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ABSTRACT

The motion of a spacecraft around the earth is affected with many forces. The major force
affecting this motion is the gravity force resulting from a spherical central body (the earth). This
motion is commonly known in the literature as the two-body problem. The main drive for this
research is to select the best numerical integration algorithm of the two-body problem on the basis
of quantitative measures. The error of each integration algorithm is measured with respect to the
exact solution of the two-body problem and the test results were embarrassing. Also, the average

execution time is compared for all of these algorithms.
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1. Introduction:-

The motion of a spacecraft orbiting the earth is affected with many forces. These forces are:
the gravity force resulting from a spherical central body (the earth), the aerodynamic drag and lift
forces, the effect of non-spherical earth model (earth’s oblateness), the gravity forces resulting from
the sun and other planets, the solar radiation pressure forces, tidal forces (solid earth and ocean
tides) [1]. The motion of a spacecraft in its orbit around the earth is primarily due to the spherical
central body force. All other forces represent only perturbations (i.e., small fractions) with respect
to this force, so our main concern is mainly devoted to the spherical central body force. The
problem of finding the spacecraft motion due to only the force of a spherical central body is
commonly known as the two-body problem. Several numerical integration algorithms of the two-
body problem are found in the literature. Fourth order Runge-Kutta method, and Runge-Kutta-Gill
are discussed in [2]. Ref. [3] utilizes Runge-Kutta five to integrate the two-body equation of motion.
Ref. [4] presents the 8" order Runge-Kutta. Ref. [5] solves the problem using ODE45 solver
provided by Matlab.

Most of remote-sensing spacecraft missions are chosen to be sun-synchronous. And a vast
number of these missions are characterized by nearly circular orbits. In Egypt, we are concerned
mainly with these types of missions such as the former Egyptian remote-sensing satellite Egypt-sat
1. Therefore, our interest in this research at hand is mainly devoted to circular orbits.

The main role of the research at hand is to answer simply the problem of finding a suitable
numerical integration algorithm to be used for orbit propagation and estimation such as that found
in [8]. This is done through a review of the commonly used numerical integration algorithms with
fixed time step of the two-body problem. The decision to use a certain algorithm or another is
mainly taken based on quantitative measures. These measures are the root mean square (RMS) of

the position error, in addition to the average execution time.

2. The two body problem and the exact solution:-

The two-body equation of motion is given by [1]
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Where
U : Is the earth’s gravitational parameter (ug =3.986x 10 m?/s?).
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{X, Y, Z, X, Y, Z,} - defined as the orbital state vector comprised from inertial position

and velocity components respectively.

R, : is the spacecraft inertial position vector.

Ref. [6], presents another form of the two-body problem in terms of classical orbital elements. This

form is expressed as
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Where ais the semi-major axis, eis the eccentricity, iis the orbit inclination, Q is the right
ascension of the ascending node, wis the argument of perigee, and & is the true anomaly. For

simplicity let e =0. The last equation of equation (2) then becomes
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Integrating equation (3) gives,
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The solution of equation (2) then becomes
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3. Integration algorithms:-

All of the integration algorithms described herein are used to solve a nonlinear first order

differential equation described by

dx
E = f(t,X) (6)

With initial conditions given by

X(to) =X, (7




3.1 Fourth order Runge-Kutta

The standard fourth order Runge-Kutta method is given as [2]
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Where
h . Is the step-size.
n . Is the increment number.

3.2 Runge-Kutta-Gill

This method is developed basically for high speed computers to control round off error growth. The

formula is [2]
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3.3 Runge-Kutta 5
The basic procedure of Runge-Kutta 5 is given in [3] as
Xoy = X, +9—10(7k1 +32Kk, +12k, + 32k, + 7K;) (18)
k, =hf(t,,x,) (19)
K, =hf(tn+2 n+%kl) (20)
k3=hf(tn+2 +;k +;kj (21)
k4:hf(tn+gx Ly +kj (22)
k5=hf(tn+%h,xn+%kl+ %k“J (23)
kG:hf[tn+h,xn >k ik 72k 2 iksj (24)
3.4 Runge-Kutta 8
The commonly used 8" order Runge-Kutta formula is given by [4]
Xpy = X, + % (41k, + 27k, + 272K, + 27k, + 216k, + 216K, + 41K, ;) (25)
k, = hf(t,,x,) (26)
k, = hf tn+2i7h,xn+2i7klj (27)
k3=hft+§hx+18k +ékj (28)
k, = hf tn+1h,xn+12k1+%k3] (29)
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3.5 Adams-Moulton:-
The fourth order method retaining third differences is described here [2]. The predictor term is
given by

h

er|)+1_x +£[55f(tn’xn) 59f( -1 n1)+37f( -2 n2) gf( -3 n3)] (36)
The corrector term is given by

Xn+1 = X + A [9 f ( n+1’ n+l)+19 f (tn 1 Xn) 5 f (tn—l’ Xn—1)+ f (tn—2 1 Xn—2 )] (37)
4. Performance measures:
In order to test the integrators, performance measures must be defined. In the research at hand, two
performance measures are defined. The first performance measure is the RMS position error. First,
we define the position error at each integration time step as

AR = Rlexact _ Rlcomputed (38)

The RMS position error is calculated as [7]




(39)

The second performance measure used is the average execution time of the integration algorithm.
5. Test-case parameters and results:-

In order to test the given numerical integrators a test-case spacecraft is utilized. The test
scenario lasts for one week. It starts at 1-7-2007 12:00:00 UTC and ends at 8-7-2007 12:00:00

UTC. The integration time step (AT ) is first selected as 5 seconds. The initial conditions

{X, Y, Z, )2, \;, ZO,} are given by

103[1113.475306 —6977.855318 0 -1.050671 -0.167658 7.434913]. Fig. 1. shows the log

of the position error for the previously presented numerical integration algorithms for integration
time step of 5 seconds. As seen in this figure, the initial position error is zero for all of the
integration algorithms and starts to degrade afterwards. The worst position error is achieved by the
Runge-Kutta-Gill algorithm. Afterwards, there comes the Runge-Kutta 5. Runge-Kutta 4, Runge-
Kutta 8, and Adams-Moulton which have nearly similar behaviors for the position error. Table 1.
shows performance measures for the different utilized numerical integration algorithms for
integration time step of 5 seconds. The maximum average execution time is achieved by the
Adams-Moulton algorithm. Then Runge-Kutta 8, achieves the second maximum average execution
time. Runge-Kutta 4, Runge-Kutta 5, and Runge-Kutta-Gill have nearly the same average execution
time. Fig. 2 shows the log of the position error for the previously presented numerical integration
algorithms for integration time step of 30 seconds. Table 2. shows performance measures for the
different utilized numerical integration algorithms for integration time step of 30 seconds. The
Runge-Kutta 8 algorithm achieves a very good RMS position error. And then there comes the
Runge-Kutta 4 algorithm. Runge-Kutta-Gill, Runge-Kutta 5, and Adams-Moulton have high RMS
position error. The maximum average execution time is achieved by the Adams-Moulton algorithm.
And then comes Runge-Kutta 8 algorithm. Runge-Kutta 4, Runge-Kutta-Gill, and Runge-Kutta 5,
have similar average execution time. The RMS error of Runge-Kutta 8 could reaches 16.7 m if the

integration time step is increased up to 135 sec.
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Fig. 1. Position error log for different numerical integration algorithms (AT =5sec.).

Performance Measure

Numerical ARgys (M) Average execution time (sec)
Integration

Algorithm

Runge-Kutta 4 1.186 0.0018

Runge-Kutta-Gill 1.2583x10’ 0.0016

Runge-Kutta 5 0.1713x10° 0.0018

Runge-Kutta 8 1.0868 0.002

Adams-Moulton 2.2453 0.003

Table 1. Performance measures for numerical integration algorithms (AT =5sec.).
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Fig. 2. Position error log for different numerical integration algorithms ( AT =30sec.).

Performance Measure

Numerical ARgys (M) Average execution time (sec)
Integration

Algorithm

Runge-Kutta 4 958.0656 5.0802x10™
Runge-Kutta-Gill 1.8654 %107 5.1085x10

Runge-Kutta 5 8.7817 x10° 6.2769x10™

Runge-Kutta 8 1.0870 8.8122x10™
Adams-Moulton 2.2702x10* 6.0661x10™

Table 2. Performance measures for numerical integration algorithms (AT =30sec.).
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6. Conclusion:-

Runge-Kutta 8 algorithm is characterized by high accuracy and high computational load
compared to the previously discussed numerical integration algorithms. The excessive
computational load needed by the Runge-Kutta 8 algorithm could be greatly compensated by using
larger integration time step while retaining the same high accuracy. The accuracy of Raunge-Kutta
8 with a time step 30 seconds is better than the accuracy of Raunge-Kutta 4 with a time step 5
seconds. In addition, the total execution time of Raunge-Kutta 8 is greatly less than that of Raunge-
Kutta 4 due to its ability to use larger time step. Thus, Raunge-Kutta 8 achieves a superior
performance. Runge-Kutta 4 achieves the second best performance after the Runge-Kutta 8. Runge-
Kutta-Gill, Runge-Kutta 5, and Adams-Moulton achieved lower performance measures compared to

Runge-Kutta 8, and Runge-Kutta 4 algorithms.
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