

Official Publication of Egyptian Society of Plant Protection Egyptian Journal of Crop Protection ISSN: 2805-2501 (Print), 2805-251X (Online) https://ejcp.journals.ekb.eg/

Biological and Biochemical Evaluation of Synthesized Green Nanoparticles and Ethanol Extract of Lemongrass (*Cymbopogon citratus* L.) against House fly, *Musca domestica* (Diptera: Muscidae)

Mohamed Fadel El-Sheikh^{1*}, Basem Mohamed Eldefrawy² and Saadiya Mohamed Said²

¹⁻Plant Protection Department, Faculty of Agriculture, Tanta University, Egypt
 ²⁻ Department of Entomology and Agricultural Zoology, Faculty of Agriculture, Menoufia University, Egypt
 ABSTRACT

The house fly is one of the most important medical and veterinary insects for humans and farm animals. In the current study, the effect of two compounds of plant extract was evaluated against the larvae of the house fly, Musca domestica (Diptera: Muscidae), ethanolic extract of lemongrass plant Cymbopogon citratus L.), and the nanoparticles of the extract of the same plant. The effect of both compounds against housefly larvae and pupae resulting from larvae treated using the technique of feeding and dipping were compared. The results showed that the feeding technique is more effective against larvae when compared with the dipping technique. The results also indicated that the nanoparticles of the plant extract were more effective against larvae, which led to an increase in the period of larvae and pupae, and an increase in death rates in each of them, also led to deformities in the adult insects resulting from the treated larvae compared to the control. Treatment with the compounds caused some biochemical changes, where the treatment with nanoparticles of the plant extract caused significant increasing in the levels of total protein, total carbohydrates, total lipids and acetylcholinesterase activity (Ach E) compared to the control in the larval stage. As for the pupae resulted from treated larvae, the treatment resulted in a significant increase in the case of using nanoparticles of the plant extract in all the tested biochemical indicators. Therefore, nanoparticles can be used to control house fly larvae, with further study to know the effect of these particles.

Key words: Cymbopogon citratus, silver nanoparticles, Musca demostica, insecticidal activity, biochemical parameters

INTRODUCTION

The house fly, *Musca domestica* (Diptera: Muscidae) one of the most widespread species in the world, as it is present in many human daily activities, and as a result of these activities, the

*Corresponding author email: el-sheikh@agr.tanta.edu.eg © Egyptian Society of Plant Protection. house fly multiplies in huge numbers. House flies can transmit many diseases, such as: infantile diarrhea, cholera, typhoid, bacillary dysentery and tuberculosis (Fotedar 2001; Malik *et al.*, 2007 and Pavela 2008). Although the fact that the assemblies of flies do not bite, but their assemblage causes a lot of disgust and aversion in humans when standing on food and leaving fecal stains on it, as well as causing annoyance during its flight (Hinkle 2002; Steenberg and Jespersen 2002 and Winpisinger et al., 2005). Generally, control of house flies depends on the use of pyrethroids, organic chlorine, and organic phosphates. Despite this, the frequent use of chemical pesticides causes deterioration and pollution and the development of resistance in insects (Srinivasan, et al., 2008 and Kamaraj, et al., 2012) and therefore must switch to using new methods of insect control such as biological control and environmentally friendly compounds as nanoformulation well using as insecticides, which have been considered for agriculture and is one of health applications, which are the nanoformulations have new physical properties that have a good and effective effect on the control process (Wildenberg, 2005; Chinnamuthu and Murugesa-Boopathi 2009). Khot, et al., 2012, showed that nanoparticles have become as new plans in all applied fields, including the field of pest control, nanomaterials acquire where new characteristics that make them more effective because they provide a thermal stability, large specific surface area, biodegradability, and increased affinity for the target, and thus, quickly penetrate the body of the organism. (Bordes et al., 2009 and Margulis-Goshen and Magdassi, 2013). For example, Silver nanoparticles (AgNPs) have attracted interesting attention for wide range of application in the biomedical and agriculture applications. Silver nanoparticles are created in many ways, such as: mechanical milling (Arbain et al., 2011), electrochemical (Starowicz et al., 2006), microwaveassisted process (Sreeram et al., 2008), thermal decomposition (Navaladian et 2007), and Green Chemistry al.,

Methods (Begum et al., 2009). Therefore, this study was designed to insecticidal evaluate the activity ethanolic extract of lemongrass plant, Cymbopogon citratus L. and its nanoparticles against larvae of house fly and resulted pupae of via feeding and dipping methods.

MATERIALS AND METHOD

This search was done at Faculty of Agriculture (Economic Entomology & Agricultural Zoology Department) Menoufia University, Egypt. Leaves of Lemongrass (Cymbopogon citratus L.) were collected from the farm of the Faculty Agriculture, Menoufia of University, located in Shebin El-Kom. Lemongrass plants were identified by the specialist in horticulture department Agriculture, (Faculty of Menoufia University). An ethanolic extract of Lemongrass and the nanoparticles of the extract were prepared as follows:

Five hundred grams of dried leaves of plant were used for preparation of Lemon grass ethanol extract and placed in one liter of ethanol (absolute). The mixture was shaken and incubated for one day (24 h) at room temperature. Then filtered and centrifuged the mixture at 3000 rpm. The ethanol was evaporated (by using Freez-Drier). Finally, the dried extract was kept in the refrigerator until used (Dorman, et al., 2003).

Preparation of nanoparticles form of lemongrass ethanol extract:

Preparation of silver nitrate solution (1 ml): Sixteen milligrams of AgNO₃ were weighed and transferred into flask. The sold matter was dissolved slowly in the flask containing distilled deionized water (500 mL). After complete dissolving, more water was slowly added to obtain

a volume of one liter. The prepared 1 mL silver nitrate solution was stored in amber colored bottle at 4°C (Rajkumar and Malathi, 2015). Preparing of lemongrass ethanol extract AgNPs: One gram from the dry ethanol extract was put in flask and dissolved in 100 mL distilled water, pH was adjusted at 12 using 0.01N NaOH. This system was kept under magnetic stirring, when the temperature reaches 80 °C, 1mL 0.1N AqNO₃ was added, and keep under magnetic stirring for 30 min, (EL-Bisi et al., 2013). Characterization technique of AgNPs UV-vis spectra was used to the formation of silver colloids.

Transmission Electron Microscopy (TEM):

Shape and size Characterization of AgNPs were obtained usina TEM (JEOLJEM-1200). Samples for TEM measurements were prepared by using a drop of colloidal solution on 400 mesh copper grid coated by an amorphous carbon film and the solvent was in open evaporated air at room temperature. The average diameter of the prepared AgNPs was determined from the diameter of one hundred nanoparticles found in several chosen areas in enlarged microphotographs. Five serial concentrations of both ethanol extract and Ag NPs of Lemongrass extract were prepared in distilled water as follow; (200, 150, 100, 50 and 25 ppm) to evaluate theirs insecticidal activities against house fly larvae.

Insect rearing

Larvae of *M. domestica* were collected from manure piles. The insect samples were transferred to the insectary house in the Department of Economic Entomology and Agricultural

zoology, Faculty of Agriculture, Menoufia University. Larvae were reared in special glass cages with dimensions $60 \times 35 \times 40$ cm under laboratory conditions (27 \pm 2°C and 60% \pm 5% relative humidity). The cages were covered with a mesh screen with a cloth opening at the top and were equipped with 20-watt light lamps to control the temperature during the cold periods of the winter months. Housefly larvae were fed nutrient media in plastic cups, and the meal ingredients were as follows: 9 g of powdered milk and 5 g of yeast dissolved in 100 ml of water and combined with 100 g of fine bran (Wilkins and Khalequzzaman, 1993).

Bioassay tests:

1- Dipping method: one hundred of the first instar larvae were dipped into each tested concentrations (10 mL) for 30 sec and then transferred to a filter paper. Three replicates were prepared from each concentration, while control larvae were dipped in distilled water. Larval mortality was recorded by larval wasting and immobility after twenty four h of treatment. The LC₅₀ values and 95% CL were calculated by using P.C.Probit analysis software program according to Finney's method (Finney, 1971); the test included a set control group by distilled water (Sinthusiri and Soonwera, 2010).

2- Feeding method was evaluated according to the standard method described by Wright (1971).

The biological effects were evaluated by monitoring the treated larvae (that have been treated by mixed food media technique) until they reached the pupal stage. In addition, the larval and pupal periods, percentages of larval and pupal mortality adult emergence were recorded. Also, percentages of adult malformations were recorded in treated and untreated larvae (control).

Biochemical assays:

The house fly larvae were treated with LC₅₀ of both extracts to study their effects on biochemical parameters (Total carbohydrates, total protein. Acetylcholinesterase (AchE) and total lipids,) of larvae and resulted pupae after twenty four h from treatment. Total carbohydrates were estimated by the phenol-sulphuric acid method (Dubois et al., 1956); total proteins were determined according to Bradford, (1976): acetylcholinesterase (AchE) activity was measured according to the method described by Simpson et al., (1964) and total lipids were estimated by the method of Knight et al., (1972). All these biochemical parameters were determined Institute of Plant in Protection Research. Physiological Department, ARC. Giza.

Statistical analysis

The bioassay data were statistically analyzed using statistical package for Social Science (SPSS, ver.20). All data were expressed as mean \pm SE and

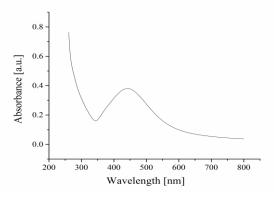


Fig 1. UV-Visible spectrum of the prepared Ag NPs lemon grass (ethanol extract)

The size and shape of AgNPs were examined by using transmission electron microscopy (TEM) (Ag, this subjected in the one-way analysis of variance (ANOVA) was applied to compare the significant at $P \le 0.05$ differences between treated and control groups (Snedecor, 1952 and Duncan, 1957).

Results

Nanoparticle formation of AgNP Lemongrass ethanol extract:

Brown color appearance indicates the successful formation silver of nanoparticles AgNPs. Where an immediate appearance of the brown color occurred as a result of quick reaction between the silver nanoparticles and the ethanolic extract. This color is evidence of an oxidationreduction reaction between the silver particles and the extract, in which the silver ions are reduced by the extract particles.

The successful synthesis of Ag nanoparticles was used to ensure by UV-Vis spectroscopy. Fig. (1) Showed the characteristic absorption peak of Ag-NPs in the spectra at 450 nm.

Fig.2: TEM image of the prepared Ag NPs particles in

the polymermatrix

investigation was made by using JEOL JEM I0xI0 (Electron microscope-Japan). Fig. (2) showed TEM images which explained that they have an average size of 12 nm for the particle and spherical shape.

Insecticidal activity of lemongrass extract and its nanoformulation:

Toxicity levels for two tested compounds against M. domestica larvae were estimate in the presented study after 24 h of treatment. Data presented in Table (1) showed that the LC₅₀ value of C. citratus extract nanoparticles was the most toxic for larvae in two ways of treatments than anther Ethanol extract of C. citratus. LC₅₀ values were 121.25 and 117.32 ppm for dipping and feeding respectively where C. techniques, citratus extract nanoparticles were applied but LC₅₀ values were 142.33 ppm and 124.11 ppm for dipping and feeding techniques, respectively when Ethanol extract of C. citratus was applied.

Table (1): LC_{50} data of ethanol extract and nanoparticles of *C. citratus* extract against *M. domestica* larvae after 24 h under laboratory conditions.

Plant extract	technique	LC₅₀ (ppm) (95% cl)	Slope
Ethanol extract of <i>C</i> .	dipping	142.33	1.63 ±0.41
citratus	feeding	124.11	1.71 ±0.43
C. citratus extract	dipping	121.25	1.31 ±0.61
Nanoparticles	feeding	117.32	1.51 ±0.29

cl = confidence limits

It is clear from the results presented in Table 2 that *C. citratus* Ethanol extract and *C. citratus* extract nanoparticles have an effect on the periods of the larval and pupal stage and the death rate, as well as the percentage of exit of adults and the percentage of deformities in adults.

Larval period and resulted pupa

The results in Table (2), show that the examined compounds have a significant effect on the larval period compared to the control, and it was *C. citratus* extract nanoparticles more effective on the larval period, followed by *C. citratus* Ethanol extract where the larval periods were 6.1, 5.4 and 4.5 days for the compounds *C. citratus* Ethanol extract nanoparticles, *C. citratus* Ethanol extract and control, respectively.

Also, the same compounds had a significant and clear effect on the death rates; as it were 64, 44 and 5% for the compounds *C. citratus* extract nanoparticles, *C. citratus* Ethanol extract and the control, respectively.

Pupal period and resulted adults

From the results in Table (2), it is obvious that the examined compounds have a significant effect on the pupal period compared to the control, and it was *C*. *citratus* extract nanoparticles more effective on the pupal periods, followed by *C. citratus* Ethanol extract Where the periods were 6.8, 6.6, and 5.3 days for *C. citratus* extract nanoparticles, *C. citratus* Ethanol extract and control, respectively.

Also, the same compounds had a significant and clear effect on the death rates; as it were 57.29, 41.67 and 6.49% for the compounds *C. citratus* extract nanoparticles, *C. citratus* Ethanol extract and the control, respectively.

Adult malformation

The results presented in Table (2) show the occurrence of deformities in the adult insects resulting from the larvae treated with both *C. citratus* extract nanoparticles and *C. citratus* Ethanol extract and the results indicated that the incidence of deformities was higher in *C. citratus* extract nanoparticles than in *C. citratus* Ethanol extract compared to the control. The percentage of deformities in adults was 42.68 % & 14.29 % in each of *C. citratus* extract nanoparticles and *C. citratus* Ethanol extract, respectively.

Table 2: Biological parameters of larval and pupal stages after larval feeding on LC₅₀ of *C. citratus* ethanol extract and nanoparticles of *C. citratus* extract

Tested plant extract	Initial numbe r	larval stage Period (days) ±SE	Mortality %± SE	numbe r of resulte d pupae	Pupal stage period (days)± SE	Mortality %± SE	numbe r of resulte d adults	Malformed adults %± SE
<i>C. citratus</i> Ethanol extract	300	5.4±1.3 3 b	44±1.6 b	168	6.6±1.5 a	41.67 ±1.32b	98	14.29±1.7 b
C. citratus extract Nanoparticl es	300	6.1±.92 1 a	64±1.5 a	108	6.8±1 a	57.29 ±0.64a	64	42.68±1.7 a
Control	300	4.5±.73 c	5±1.2 c	285	5.3±2.3 b	6.49 ±1.71c	266	-
F value		11.31	33.42		9.54	14.73		22.31
P value	_	0.0001* **	0.00012* **	_	0.002**	0.0005* **	_	0.0003***

In each column, means followed by the same letter are not significant at the 5% level.

Results presented in Table (3) revealed that tested plant extracts caused significant increase in total protein, total carbohydrate, total lipids and AchE activity in treated larvae when feeding technique was used. The means of total protien were 11.51, 10.21 and 8.31(mg/g.b.wt) for C. *citratus* extract nanoparticles, С. citratus Ethanol extract and control, respectively. The mean values of total carbohydrate were 19.41, 18.12 and 17.7 (mg/g.b.wt) for C. citratus extract nanoparticles. C. citratus Ethanol extract and control, respectively. As shown in the table (3) the mean values of total lipids were 18.11, 17.33 and 16.14 (mg/g.b.wt) for C. citratus

Biochemical studies

extract nanoparticles. С. citratus Ethanol extract and control. respectively. Finally, the mean values for AchE were 288.41, 265.12 and 204 (µg AchBr/min /g.b.wt) for C. citratus extract nanoparticles. С. citratus Ethanol extract and control. respectively.

As for the pupae resulted from treated larvae, the results recorded in show significant table (3) that increasing in total protein and total carbohydrate when pupae resulted from larvae which were treated with C. citratus extract nanoparticles compared with control, but in case of C. citratus Ethanol extract the

increasing was non-significant. The mean values of total protein were 9.8, 8.6 and 8.13(mg/g.b.wt) for C. citratus extract nanoparticles , C. citratus control Ethanol extract and ,respectively, while the mean values of total carbohydrate were 15.53, 14.51 and 14.3 (mg/g.b.wt) for C. citratus extract nanoparticles , C. citratus Ethanol extract and control ,respectively.

The results indicated a significant increase in both total lipids and AchE

activity for two tested compounds compared with control. As shown in table (3), the means of total lipids were 12.5, 11.62 and 10.31 (mg/g.b.wt) for C. citratus extract nanoparticles, C. citratus Ethanol extract and control, respectively, while in case of AchE activity, the mean values were 223.18 211.51 and 170,31(µg AchBr/min/g.b.wt) for С. citratus extract nanoparticles. С. citratus Ethanol extract and control. respectively.

 Table 3: Some biochemical parameters of treated larvae with LC₅₀ concentrations of *C. citratus* Ethanol extract and *C. citratus* extract Nanoparticles using feeding technique and pupae resulted from treated larvae.

Biochemical	Treated larvae (Mean±SE)								
parameters	Control	C. citratus	C. citratus extract	F value	P value				
		Ethanol extract	Nanoparticles						
Total protein (mg/g.b.wt)	8.31±0.51c	10.21±0.42b	11.51±0.31 a	19.11	0.001 **				
Total carbohydrate (mg/g.b.wt)	17.71±1.61c	18.12±0.1.66 b	19.41±1.61 a	17.21	0.0001 ***				
Total lipids (mg/g.b.wt)	16.14±1.35a	17.33±2.73b	18.11±1.42 c	32.31	0.0005 ***				
AchE activity (µg AchBr/min /g.b.wt)	204±22.26c	265.12±12.71b	288.41±22.11a	121.32	0.0001 ***				
	Pupae resulted from larvae in feeding technique (Mean±SE)								
	Control	C. citratus	C. citratus extract	F value	P value				
		Ethanol extract	Nanoparticles						
Total protein (mg/g.b.wt)	8.13±1.04b	8.63±2.31b	9.81±1.34a	11.14	0.0001 ***				
Total carbohydrate (mg/g.b.wt)	14.3±2.21b	14.51±2.41b	15.53±2.12a	22.11	0.0002 **				
Total lipids (mg/g.b.wt)	10.31±1.72c	11.62±1.52b	12.51±2.51a	32.11	0.001 ***				
AchE activity (µg AchBr/min /g.b.wt)	170.3±21.64 c	211.51±23.61b	223.18±21.31a	41.15	0.0004				

In each row, means followed by the same letter are not significant at the 5% level.

Discussion

Results revealed that the nanometric extract is more toxic against the larvae

of the house fly, when applied by both methods of dipping and feeding, respectively. (Soni and Prakash, 2014; Said, 2017; Said and Abdelaal, 2020 and Eldefrawy *et al.*, 2022).

The previous results show the effective effect of nanoparticles against the house fly larvae than ethanol extract, where the feeding treatment led to a significant increase in the period of the larvae and death rates in both larvae and pupae resulting from the treated larvae, as well as a significant increase in the percentage of deformities in the adult insects resulting from the treated larvae. This may be due to the toxic effect and accumulation of nanoparticles which has a high penetration rate into the insect's body, causing cell destruction and their transfer into next stage of insect, which in turn may cause increase in death percentages and defects or deformities in the body of adult insects. (Gnanadesigan et al., 2011; Kamaraj et al., 2012; Marimuthu et al., 2011; Gul et al., 2016 and Abd El-Zaher, 2017).

Recorded results indicated that silver particles Nano has entomotoxic effective on larvae and pupae resulted from treated larvae, this reaction may be to toxixity mechanism by feeding such as oxidative stress, membrane disruption and protein unfolding. The silver nanoparticles which entre to the intracellular space can destroyed DNA leading to destroy some organs and enzymes (El-Bisi, et al.,2013; Veerakumar et al., 2013; Velayutham et al., 2013; Abd El-Raheem, and Eldafrawy,2016; Benelli, 2016 and Abd El-Zaher, 2017).

Conclusion

Our data demonstrated that nanoparticles of lemongrass extract has high insecticidal activity against the larvae of the house fly, where the treatment was done in two ways, immersion and feeding, and the treatment with feeding was more effective. The results also showed that larval treatment with nanoparticles caused significant increasing in the larval periods and death rates in both larvae and pupae resulting from the treated larvae. It also caused a significant increase in percentages of deformities in the adult insects resulting from the treated larvae. Nanoparticles could therefore be used to control house fly larvae, although further research is needed to determine what these particles do.

Author Contributions:

Conceptualization, MFE, BME and SMS; data curation, BME and SMS; formal analysis, MFE and SMS; investigation BME and SMS; methodology, MFE, BME and SMS; SMS, writing—original draft, and writing and editing, MFE, BME and SMS. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

InstitutionalReviewBoardStatement:Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

REFERENCES

- Abd El-Raheem, A.M. and B.M. Eldafrawy (2016). Efficacy of Silver Nanoparticles against German Cockroach *Blattella germanica* (L.) (Dictyoptera: Blattellidae). Academic Journal of Entomology, 9 (4): 74-80.
- Abd El-Zaher, R. T. (2017). Biological Activity of Four Plant Oils in the Form of Nano Products on the Larvae of Cotton leaf worm. Middle East Journal of Appllied Science, 7(2): 239-249.
- Arbain, R.; M. Othman and S. Palaniandy (2011). Preparation of iron oxide nanoparticles by mechanical milling. Minerals Engineering, 24: 1 – 9.
- Begum, N.; S. Mondal; S. Basu; R. Laskar and D. Mandal (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B Biointerfaces, 71(1): 113 – 118.
- Benelli, G. (2016). Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitology Research, 115: 23–34.
- Bordes P.; E. Pollet; L. Avérous (2009). Nano-biocomposites: biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2):125–155
- Bradford, M.M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72:248-254.
- Chinnamuthu, C. R. and P. M. Boopathi (2009). Nanotechnology and Agroecosystem. Madras Agricultural Journal, 96: 17-31.
- Crompton, M. and L.M. Birt (1967). Changes in the amounts of

carbohydrates, phosphagen, and related compounds during the metamorphosis of the blow fly, Lucilia cuprina. Journal of Insect physiology, 13:1575-1595.

- Dorman H. J. D.; M. Koşar; K. Kahlos; Y.Holm and R. Hiltunen (2003). Antioxidant Properties and Composition of Aqueous Extracts from *Mentha* Species, Hybrids, Varieties, and Cultivars. Journal of Agriculture and Food Chemistry, 51(16):4563–4569.
- Dubios, M.; K. A. Gilles; J. K. Hamilton; P.A. Rebers and F. Smith (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28:350-356.
- Duncan, D. B. (1957). Multiple ranges and multiple F test. Biometrics. 11:1-42.
- El-Bisi, M.; H. M. El-Rafie and A. A.Hebeish (2013). Honeybee for eco-friendly green synthesis of silver nanoparticles and application to cotton textile. Egyptian Journal of Chemistry. 56(3):187-198.
- Eldefrawy B. M., Saadiya M. Said and Ahmed M. Abd El-Raheem (2022). Comparative studies of nanoparticles and ethanol extract of rosemary plant on some biochemical aspects of the American cockroach, Periplaneta (L.) (Dictyoptera: americana Blattidae). Egyptian Journal of Crop Protection, 17(1): 55-66.
- Finny, D. J. (1971). Probit anaylisis 3rd Ed., Cambridge University Press, London.
- Fotedar, R. (2001). Vector potential of houseflies, *Musca domestica*, in the transmission of Vibrio cholerae in India. Acta Tropica, 78: 31 – 34.
- Gnanadesigan, M.; M. Anand; S. Ravikumar; M. Maruthupandy; V. Vijayakumar; S. Selvam; M. Dhineshkumar and A. Kumaraguru (2011). Biosynthesis of silver nanoparticles by using mangrove

plant extract and their potential mosquito larvicidal property. Asian Pacific Journal of Tropical Medicine, 4(10): 799 – 803.

- Gul, S.; M. Ismail; M. Khan; S. Khan; A. Asiri; I. Rahman; M. Khan and A. Kamboh (2016). Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly *Musca domestica*. Asian Pacific Journal of Tropical Disease, 6(4): 311 316.
- Hinkle, N. C. (2002). Poultry pest management (Arthropods) In: D. Pimentel (ed.), Encyclopedia of Pest Management. Marcel Dekker, Inc., New York, Pp. 657 - 660.
- G. Rajakumar; Kamaraj, C.; Α. K. Velayutham; Rahuman; Α. Bagavan; A. Zahir and G. Elango (2012). Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitology Research,111:2439-2448
- Khot, L.; S. Sankaran; J. Maja; R. Ehsani and E. Schuster (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35: 64 – 70.
- Knight, J. A.; S. Anderson and J. M. Rawle (1972). Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clinical Chemistry, 18:199-202.
- Malik, A.; N. Singh and S. Satya (2007). Housefly, *Musca domestica*: A review of control strategies for a challenging pest. Journal of Environmental Science and Health, 42: 453 – 469.
- Margulis-Goshen, K. and S. Magdassi (2013). Nanotechnology: An advanced approach to the development of potent insecticides. In: Ishaaya I, Palli S, Horowitz A (eds) Advanced Technologies for

Managing Insect Pests. Springer, Dordrecht, pp. 295–314.

- Marimuthu, S.; A. Rahuman; G. Raiakumar: T. Santhoshkumar: A. Kirthi; C. Jayaseelan; A. Bagavan; A. Zahir; G. Elango and C.Kamaraj Evaluation (2011). of green synthesized nanoparticles silver against parasites. Parasitology Research, 108(6):1541 - 1549.
- Navaladian, S.; B. Viswanathan; R. Viswanath and T. Varadarajan (2007). Thermal decomposition as route for silver nanoparticles. Nanoscale Research Letters, 2: 44 – 48.
- Pavela, R. (2008). Insecticidal properties of several essential oils on the housefly, *M. domestica* L. Phytotherapy Research, 22: 274 – 278.
- Rajkumar, K. and R. Malathi (2015). Phytochemical investigation GC-MS analysis and in vitro antimicrobial activity of *Coleus forskohlii*. Bangladesh Journal of Pharmacology, 10 (4):924.
- Said, S. M. (2017). Biochemical and histological effects of nano silver on german cochroach, *Blattella germanica*. Bulletin of entomological Society of Egypt, 43, 31-46.
- Said, S. M. and A. A. A. Abdelaal (2020). Comparative effect of Ginger extract nanoparticles with some pesticides on Pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). International Journal Scientific of Research and Sustainable Development, 3(3): 1-20.
- Simpson, D. R.; D. L. Bulland and D. A. Linquist (1964). A semi micro technique for estimation of cholinesterase activity in boll weevils. Annals of Entomological Society of America, 57: 367-371.
- Snedecor, G. W. (1952). Statistical methods. (5thEd. Iowa State Col. N.

Y. Preparation of samples for biochemical assay).

- Sinthusiri, J. and M. Soonwera (2010). Effect of herbal essential oils against larvae, pupae and adults of (Musca house fly domestica: Diptera). Proceedings of 16th Asian Agricultural Symposium and 1st Int. Symposium on Agricultural Technology, August, 2010. Bangkok, Thailand, pp.: 639 - 642.
- Soni, N. and S. Prakash (2014). Green nanoparticles for mosquito control. The Scientific World J. Article. http://dx.doi.org/10.1155/2014/4963 62.
- Sreeram, K.; M. Nidin; and B. Nair (2008). Microwave assisted template synthesis of silver nanoparticles. Bulletin of Materials Science, 31(7): 937 – 942
- Srinivasan, R.; P. Jambulingam; K. Gunasekaran and P. Boopathidoss (2008). Tolerance of housefly, *M. domestica* (Diptera: Muscidae) to dichlorovos, an insecticide used for fly controlling the tsunami hit coastal villages of southern India. Acta Tropica, 105: 187 – 190.
- Starowicz, M.; B. Stypula and J. Banas (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8 (2): 227 – 230.
- Steenberg, T. and J. Jespersen (2002). Control of houseflies and filth flies In: D. Pimentel (ed.), Encyclopedia of Pest Management. Marcel Dekker, Inc., New York, Pp. 144-147.
- Veerakumar, K.; M. Govindarajan and M. Rajeswary (2013). Green synthesis of silver nanoparticles using, *Sida acuta* (Malvaceae) leaf

extract against *Culex quinquefasciatus*, *Aedes aegypti* and *Anopheles stephensi* (Diptera: Culicidae). Parasitology Research, 112 (12): 4073 – 4085.

- Velayutham, K.; A. Rahuman; G. Rajakumar; S. Roopan; G. Elango; C.Kamarai: Marimuthu: S. Τ. Santhoshkumar; M. Iyappan and C. Siva (2013). Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex guinguefasciatus and Culex gelidus. Asian Pacific Journal of Tropical Medicine, 6 (2): 95 – 101.
- Wildenberg, and V. D. Willems (2005). Roadmap report on nanoparticles. W&W Espana S.I. Barcelona, Spain.
- Winpisinger, K.; A. Ferketich; R. Berry Moeschberger and Μ. (2005).domestica Spread Musca of (Diptera: Muscidae) from two caged laver facilities to neighboring residence in rural Ohio. Journal of Medical Entomology, 42: 732-738.
- Wilkins, R. and Khalequzzaman, M. (1993). Environmental Interaction of Pesticides: Synergism of Permethrin by Simazine against the Housefly. Proc. Brighton Crop Protect. Conf., 3B, 7, 157-162.
- Wright, J.W. (1971). The WHO programme for the evaluation and testing of new insecticides. Bulletin of the World Health Organization, 44: 9 22.

Received: April 07, 2023. **Revised:** April 20, 2023. **Accepted:** April 25, 2023.

How to cite this article:

El-Sheikh,M. F.; B. M. Eldefrawy and Said, Saadiya, M. (2023). Biological and Biochemical Evaluation of Synthesized Green Nanoparticles and Ethanol Extract of Lemongrass (*Cymbopogon citratus* L.) against House fly, *Musca domestica* (Diptera: Muscidae). *Egyptian Journal of Crop Protection, 18 (1):* 24-34.