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Abstract—A numerical study of unsteady MHD pulsating flow of an 

incompressible Newtonian electrically conducting couple stress fluid 

through porous medium between permeable beds under the influence of 

periodic body acceleration. The couple stress fluid is injected into the 

channel from the lower permeable bed with a certain velocity and is 

sucked into the upper permeable bed with the same velocity. The flow 

between the permeable beds is assumed to be governed by couple stress 

fluid flow equations of  Navier-Stokes and that in the permeable regions 

by Darcy’s law. The slip condition plays an important role in shear skin, 

spurt, and hysteresis effects. The fluids that exhibit boundary slip have 

important technological applications such as in polishing valves of 

artificial heart and internal cavities. A numerical solution of the equation 

of motion is obtained by a new algorithm "modified generalized 

differential quadrature method (MGDQM)" which applying a generalized 

differential quadrature method (GDQM), to derivatives with respect to 

space variables of differential equations and for the time derivative 

applying 4
th
 order Runge Kutta Method. This combination of DQM and 
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4
th

 order RK method gives very good numerical technique for solving 

time dependent problems. The numerical results and the effects of the 

material parameters are presented and discussed through graphs.  

 

Keywords— Pulsatile flow, MHD, couple stress fluid, permeable beds, 

body acceleration, porous medium, Differential quadrature method, 

Runge-Kutta method. 

 

1. INTRODUCTION 

 

The MHD fluid flow in channel is an interesting area in the study of 

fluid mechanics because of its relevance to various engineering 

applications. The MHD effects are widely exploited in different industrial 

processes ranging from metallurgy to the production pure crystals. A field 

in which MHD will play an essential role is nuclear fusion, where it is 

involved in at least two different problems: the confinement and 

dynamics of plasma, and the behaviour of the liquid metal alloys 

employed in some of the currently considered designs of tritium breeding 

blankets.  

A fluid flow driven by a pulsatile pressure gradient through porous 

media in a channel or a pipe are very much pervalent in nature and hence 

their study is of principal interest in many scientific and engineering 

applications. This type of flows are of great importance in chemical 

engineering (for filteration and water purification processes) and 

petroleum engineering (for stuyding the movement of natural gas, oil and 

water through the oil resevoirs). Also, this type of flows are of great 

importance in physiology, biomedical engineering and it has biological 

applications in relation to hemodynamics, industrial applications in 

relation to heat exchange efficiency, applications in natural systems like 

circulatory systems, respiratory systems, vascular diseases, in engineering 
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systems like reciprocating pumps, IC engines, combustors and 

applications in MEMS micro fluidic engineering applications [1-3].  

Also, the fluid flow driven by a pulsatile pressure gradient through 

porous media in a channel or a pip has application in the dialysis of blood 

through artificial kidneys or blood flow in the lung alveolar sheet. Afifi 

and Gad [4] studied the flow of a Newtonian, incompressible fluid under 

the effect of transverse magnetic field through a porous medium between 

infinite parallel walls on which a sinusoidal traveling wave is imposed. 

Ramamurthy and Shanker [5] studied magneto-hydrodynamic effects on 

blood flow through a porous channel, they considered the blood as a 

Newtonian fluid and conducting fluid. Arterial MHD pulsatile flow of 

blood under periodic body acceleration has been studied by Das and Saha 

[6]. The effect of uniform transverse magnetic field on its pulsatile 

motion through an axi-symmetric tube is analyzed by Dulal and Ananda 

[7]. Chaturani and Palanisamy [8] discussed the flow characteristics of 

blood under external body acceleration. Eldesoky [9] studied the unsteady 

pulsatile flow of blood through porous medium in an artery under the 

influence of periodic body acceleration and slip condition in the presence 

of magnetic field considering blood as an incompressible electrically 

conducting fluid. An analytical solution of the equation of motion is 

obtained by applying the Laplace transform. Eldesoky [10] studied the 

influence of slip on the peristaltic flow in an axisymetric cylindrical tube. 

A compressible Maxwell fluid saturates the homogenous porous medium. 

Modified Darcy's law has been used to model the governing equation. 

The analytical solutions of the equation of motion are obtained by 

applying a perturbation analysis. Recently, Eldesoky, Kamel, Hussien and 

Abumandour [11] studied the unsteady pulsatile flow through porous 

medium in an artery under the influence of periodic body acceleration in 

the presence of magnetic field numerically using Generalized Differential 
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Quadrature Method (GDQM). Eldesoky [12] studied the influence of 

relaxation time on MHD pulsatile flow of blood through porous medium 

in an artery under the effect of periodic body acceleration in the presence 

of magnetic field considering blood as an incompressible electrically 

conducting fluid. An analytical solution of the equation of motion is 

obtained by applying the Laplace Transform. Wang [13] studied the 

pulsatile flow of a viscous fluid in a porous channel. Vajravelu et al. [14] 

studied the pulsatile flow of a viscous fluid between permeable beds. 

The boundary conditions for the flow through porous beds need 

special attention. Generally the no-slip condition is valid on the boundary 

when a fluid flows between impermeable surfaces. But when it flows 

between permeable surfaces, the no-slip condition is no longer valid since 

there will be a migration of fluid, tangential to the boundary within the 

permeable surfaces. The velocity within the permeable beds will be 

different from the velocity of the fluid in the channel and we have to 

match the two velocities at the interface. A simple theory presented by 

Beavers and Joseph in [15] based on replacing the effect of the boundary 

layer with a slip velocity proportional to the exterior velocity gradient is 

proposed and shown to be in reasonable agreement with experimental 

results.  

The theory of couple stress fluids initiated by Stokes [16] is a 

generalization of the classical theory of viscous fluids, which allows for 

the presence of couple stresses and body couples in the fluid medium, 

which studied a series of boundary-value problems are solved to indicate 

the effects of couple stresses. A striking feature of this model is that it 

results in equations that are similar to the Navier Stokes equations, there 

by facilitating a comparison with the results for the classical non polar 

case. An excellent introduction to this theory written by Stokes [17] in 

which he has presented a detailed account of couple stress fluids. This 
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theory has several industrial and scientific applications as well, which 

comprise pumping fluids such as synthetic fluids, polymer thickened oils, 

liquid crystal, animal blood, synovial fluid present in synovial joints and 

the theory of lubrication [18-23]. Some salient references to couple stress 

flows through tubes and channels can be seen in Stokes [17]. Several 

flows past axisymmetric bodies dealing with couple stress fluids have 

been studied by Rao and Iyengar [24] and Srinivasacharya [25]. Rao and 

Iyengar [24] have made analytical and computational studies of diverse 

couple stress fluid flows dealing with a class of axisymmetric problems. 

EL-Dabe et.al [26] discussed the effects of couple stresses on pulsatile 

hydro magnetic Poiseuille flow, using perturbation technique. Srivastava 

[27] studied the effects of an axially symmetric mild stenosis on the flow 

of blood, when blood is represented by a couple stress fluid. He also 

studied the peristaltic transport of a couple stress fluid under a zero 

Reynolds number and long wavelength approximation [28]. 

Naduvinamani et al. studied a number of problems with couple stress 

fluid between porous journal bearings and porous rectangular plates [29-

31]. Devakar and Iyengar [32, 33] studied Stokes Problems for an 

incompressible couple stress fluid under isothermal conditions and run up 

flow of a couple stress fluid between parallel plates using Laplace 

transform technique. Radhika and Iyengar [34] studied the Stokes flow of 

an incompressible couple stress fluid past a porous spheriodal shell.  

Numerical approximation methods for solving partial differential 

equations have been widely used in various engineering fields. Classical 

techniques such as finite elements and finite differences methods are well 

developed and well known. These methods can provide very accurate 

results by using a large number of grid points. In seeking an alternate 

numerical method using fewer grid points to find results with acceptable 

accuracy, the method of DQM was introduced by [36-45]. 
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In this paper, modified GDQM used for studying the unsteady 

pulsating flow of an incompressible couple stress fluid between 

permeable beds through Porous Medium in channel under the influence 

of periodic body acceleration in the presence of magnetic field. Modified 

GDQM is a new algorithm which applying a generalized differential 

quadrature method (GDQM), to derivatives with respect to space 

variables of differential equations and for the time derivative applying 4
th
 

orders Runge Kutta Method. This combination of DQM and 4
th
 order RK 

method gives very good numerical technique for solving time dependent 

problems. Stability of 4
th

 order RKM criterias are controlled with several 

values of time increment Δt and number of grid points N in space region. 

The fluid is driven by an unsteady pressure gradient through the 

permeable beds. The flow through the permeable beds is assumed to be 

governed by Darcy’s law and the flow between permeable beds by couple 

stress fluid flow equations of Stokes. The equations are solved 

numerically and the numerical results are presented and discussed 

through graphs. We observe that our results are in good agreement with 

those obtained by Vajravelu et al. [14] in the respective special cases 

considered by them. 

 

2. MATHEMATICAL FORMULATION 

 

We consider the pulsatile flow of an incompressible couple stress fluid 

between two permeable beds. The fluid is injected into the channel from 

the lower permeable bed with a velocity V and is sucked into the upper 

permeable bed with the same velocity. The flow between the permeable 

beds is assumed to be governed by couple stress fluid flow equations 

Stokes [17].   
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Let the x-axis be taken along the interface and the y-axis perpendicular 

to it. Let y = 0 and y = h represent the interfaces of the permeable beds 

under consideration (see figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow diagram for the flow 

 

The following assumptions are made in the analysis of the problem; 

the permeable beds are homogeneous, the flow as axially symmetric, 

laminar, pulsatile and fully developed, and the pressure gradient and body 

acceleration G are given by: 

                              
1

1
cos( ),O p

p
A A t

x





  

            
0,t 

                                      
(1)  

                                 
cos( ),O bG a t

                              
0t 

                                       
(2)  

where AO and A1 are pressure gradient of steady flow and amplitude of 

oscillatory part respectively, aO is the amplitude of the body acceleration, 

2 ,p pf   2b bf  with fp is the pulse frequency, and fb is the body 

acceleration frequency and t is time. 

Under the above mentioned assumption, the field equations describing 

a couple stress fluid flow [17] are: 
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  0div q

t





 

                                                                                   
(3)  

        
      

1
   

2

q
f curl c grad p curl curl q

t
   


   
              

           

           2curl curl curl curl q grad div q    
  

    
(4)  

where ρ is the density of the fluid, q is the velocity vector, p is the 

fluid pressure and
 

, f c are the body force per unit mass and body couple 

per unit mass respectively. The quantities λ and μ are the viscosity 

coefficients and η, η' are the couple stress viscosity coefficients satisfying 

the constraints 

                                 
0,   3 2 0,    0,            

                                       
(5)  

There is a length parameter l



 which is a characteristic measure 

of the polarity of the couple stress fluid and this parameter is identically 

zero in the case of non polar fluids. 

Under the assumption made, we have  ( , ), ,0 .q u y t V  

                                        

0
u v

x y

 
 

                                                                                        
(6)  

   

2 4

2 4

1  u u p u u J B
V G u

t y x ky y

  

    

      
        

                  
  
(7)  

                                         

0
p

y



                                                                                                    

(8)  

Maxwell’s generalized electromagnetic field equations are 

       
0,B 

       
,D  

       
,OB J 

       

.
B

E
t


  

        
  
(9)   

Ohm’s law is 

                                         
 .J E q B  

                                                                   
(10)  

where μO the fluid magnetic permeability,  0, ,0OB B the magnetic 

field vector, E  the electric field vector, J  the current density vector, k is 

the permeability parameter of porous medium, σ the fluid electric 
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conductivity and D the electric flux density. For small magnetic Reynolds 

number, the linearlized magnetohydrodynamic force J B can be put 

into the following form: 

D and B are the electric and magnetic flux densities 

                                         

2 .OJ B B u  
                                                                  

(11)  

Under the above assumptions the equation of motion (7) is 

         

2

1 2

 
cos( ) cos( )O p O b

u u u
V A A t a t

t y y


 



  
     

    
 

                                      

24

4

OB uu
u

ky

 

  

 
  

                                                     
  
(12)

 

For the slip condition ,t p tu A u n   where ut is the tangential 

velocity, n is normal to the surface, and Ap is a coefficient close to the 

mean free path of the molecules of the fluid [35]. Than the boundary 

conditions that must be satisfied by the fluid on the wall of channel are: 

           

 

 

       at           0

Slip conditions

        at          

p

p

u
u A y

y

u
u A y h

y

 
   


  

 
                        

(13 )a  

          

 

2

2

2

2

0        at           0

Vanishing of couple stresses

0        at          

u
y

y

u
y h

y


  

 


 
 

 

      
(13 )b  

Let us introduce the following dimensionless quantities: 

           

,
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u
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 
            

2
,

t
t

h

 
           

,O O

h
A A





 
        

1 1,
h

A A




 
   

           

,O O

h
a a





 
          

2
,

k
k

h

 
            

,b

p

b





             

.
y

y
h

 
              

(14)      

In terms of these variables, equation (12) after dropping the stars 

becomes: 
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4 2

1 2 4 2

1
cos( ) cos( )O O

u d u d u
A A t a bt

t dy dy


     


        

                      

2 1
.a

du
R H u

dy k

 
  
                                                        

                           
(15)

 

Also, the boundary conditions equation (13) becomes:  

           

 

 

       at           0

Slip conditions

        at           1

n

n

du
u k y

dy

u
u k y

y


  




  
 

                           
(16 )a  

          

 

2

2

2

2

0        at           0

Vanishing of couple stresses

0        at           1

d u
y

dy

d u
y

dy


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



 

  

    
(16 )b  

And the initial condition is 

          
( ,0) 1u y 

             
at

              
0t 

                             
(17)  

Where the Hartmann number, Ha, the Reynolds number, R, the Couple 

stress parameter β and the Knudsen number kn are defined respectively by 

       
,a OH B h






           

,
Vh

R





          

2
2 ,

h 





         
.

p

n

A
k

h


        
(18)      

 

3. Generalized Differential Quadrature Method (GDQM) 

 

The DQM is a numerical solution technique for initial and/or boundary 

value problems. This technique has been successfully employed in a 

variety of problems in engineering and physical sciences. The DQM 

approximates the derivative of a function at any location by a linear 

summation of all the functional values along a mesh (grid) line. In order 

to overcome the deficiencies which appears in classical DQM, Bellman et 

al. [36, 37], a generalized differential quadrature (GDQ), which was 

recently proposed by Shu and Richards [39-42] for solving partial 

differential equations in fluid mechanics, vibration analysis and structural 
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analysis. The technique of GDQM for the solution of partial differential 

equations extended and generalized. Numerical examples have shown the 

super accuracy, efficiency, convenience and the great potential of this 

method. The GDQM, which was recently proposed by [39-41] for solving 

partial differential equations. For the discretization of the first and higher 

order derivatives, the following linear constrained relationships are 

applied 

              

( ) ( )

1

( , ) . ( , ),
N

n n

x i ij j

j

f x t C f x t



          

1,2,..., 1,n N 

             
            

(19)
 

for 1,2,..., ;i N where ( )n

xf indicate n
th
 order derivatives of f(x,t) with 

respect to x at xi, N is the number of grid points in the whole dominant 

( )n

ijC are the weighting coefficients. The key to DQ is to determine the 

weighting coefficients for the discretization of a derivative of any order. 

In order to find a simple algebraic expression for calculating the 

weighting coefficients without restricting the choice of grid meshes, [39-

41] gave a convenient and recurrent formula for determining the 

derivative weighting coefficients.  

To determine the weighting coefficients of the GDQ method as: 

Weighting coefficients for the first order derivative 

           

(1)
(1)

(1)

( )
,

( ). ( )

N i
ij

i j N j

M x
C

x x M x



       

, 1,2, ,i j N

  

and

       

i j

    

(20)
 

           

(1) (1)

1,

,
N

ii ij
j j i

C C
 

  
                          

1,2, ,i N

                                         

(21)
 

Where 

           
1 2( ) ( )( ) ( )NM x x x x x x x   

                                                      

(22 )a
 

           

(1)

1,

( ) ( )
N

i i k
k k i

M x x x
 

 
                                                                          

(22 )b
 

Weighting coefficients for the second and higher order derivatives 
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( 1)

( ) (1) ( 1). ,

n

ijn n

ij ij ii

i j

C
C n C C

x x




 

            

                            

for 
    

,j i

      

, 1,2,..., ;i j N

       

2 3 1., ,...,Nn  

              

(23)
 

           

( ) ( )

1.

,
N

n n

ii ij

j j i

C C
 

  
      

for 
     

, 1,2,..., ;i j N

     

2 3 1., ,...,Nn  

  

(24)
 

Where ( )n

ijC and ( 1)n

ijC   are the weighting coefficients of the n
th

 and the 

(n−1)
th
 derivatives. Thus equations (23) and (24) together with equations 

(20) and (21) give a convenient and general form for determining the 

weighting coefficients for the derivatives of orders one through N–1.  

 

4. Numerical discretization and stability of the scheme 

 

In the present study, substituting the DQ derivative approximations 

given in equation (19) in the governing equation (15) and boundary 

conditions equation (16). The coordinates of the grid points are chosen 

according to Chebyshev-Gauss-Lobatto by using N sampling as: 

         

1 1
( ) 1 cos ,

2 1

i
X i

N


   
    

                 

1,2,3,..., ;i N
              

    

The GDQM is applied for the discretization of space derivatives of the 

unknown function u. 

(4) (2)

1 , ,2
1 1

( , ) 1
cos( ) cos( )

N N
i

O O i j j i j j

j j

u y t
A A t a bt C u C u

t   


       


 

        

                              

(1) 2

,

1

1
.

N

i j j a i

j

R C u H u
k

 
   

 


         
,1,2 ,i N                  

(25)
 

Where ,iu 1,2,..., ;i N  is the velocity value at the grid yi, 
(1) ,ijC  

(2)

ijC and (4)

ijC  are the weighting coefficient matrixes of the first, second 

and forth order derivatives. Similarly, the derivatives in the boundary 

conditions can be discretized by the GDQM. As a result, the numerical 

boundary conditions can be written as: 
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 

(1)

1 1,

1

(1)

,

1

        Slip conditions

N

n k k

k

N

N n N k k

k

u k C u

u k C u






  



 




             
              

(26 )a
 

              

 

(2)

1,

1

(2)

1,

1

0

0

        Vanishing of couple stresses

N

k k

k

N

k k

k

C u

C u






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

 





         

(26 )b
 

Equation (26) can't be easily substituted into the governing equation. 

However, we can give solutions, 1,u 2 ,u  1Nu  and Nu as: 

2 2 2 2
(1) ( ) (2) (2)

1 36 1, 37 , 38 1, 39 ,

3 3 3 3

N N N N
N

k k N k k k k N k k

k k k k

u R C u R C u R C u R C u
   

   

               (27 )a
 

 

2 2 2 2
(1) ( ) (2) (2)

2 24 1, 26 , 25 1, 27 ,

3 3 3 3

N N N N
N

k k N k k k k N k k

k k k k

u R C u R C u R C u R C u
   

   

                 
(27 )b

 

 

2 2 2 2
(1) ( ) (2) (2)

1 20 1, 21 , 22 1, 23 ,

3 3 3 3

N N N N
N

N k k N k k k k N k k

k k k k

u R C u R C u R C u R C u
   



   

               (27 )c
 

 

2 2 2 2
(1) ( ) (2) (2)

48 1, 49 , 50 1, 51 ,

3 3 3 3

N N N N
N

N k k N k k k k N k k

k k k k

u R C u R C u R C u R C u
   

   

                
(27 )d

 

 

According to equation (27), 1,u 2 ,u  1Nu  and Nu is expressed in terms 

of 3 4 2, , , ,Nu u u  and can be easily substituted into the governing 

equation (25). It should be noted that equation (26) provides four 

boundary equations. In total we have N unknowns 
1 2, , , .Nu u u In order 

to close the system, the discretized governing equation (25) has to be 

applied at 4N  mesh points. This can be done by applying equation (25) 

at grid points 3 4 2, , , .Ny y y  Substituting equations (27) into equation 

(25) gives: 

2 2
(4) (2)

1 , ,2
3 3

( , ) 1
cos( ) cos( )

N N
i

O O i j j i j j

j j

u y t
A A t a bt C u C u

t 

 

 


       


 
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2
(1) 2

,

3

1
.

N

i j j a i

j

R C u H u
k





 
   

 


      
,3,4 , 2i N 

     
      

(28)
 

It is noted that equation (28) has 4N  equations with 4N   unknowns. 

Now, the discretization for time derivative will be performed by using 

Runge-Kutta 4
th

 order Method. Now, 
u

t




is also considered discretized as 

,
iju

t




thus equation (28) is a set of DQ algebraic equations which can be 

written in a matrix form 

                       
      ,A u b

                        
      

                                                       
            

(29)
 

Where    3 4 2, , , Nu u u u  is a vector of unknown 4N   functional 

values at all discretized points of the region,  A is the    4 4N N    

coefficient matrix, and the right hand side vector  b
 
of size  4 1N    

contains first order time derivatives of the function u at the same 

discretized points. Therefore a numerical scheme is necessary for 

handling these time derivatives. Equation (29) can be solved by several 

time integration schemes such as Euler, Modified Euler, and Runge-Kutta 

4
th

 order Methods. Here, Runge-Kutta Method is going to be used since it 

is a one step method obtained from the Taylor series expansion of u up to 

and including the terms involving  
4

t where t is the step size with 

respect to time. The 4
th
 order RKM since its stability region is larger 

comparing to the other time integration methods and simple for the 

computations.  

The resulting algebraic system of equation (29) can originally be 

considered as an initial value problem in the form (a set of ordinary 

differential equations in time) 

                       
 

 
   

d u
b A u

dt
 

           
  

                                                        
            

(30)
 

Thus the 4
th
 order RKM gives for the governing equation the 
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following vector equation 

                      
           1 1 2 3 42 2

6
n n

t
u u K K K K


      

         
       

(31)
 

Where; 

         

 1 , ,n nK f t u

         
        

         
2 1, ,

2 2
n n

t t
K f t u K

  
   

           
        

         
3 2, ,

2 2
n n

t t
K f t u K

  
   

           
        

         

 4 3,   ,n nK f t t u t K  

         
        

Applying 4
th

 order RKM equation (31) in equation (30). Thus, we can 

easily write by taking   A u as the vector function    ,f t u in the 

sample initial value problem ( , )u f t u  So, 

                       
      ,  f t u A u

           
  

                                                        
             

(32)
 

The Matlab program has been used to solve this problem and get the 

velocity distribution.  

 

5. Numerical results and discussion 

 

We studied the unsteady pulsating flow of an incompressible couple 

stress fluid between permeable beds through Porous Medium in channel 

under the influence of periodic body acceleration in the presence of 

magnetic field numerical using new algorithm modified DQM. The 

algorithm is coded in Matlab 7.14.0.739 and the simulations are run on a 

Pentium 4 CPU 900 MHz with 1 GB memory capacity. We have shown 

the relation between the different parameters of motion such as Hartmann 

number Ha, Couple stress parameter β, Reynolds number R, Knudsen 

number kn, the permeability parameter of porous medium k with the 

velocity distribution to investigate the effect of changing these parameters 
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on the flow. Hence, we can be controlling the process of flow. 

A numerical code has been written to calculate the velocity 

distribution according to equation (29).  

Figs. 2, shows the variation of the velocity distribution with respect to 

Couple stress parameter β. It is seen that as β increases (i.e., as 

Coefficient of couple stress viscosity η decreases) the unsteady velocity 

increases. As          (i.e., as      0  ), the velocity corresponds to non 

polar fluid. 

Figs. 3, shows the variation of the velocity distribution with respect to 

the Hartmann number Ha. It is seen that as Ha increases the unsteady 

velocity decreases.  

Figs. 4, shows the variation of the velocity distribution with respect to 

the permeability parameter of porous medium k. It is seen that as k 

increases the unsteady velocity increases. 

Figs. 5, shows the variation of the velocity distribution with respect to 

the Reynolds number R have less influence on the unsteady velocity. It is 

seen that as R increases the unsteady velocity decreases. The decrease in 

velocity for each R is clearly visible for the region 0y   to 0.8y  . As 

0.8y   to 1.0y  , the velocity profile are almost coinciding for each R. 

Figs. 6, shows that the variation of the velocity distribution with 

respect to the Knudsen number kn. It is clearly visible that the velocity 

increases with increasing kn for the region 0y   to  0.4:0.5y  . As 

0.5y   to 1.0y  , the velocity decrease with increasing kn. 

Figs. 7, shows the effects of Reynolds number R with the velocity 

distribution for non polar viscous fluid (β → ∞ i.e., η → 0). As Reynolds 

number R is increasing the velocity at any y is decreasing. For R = 0, the 

maximum velocity is attained exactly midway between the lower and 

upper permeable beds. As R increases, the maximum velocity is attained 
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nearer to the upper permeable bed. 

Figs. 8, shows the effects of the permeability parameter of porous 

medium k with the velocity distribution for non polar viscous fluid (β→∞ 

i.e., η → 0). As k is increasing the velocity at any y is increasing. The 

velocity profile corresponding to R = 2. the maximum velocity nearer to 

the upper plate slightly (slowly). 

Figs. 9, shows the effects of the Knudsen number kn with the velocity 

distribution for non polar viscous fluid (β →∞ i.e., η → 0). As the 

Knudsen number kn is increasing for the region 0y   to  0.4 :0.5y  . As 

As 0.5y   to 1.0y  , the velocity decrease with increasing kn. The 

velocity profile corresponding to R = 2. Here again the maximum 

velocity nearer to the upper plate slightly (slowly). 

Figs. 10, 11, shows the effects of the Hartmann number Ha with the 

velocity distribution for non polar viscous fluid (β →∞ i.e., η → 0). As 

Ha is increasing the velocity at any y is decreasing.  The velocity profile 

corresponding to R = 2. The maximum velocity region increase with 

increase the Hartmann number Ha. 

 
Fig. 2 The effect of Couple stress parameter on velocity distribution [Ha=1, 

kn=0.001, k=0.5, R=2, AO=2, A1=1, aO=1, b=2]. 
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Fig. 3 The effect of Hartman number on velocity distribution [k=0.5, R=2, 

kn=0.001, β=1, AO=2, A1=1, aO=1, b=2]. 

 

Fig. 4 The effect of Porosity parameter on velocity distribution [Ha=1, R=2, 

kn=0.001, β=1, AO=2, A1=1, aO=1, b=2]. 

 

Fig. 5 The effect of Reynolds number on velocity distribution [Ha=1, k=0.5, 

kn=0.001, β=1, AO=2, A1=1, aO=1, b=2]. 
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Fig. 6 The effect of Knudsen number on velocity distribution [Ha=1, k=0.5, 

R=2, β=1, AO=2, A1=1, aO=1, b=2]. 

 

Fig. 7 The effect of Reynolds number on velocity distribution [Ha=1, k=0.5, 

kn=0.001, AO=2, A1=1, aO=1, b=2, β→∞ (η→0)]. 

 

Fig. 8 The effect of Porosity parameter on velocity distribution [Ha=1, R=2, 

kn=0.001, AO=2, A1=1, aO=1, b=2, β→∞ (η→0)]. 
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Fig. 9 The effect of Knudsen number on velocity distribution [Ha=1, R=2, 

k=0.5, AO=2, A1=1, aO=1, b=2, β→∞ (η→0)]. 

 

Fig. 10 The effect of Hartman number on velocity distribution [k=0.5, R=2, 

kn=0.001, AO=2, A1=1, aO=1, b=2, β→∞ (η→0)]. 

 
Fig. 11 The effect of Hartman number on velocity distribution [k=0.5, R=2, 

kn=0.001, AO=2, A1=1, aO=1, b=2, β→∞ (η→0)]. 
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6. CONCLUSIONS 

 

We have studied the unsteady pulsating flow of an incompressible 

couple stress fluid between permeable beds through Porous Medium in 

channel under the influence of periodic body acceleration in the presence 

of magnetic field using a new algorithm modified GDQM. The slip 

condition on the wall artery has been considered. 

The velocity has been obtained numerically. It is of interest to note 

that the unsteady velocity increases with increasing of the Couple stress 

parameter β and the permeability parameter of porous medium k whereas 

it decreases with increasing the Reynolds number R and the Hartmann 

number Ha. Also the velocity increases with increasing the Knudsen 

number kn for the region  0y   to  0.4 :0.5y  . As  0.5y   to 1.0y  , 

the velocity decrease with increasing kn. 

It is observed that the presence of couple stresses results in a decrease 

in the velocity. Also it is observed that when the couple stresses are 

present, the Reynolds number seems to have no influence on the unsteady 

velocity component. This is in contrast with the disturbance we see in the 

absence of couple stresses.  

It is observed that when the couple stresses are present: 

- As the Reynolds number R increases, the maximum velocity is 

attained nearer to the upper permeable bed plate. 

- As the Knudsen number kn decreases, the maximum velocity is 

attained nearing to the upper permeable bed plate slightly (slowly). 

- As the Hartmann number Ha increases, the maximum velocity 

region increase. 

- As the permeability parameter of porous medium k increases, the 

maximum velocity region increase. 
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APPENDIX 

1 1,11 ,nR k A 
                                        

2

2 ,1n NR k A
 

2 2

3 , 1,1 1,1 , ,1 1,1 n N N n n N N n N NR k A k A k A A k A A    
 

4 ,1 ,N nR A k
                

2
5

3

,
R

R
R



                                                              

1 2
6

3 4

R R
R

R R


 

1, 5

7

1

,
n n Nk k A R

R
R




                                    

1, 6

8

1

n Nk A R
R

R
  

9 1,1 7 1,2 1,1 8 ,2 1,2 1, 5 1,2 1, 6 ,2N N N NR B R A B R A B B R A B R A    
  

10 1,1 7 1, 5,NR B R B R 
                     

11 1,1 8 1, 6NR B R B R   

12 1,1 7 1, 1 1,1 8 , 1 1, 1 1, 5 1, 1 1, 6 , 1N N N N N N N N NR B R A B R A B B R A B R A          

13 ,1 7 1,2 ,1 8 ,2 ,2 , 5 1,2 , 6 ,2N N N N N N N N NR B R A B R A B B R A B R A    
 

14 ,1 7 , 5,N N NR B R B R 
                     

15 ,1 8 , 6N N NR B R B R 
 

16 ,1 7 1, 1 ,1 8 , 1 , 1 , 5 1, 1 , 6 , 1N N N N N N N N N N N N N NR B R A B R A B B R A B R A        
 

17 13 12 16 9 ,R R R R R 
                     

18 14 9 13 10R R R R R 
 

19 15 9 13 11R R R R R 
 

18
20

17

,
R

R
R



 

         
 

19
21

17

,
R

R
R



 

         
13

22

17

,
R

R
R

 

 

   
         

9
23

17

R
R

R
 

 

 

10 12 20
24

9

,
R R R

R
R


 

                                  

12 22
25

9

1 R R
R

R

 


 

11 12 21
26

9

,
R R R

R
R


 

                                  

12 23
27

9

R R
R

R
 

 

28 24 7 12 8 ,2 ,NR R R A R A   
                         

29 25 7 12 8 ,2NR R R A R A   
 

30 26 7 12 8 ,2 ,NR R R A R A   
                        

31 27 7 12 8 ,2NR R R A R A   
 

32 20 7 1, 1 8 , 1 ,N N NR R R A R A 
   

            
33 21 7 1, 1 8 , 1N N NR R R A R A 

   
 

34 22 7 1, 1 8 , 1 ,N N NR R R A R A 
    

             
35 23 7 1, 1 8 , 1N N NR R R A R A 

   
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36 28 7 32 ,R R R R  
                                    

37 30 8 33R R R R  
 

38 29 34 ,R R R 
                                             

39 31 35R R R   

40 24 5 1,2 6 ,2 ,NR R R A R A   
                

41 25 5 1,2 6 ,2NR R R A R A   
 

42 26 5 1,2 6 ,2 ,NR R R A R A   
                

43 27 5 1,2 6 ,2NR R R A R A   
 

44 20 5 1, 1 6 , 1 ,N N NR R R A R A 
   

               
45 21 5 1, 1 6 , 1N N NR R R A R A 

   
 

46 22 5 1, 1 6 , 1 ,N N NR R R A R A 
    

             
47 23 5 1, 1 6 , 1N N NR R R A R A 

   
 

48 40 5 44 ,R R R R  
                                       

49 42 6 45R R R R  
 

50 41 46 ,R R R 
                                               

51 43 47R R R 
 

 

REFERENCES 

 

[1] D. N. Ku, D. P. Giddens, C. K. Zairns, S. Glagov, "Pulsatile flow and 

atherosclerosis in human carotid bifurcation: positive correlation between 

plaque location and low and oscillating shear stress", Arteriosclerosis 5 

293–302, 1985. 

[2] R. M. Nerem, M. J. Levesque, "Hemodynamics and the arterial wall", 

Vasc. Disc. 295–317, 1987. 

[3] F. Fedele, D. L. Hitt, R. D. Prabhu, "Revisiting the stability of 

pulsatile pipe flow", European Journal of Mechanics B/Fluids Vol. 24 

237–254, 2005. 

[4] N. A. S. Afifi and N. S. Gad, "Interaction of peristaltic flow with 

pulsatile magneto-fluid through a porous medium", Acta Mechanica vol. 

149 229-237, 2001.  

[5] G. Ramamurthy and B. Shanker, “Magnetohydrodynamic Effects on 

Blood Flow through Porous Channel,” Medical and Biological 

Engineering and Computing, vol. 32, no. 6, pp. 655-659, 1994.  



 
24 

[6] K. Das and G. C. Saha, “Arterial MHD Pulsatile Flow of Blood under 

Periodic Body Acceleration,” Bulletin of Society of Mathematicians 

Banja Luka, vol. 16, pp. 21-42, 2009. 

[7] C. S. Dulal and B. Ananda, “Pulsatile Motion of Blood through an 

Axi-Symmetric Artery in Presence of Magnetic Field,” Journal of 

Science and Technology of Assam University, vol. 5, no. 2, pp. 12-20, 

2010.  

[8] P. Chaturani and V. Palanisamy, “Pulsatile flow of blood with 

periodic body acceleration,” International Journal of Engineering 

Science, Vol. 29 no. 1, pp. 113-121, 1991. 

[9] I. M. Eldesoky, “Slip Effects on the Unsteady MHD Pulsatile Blood 

Flow through Porous Medium in an Artery under the Effect of Body 

Acceleration,” International Journal of Mathematics and Mathematical 

Sciences, Vol.  2012, Article ID 860239, 2010. 

[10] I. M. Eldesoky, “Influence of Slip Condition on Peristaltic Transport 

of a compressible Maxwell Fluid through porous Medium in a tube,” 

International Journal of Applied Mathematics and Mechanics, Vol. 8, pp. 

99–117, 2012.  

[11] I. M. Eldesoky, M. H. Kamel, Reda M. Hussien and Ramzy M. 

Abumandour, “Numerical Study of Unsteady MHD Pulsatile Flow 

through Porous Medium in an Artery Using Generalized Differential 

Quadrature Method (GDQM)”. International Journal of Materials, 

Mechanics and Manufacturing, Vol. 1, No. 2 April 2013. 

[12] I. M. Eldesoky, “Effect of Relaxation Time on MHD Pulsatile Flow 

of Blood through Porous Medium in an Artery under the Effect of 

Periodic Body Acceleration,” Journal of Biological Systems, Vol. 21, 

Issue 2, pp. (1-17), 2013. 

[13] Y. C. Wang, Pulsatile flow in a porous channel, Journal of Appllied 

Mechanics Vol. 38 553–555, 1972.  



 
25 

[14] K. Vajravelu, K. Ramesh, S. Sreenadh, P.V. Arunachalam, Pulsatile 

flow between permeable beds., International Journal of Non-Linear 

Mechanics, Vol. 38, No. 7, pp. 999-1005, October 2003.  

[15] G. S. Beavers, D. D. Joseph, Boundary conditions at a naturally 

permeable wall., Journal of Fluid Mechanics, Vol 30, pp. 197-207, . 

doi:10.1017/S00221120670013751967. 

[16] V. K. Stokes, "Couple Stresses in Fluids", the Physics of Fluids, Vol. 

9 pp. 1709-1715, 1966. 

[17] V. K. Stokes, "Theories of Fluids with Microstructure", Springer-

Verlag, Berlin 1984. 

[18]  N. B. Naduvinamani, P. S. Hiremath, G. Gurubasavaraj, "Squeeze 

film lubrication of a short porous journal bearing with couple stress 

fluids.", Tribology International, Vol. 34 no. 11, pp. 739–747, DOI: 

10.1016/S0301-679X(01)00064-0, 2001.  

[19] N. B. Naduvinamani, P. S. Hiremath, G. Gurubasavaraj, "Surface 

roughness effects in a short porous journal bearing with a couple stress 

fluid", Fluid Dynamics Research, 31(5–6), pp. 333–354, 2002. 

[20] N. B. Naduvinamani, P. S. Hiremath, G. Gurubasavaraj, "Effects of 

surface roughness on the couple stress squeeze film between a sphere and 

a flat Plate.", Tribology International, Vol. 38 no. 5, pp. 451–458, 2005. 

[21] N. B. Naduvinamani, Syeda Tasneem Fathima, P. S. Hiremath, 

"Hydrodynamic lubrication of rough slider bearings with couple stress 

fluids", Tribology International, Vol. 36 no. 12, pp. 949–959, 2003. 

[22] N. B. Naduvinamani, Syeda Tasneem Fathima, P.S. Hiremath, 

"Effect of surface roughness on characteristics of couplestress squeeze 

film between anisotropic porous rectangular plates", Fluid Dynamics 

Research, Vol. 32 no. 5, pp. 217–231, 2003. 

[23] J.-R. Lin, C.-R. Hung, Combined effects of non-Newtonian couple 

stresses and fluid inertia on the squeeze film characteristics between a 

http://dx.doi.org/10.1016%2fS0301-679X%2801%2900064-0


 
26 

long cylinder and an infinite plate, Fluid Dynamics Research, Vol. 39 no. 

8, pp. 616–639, 2007. 

[24] S. K. Lakshmana Rao and T. K. V. Iyengar, "Analytical and 

computational studies in couple stress fluid flows", U.G.C. Research 

project C-8-4/82 SR III, 1985. 

[25] D. Srinivasacharya, "Stokes flow of an incompressible Couple stress 

fluid past an approximate sphere", Ph.D thesis, 1995. 

[26] N. T. M. EL-Dabe, S. M. G. EL-Mohandis, "Effect of couple 

stresses on pulsatile hydromagnetic Poiseuille flow", Fluid Dynamics 

Research, Vol. 15(5), pp. 313–324, 1995. 

[27] L. M. Srivastava, "Flow of couple stresss fluid through stenotic 

blood vessels", Journal of Biomechanics, Vol 18, 479-485, 1985. 

[28] L. M. Srivastava, "Perstaltic transport of a couple stresss fluid", 

Rheologica Acta, Vol 25, 638-641, 1986.  

[29] N. B. Naduvinamani, P. S. Hiremath and G. Gurubasavaraj, 

"Squeeze film lubrication of a short porous journal bearing with couple 

stress fluids", Tribology International,Vol 34, 739-747, 2001. 

[30] N. B. Naduvinamani, P. S. Hiremath and G. Gurubasavaraj, "Surface 

roughness effects in a short porous journal bearing with couple stress 

fluid", Fluid Dynamics Research,Vol 31, 333-354, 2002. 

[31] N. B. Naduvinamani, Syeda Taseem Fathima and P. S. Hiremath, 

"Effects of surface roughness on characteristics of couple stress squeeze 

film between anisotropic porous rectangular plates", Fluid Dynamics 

Research, Vol 32, 217-231, 2003. 

[32] M. Devakar and T. K. V.Iyengar, "Stoke’s problems for an 

incompressible couple stress fluid", Nonlinear Analysis: Modeling and 

Control, Vol 1, 181-190, 2008. 



 
27 

[33] M. Devakar and T. K. V. Iyengar, "Runup flow a couple stress fluid 

between parallel plates", Nonlinear Analysis: Modeling and Control, Vol 

15, 29-37, 2010. 

[34] T. S. L. Radhika and T. K. V. Iyengar, "Stokes flow of an 

incompressible couple stress fluid past a porous spherical shell", 

Proceedings of International Multi conference of Engineers and 

Computer Scientists, Vol 3, 1634-1639, 2010. 

[35] N. T. M. EL-Dabe, S. M. G. EL-Mohandis, Effect of couple stresses 

on pulsatile hydromagnetic Poiseuille flow, Fluid Dynamics Research, 

Vol. 15(5), pp. 313–324, 1995. 

[36] R. E. Bellman and J. Casti, “Differential quadrature and long-term 

integration,” Journal of Mathematical Analysis and Applications, Vol. 34, 

pp. 235-238, 1971. 

[37] R. E. Bellman, B. G. Kashef and J. Casti, "Differential quadrature: A 

technique for the rapid solution of non-linear partial differential 

equations", Journal of computational Physics Vol. 10, pp. 40–52, 1972. 

[38] S. K. Jang, C. W. Bert, and A. G. Striz, “Application of differential 

quadrature to static analysis of Structural components,” International 

Journal of Numerical Methods in Engineering, vol. 28, pp. 561-577, 

1989. 

[39] C. Shu and B. E. Richards, "High resolution of natural convection in 

a square cavity by generalized differential quadrature", Proceedings of 3
rd

 

International Conference on Advanced in numerical Methods in 

Engineering: Theory and Applications, Swansea, U.K 2: 978–985, 1990. 

[40] C. Shu, "Generalized differential-integral quadrature and application 

to the simulation of incompressible viscous flows including parallel 

computation", PhD thesis, Department of Aerospace Engineering, 

University of Glasgow, 1991.  



 
28 

[41] C. Shu and B. E. Richards, “Application of generalized differential 

quadrature to solve two-dimensional incompressible Navier-Stokes 

equations,” International Journal of Numerical Methods in Fluid 

Dynamics, Vol. 15, pp. 791-798, 1992.  

[42] C. Shu, "Differential quadrature and its application in engineering", 

Springer-Verlag, London, 2000. 

[43] M. Tanaka and W. Chen, “Coupling dual reciprocity boundary 

element method and differential quadrature method for time dependent 

diffusion problems,” Applied Mathematical Modelling, vol. 25, no. 3, pp. 

257-268, 2001. 

 [44] P. Jun-ping, and Z. Jian-jun, “Structural Dynamic Responses 

Analysis Applying Differential Quadrature Method,” Journal of Zhejiang 

University Science, vol. 7, no. 11, pp. 1831-1838, 2006. 

[45] Zhi Zong and Yingyan Zhang, "Advanced Differential Quadrature 

Methods", Chapman & Hall/CRC applied mathematics and nonlinear 

science series, 2009. 

 


