝑀 is the required binding energy to transfer a charge carrier from one site to another, 𝜏0 denotes the characteristic relaxation time, and 𝑘𝐵 is 

Boltzmann constant. In the case that 𝑊𝑀 ≫ 𝑘𝐵𝑇 ln(𝜔𝜏0), Eq. 4 can be written as: 

𝑚(𝑇) = 1 − 
6𝑘𝐵𝑇

𝑊𝑀
                                                                                                                  (5) 

Fig. 4(b) illustrates the temperature dependence of the frequency exponent (𝑚 − 1). From the fitting using equation (5), the average binding energy 𝑊𝑀 

is calculated to be 201 meV. 
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Fig. 4. (a) The variation of log 𝜎𝐴𝐶  versus log 𝜔 at various temperatures. The red lines demonstrate the linear fitting according to Eq. 3; (b) 
temperature dependence of frequency exponent (m-1). The red line indicates the linear fitting using Eq. 5. 

Table 2. The frequency exponent (m) at different temperatures. 
 

 

 

 

 

Another important parameter that can analyze the electrical response is the complex electric modulus 𝑀∗(𝑓). The dielectric relaxation processes of 

LNMO compound were examined through 𝑀∗(𝑓) that is described as [48-51]:   

𝑀∗(𝑓) =  𝑀′ +  𝑖 𝑀′′                                                                                                             (6) 

where 𝑀′ and 𝑀′′ are the real and imaginary components of the complex modulus, respectively.  For more insights into the relaxation process, the 

frequency dependence of 𝑀′ and 𝑀′′ (Fig. 5 (a, b)) is very useful to understand such a process [52, 53]. As illustrated in Fig. 5(a), 𝑀′ has a gradual 

increase with the increased frequency until reaches a peak value and then gets lowered at high frequencies. Such behavior is as S-sharp and attributed 

to an ionic conduction [54]. On the other hand, 𝑀′′ curves (Fig. 5(b)) reveal relaxation peaks. This peak shifts toward higher frequencies as the applied 

temperature increases. The low-frequency part of  𝑀′′ is associated with the charge carriers range within the carriers have a dynamic behavior over 

large distances [55].   

T (K) M 

363 0.50 
373 0.51 
383 0.50 
393 0.47 
403 0.42 
413 0.37 
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Fig. 5. The frequency dependence of (a) the real dielectric modulus (𝑀′); (b) the imaginary dielectric modulus (𝑀′′) at different temperatures. 

In the dielectric relaxation low-frequency side, the temperature dependence of the maximum frequency 𝑓𝑚𝑎𝑥 is described as [55, 56]:  

𝑓𝑚𝑎𝑥 =  𝑓0 𝑒𝑥𝑝 (−𝐸𝑟/𝑘𝐵𝑇)                                                                                                   (7) 

where 𝑓0 is the pre-exponential term, and 𝐸𝑟  is the relaxation activation energy. Fig. 6 depicts the temperature dependence of 𝑓𝑚𝑎𝑥, hence the relaxation 

energy was calculated from the data fitting to be 121 meV.  

 

Fig. 6. The variation of log 𝑓𝑚𝑎𝑥 versus 1000/T. The red line is the linear fitting according to Eq. 7. 

 

Fig. 7. depicts normalized 𝑀′′/𝑀′′
max against f/fmax that the normalized scaling behavior of LNMO is studied through this plot. It is noticed that the 

curves at different temperatures are overlapped. This is an indication that the dynamic process is temperature-independent [57]. Therefore, this is 

evidence of the presence of a relaxation process in the conductivity of LNMO [58]. Moreover, the frequency temperature superposition (FTS) principle 

is applied which also confirms the relaxation mechanism in LNMO sample [59].  
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Fig. 7. Modulus master curve (𝑀′′/𝑀′′
max against f/fmax) at various temperatures. 

 

       Temperature dependence  

Fig. 8(a-d) depicts the temperature dependence of 𝜀′  and 𝜀′′ , tan  and 𝜎𝐴𝐶  at various frequencies. As seen, both 𝜀′  and 𝜀′′  are temperature-

dependent at different frequencies. The behavior of tan  versus temperature (Fig. 8 (c)) is similar to the variation of the 𝜀′′ (T). The change of 𝜎𝐴𝐶  

against 1000/T is represented in Fig. 8(d) at various frequencies. The 𝜎𝐴𝐶  data were fitted in the temperature range from 363 to 414 K using Arrhenius 

relation [60]:   

𝜎𝐴𝐶 =  𝜎0 𝑒𝑥𝑝(−𝐸𝑎/𝑘𝐵𝑇)                                                                                                     (8) 

where 𝜎0 is the pre-exponential factor, and 𝐸𝑎  is the activation energy. The calculated 𝐸𝑎 according to various frequencies is shown in Table 3.  

 

Fig. 8. The temperature dependence of (a) dielectric constant 𝜀′; (b) dielectric loss 𝜀′′; (c) the loss factor (tan ); (d) log 𝜎𝐴𝐶  versus 1000/T and T at 
various frequencies. The red lines in (d) represent the fitting according to Eq. 8. 
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Table 3. The calculated activation energy (𝐸𝑎) of LNMO at different frequencies. 
  
 
 
 

 

 

 

 

 

The temperature dependence of 𝑀′ and 𝑀′′ at various frequencies is illustrated in Fig. 9(a, b). In (Fig. 9(a)), 𝑀′ shows a steady value beginning above 

room temperature up to T  353 K and then decreases with increasing the temperature for all applied frequencies. Besides, the imaginary part 𝑀′′ (Fig. 

9(b)) has a higher starting value at low temperatures region and gets lowered as the temperature rises.   

 

Fig. 9. The temperature dependence of (a) 𝑀′; (b) 𝑀′′ at various frequencies. 

4. Conclusions 

From the FTIR spectrum, the compound showed symmetrical bending and stretching vibrations of Li-O and TM-O at the low wavenumber region. 

TGA results, the sample experienced two close weight losses, from 303 to 609 K and from 609 to 787 K. Besides, the DSC curve illustrates an endotherm 

peak at T = 1055 K with a reaction enthalpy (∆𝐻) = 306.78 J/g. This gives evidence for the thermal stability of the LNMO sample. The dielectric 

parameters 𝜀′ , 𝜀′′  and tan  are high at low frequencies because of the potential barrier generated by the space charge polarization at the grain 

boundaries. On the other hand, the conduction of LNMO is correlated barrier hopping (CBH) at f ≤ 1 kHz and 363 K ≤ T ≤ 413 K. Moreover, 𝜎𝐴𝐶(𝑇) is 

thermally activated with verification of the Ahrenious relation at T  363 K. The activation energy (𝐸𝑎) was calculated to be in the range of meV. From 

the imaginary part of complex modulus 𝑀′′, there is a relaxation process that relies upon both frequency and temperature. Moreover, the relaxation 

activation energy (𝐸𝑟 ) was calculated to be 121 meV. Overall, the reported results in this work would assist the previous studies concerning the 

applications of LNMO as a cathode material for Li-ion batteries.   
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f (kHz) 𝐸𝑎  (eV) 

3 0.101 
5 0.106 
7 0.107 

10 0.105 

20 0.093 
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