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ABSTRACT 

  The motion of a spacecraft around the earth is affected with many forces. The major force 

affecting this motion is the gravity force resulting from a spherical central body (the earth). This 

motion is commonly known in the literature as the two-body problem. The main drive for this 

research is to select the best numerical integration algorithm of the two-body problem on the basis 

of quantitative measures. The error of each integration algorithm is measured with respect to the 

exact solution of the two-body problem and the test results were embarrassing. Also, the average 

execution time is compared for all of these algorithms.       

 

KEYWORDS: Two-Body, Numerical Integration Algorithm, Circular Orbit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:tamermekky@hotmail.com


2 

 

 

1. Introduction:- 

The motion of a spacecraft orbiting the earth is affected with many forces. These forces are: 

the gravity force resulting from a spherical central body (the earth), the aerodynamic drag and lift 

forces, the effect of non-spherical earth model (earth’s oblateness), the gravity forces resulting from 

the sun and other planets, the solar radiation pressure forces, tidal forces (solid earth and ocean 

tides) [1]. The motion of a spacecraft in its orbit around the earth is primarily due to the spherical 

central body force. All other forces represent only perturbations (i.e., small fractions) with respect 

to this force, so our main concern is mainly devoted to the spherical central body force. The 

problem of finding the spacecraft motion due to only the force of a spherical central body is 

commonly known as the two-body problem. Several numerical integration algorithms  of the two-

body problem are found in the literature. Fourth order Runge-Kutta method, and  Runge-Kutta-Gill 

are discussed in [2]. Ref. [3] utilizes Runge-Kutta five to integrate the two-body equation of motion. 

Ref. [4] presents the 8
th

 order Runge-Kutta. Ref. [5] solves the problem using ODE45 solver 

provided by Matlab. 

Most of remote-sensing spacecraft missions are chosen to be sun-synchronous. And a vast 

number of these missions are characterized by nearly circular orbits. In Egypt, we are concerned 

mainly with these types of missions such as the former Egyptian remote-sensing satellite Egypt-sat 

1. Therefore, our interest in this research at hand is mainly devoted to circular orbits. 

The main role of the research at hand is to answer simply the problem of finding a suitable 

numerical integration algorithm to be used for orbit propagation and estimation such as that found 

in [8]. This is done through a review of the commonly used numerical integration algorithms with 

fixed time step of the two-body problem. The decision to use a certain algorithm or another is 

mainly taken based on quantitative measures. These measures are the root mean square (RMS) of 

the position error, in addition to the average execution time.        

                       

  2. The two body problem and the exact solution:- 

 

The two-body equation of motion is given by [1]  
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Where 

 

E : Is the earth’s gravitational parameter (E =3.98610
14

  m
3
/s

2
). 

T
o

I

o

I

o

IIII ZYXZYX 





 : defined as the orbital state vector comprised from inertial position 

and velocity components respectively. 

IR  : is the spacecraft inertial position vector. 

 

Ref. [6], presents another form of the two-body problem in terms of classical orbital elements. This 

form is expressed as 
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Where a is the semi-major axis, e is the eccentricity, i is the orbit inclination,   is the right 

ascension of the ascending node,  is the argument of perigee, and   is the true anomaly. For 

simplicity let 0e . The last equation of equation (2) then becomes 

 

3a

E
o 
   (3)

 



4 

 

Integrating equation (3) gives, 

 

 030 tt
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The solution of equation (2) then becomes 
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3. Integration algorithms:- 

 

All of the integration algorithms described herein are used to solve a nonlinear first order 

differential equation described by 

 

),( xtf
dt

dx
  (6)

 

 

With initial conditions given by 

00 )( xtx   
(7)
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3.1 Fourth order Runge-Kutta 

 

The standard fourth order  Runge-Kutta method is given as [2] 

 

With 
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 34 , kxhthfk nn   (12) 

 

 

Where 

h  : Is the step-size. 

n  : Is the increment number. 

 

3.2 Runge-Kutta-Gill 

 

This method is developed basically for high speed computers to control round off error growth. The 

formula is [2] 
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3.3 Runge-Kutta 5 

 

The basic procedure of Runge-Kutta 5 is given in [3] as 
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3.4 Runge-Kutta 8 

 

 The commonly used 8
th

 order Runge-Kutta formula is given by [4] 
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3.5 Adams-Moulton:- 

 

The fourth order method retaining third differences is described here [2]. The predictor term is 

given by 
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The corrector term is given by 
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4. Performance measures: 

 

In order to test the integrators, performance measures must be defined. In the research at hand, two 

performance measures are defined. The first performance measure is the RMS position error. First, 

we define the position error at each integration time step as 

 

i
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I

exact

Ii RRR   (38) 

    

The RMS position error is calculated as [7] 
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The second performance measure used is the average execution time of the integration algorithm. 

 

5. Test-case parameters and results:- 

 

 In order to test the given numerical integrators a test-case spacecraft is utilized. The test 

scenario lasts for one week. It starts at 1-7-2007  12:00:00 UTC and ends at 8-7-2007  12:00:00 

UTC. The integration time step ( T ) is first selected as 5 seconds. The initial conditions 






 o

I

o

I

o

IIII ZYXZYX  are given by 

 7.4349130.1676581.050671086977.85531475306.1113103  . Fig. 1. shows the log 

of the position error for the previously presented numerical integration algorithms for integration 

time step of 5 seconds. As seen in this figure, the initial position error is zero for all of the 

integration algorithms and starts to degrade afterwards. The worst position error is achieved by the 

Runge-Kutta-Gill algorithm. Afterwards, there comes the Runge-Kutta 5. Runge-Kutta 4, Runge-

Kutta 8, and Adams-Moulton which have nearly similar behaviors for the position error. Table 1. 

shows performance measures for the different utilized numerical integration algorithms for 

integration time step of 5 seconds. The maximum average execution time is achieved by the 

Adams-Moulton algorithm. Then Runge-Kutta 8, achieves the second maximum average execution 

time. Runge-Kutta 4, Runge-Kutta 5, and Runge-Kutta-Gill have nearly the same average execution 

time. Fig. 2 shows the log of the position error for the previously presented numerical integration 

algorithms for integration time step of 30 seconds. Table 2. shows performance measures for the 

different utilized numerical integration algorithms for integration time step of 30 seconds. The 

Runge-Kutta 8 algorithm achieves a very good RMS position error. And then there comes the 

Runge-Kutta 4 algorithm. Runge-Kutta-Gill, Runge-Kutta 5, and Adams-Moulton have high RMS 

position error. The maximum average execution time is achieved by the Adams-Moulton algorithm. 

And then comes Runge-Kutta 8 algorithm. Runge-Kutta 4, Runge-Kutta-Gill, and Runge-Kutta 5, 

have similar average execution time. The RMS error of Runge-Kutta 8 could reaches 16.7 m if the 

integration time step is increased up to 135 sec.      
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Fig. 1. Position error log for different numerical integration algorithms ( 5T sec.).    

 

          Performance Measure 

 

Numerical 

Integration 

Algorithm 

RMSR  (m) Average execution time (sec) 

Runge-Kutta 4 1.186 0.0018  

Runge-Kutta-Gill 7101.2583  0.0016 

Runge-Kutta 5 3109.1713  0.0018 

Runge-Kutta 8 1.0868 0.002 

Adams-Moulton 2.2453 0.003 

 

Table 1. Performance measures for numerical integration algorithms ( 5T sec.). 
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Fig. 2. Position error log for different numerical integration algorithms ( 30T sec.). 

 

          Performance Measure 

 

Numerical 

Integration 

Algorithm 

RMSR  (m) Average execution time (sec) 

Runge-Kutta 4 958.0656 -4105.0802  

Runge-Kutta-Gill 7101.8654  -4105.1085  

Runge-Kutta 5 5108.7817  -4106.2769  

Runge-Kutta 8 1.0870 -4108.8122  

Adams-Moulton 4102.2702  -4100661.6   

 

Table 2. Performance measures for numerical integration algorithms ( 30T sec.). 
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6. Conclusion:- 

 

 Runge-Kutta 8 algorithm is characterized by high accuracy and high computational load 

compared to the previously discussed numerical integration algorithms. The excessive 

computational load needed by the Runge-Kutta 8 algorithm could be greatly compensated by using 

larger integration time step while retaining the same high accuracy. The accuracy of Raunge-Kutta 

8 with a time step 30 seconds is better than the accuracy of Raunge-Kutta 4 with a time step 5 

seconds. In addition, the total execution time of Raunge-Kutta 8 is greatly less than that of Raunge-

Kutta 4 due to its ability to use larger time step. Thus, Raunge-Kutta 8 achieves a superior 

performance. Runge-Kutta 4 achieves the second best performance after the Runge-Kutta 8. Runge-

Kutta-Gill, Runge-Kutta 5, and Adams-Moulton achieved lower performance measures compared to 

Runge-Kutta 8, and Runge-Kutta 4 algorithms. 
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