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   

Abstract. The unsteady pulsatile flow of blood through porous medium in an artery has been studied 

under the influence of periodic body acceleration and slip condition by considering blood as 

incompressible Newtonian electrically conducting fluid in the presence of magnetic field. In this paper a 

new technique of differential quadrature method introduced to find numerical solution of nonlinear 

partial differential equations such as the equation of motion of this problem "Navier-Stokes equation". 

The presence of the nonlinearity in the problem leads to severe difficulties in the solution 

approximation. In construction of the numerical scheme "a new algorithm" a generalized differential 

quadrature method (GDQM) is to use for derivatives with respect to space variables of differential 

equations and for the time derivative applying fourth order Runge Kutta Method (RKM). The GDQM 

changed the nonlinear partial differential equations into a system of nonlinear ordinary differential 

equations (ODEs). The obtained system of ODEs is solved by 4
th

 order RKM. This combination of 

DQM and 4
th

 order RKM gives very good numerical technique for solving time dependent problems. 

The algorithm is coded in Matlab 7.14.0.739 and the simulations are run on a Pentium 4 CPU 900 MHz 

with 1 GB memory capacity. The effects of slip condition, magnetic field, porous medium, and body 

acceleration have been discussed. The numerical results show that the proposed method is more 

accurate and convergent than other numerical methods in literature. The method is illustrated and 

compared with the exact and analytical solutions and it is found that the proposed method gives better 

accuracy and is quite easy to implement. 
 

Keywords. Pulsatile blood flow magnetic field, body acceleration, porous medium, Differential 

quadrature method, Runge-Kutta method. 
 

1. INTRODUCTION 
 

Numerical approximation methods for solving partial differential equations have been widely used in 

many fields of science, particularly in physics, engineering, chemistry and finance, and are fundamental 

for the mathematical formulation of continuum models. Most numerical simulations of engineering 

problems can be currently carried out by conventional low order, classical techniques, such as finite 

element and finite difference methods are well developed and well known. These methods can provide 

very accurate results by using a large number of grid points. However, in some practical applications, 

the numerical solutions of partial differential equations are required at only a few specified points in the 

physical domain. For acceptable accuracy, the conventional low order technique still required the use of 

a large number of grid points to obtain accurate solutions at these specified points. In seeking a more 

efficient method using just a few grid points to obtain accurate numerical results, the technique of 

differential quadrature method (DQM) was proposed by Bellman [1, 2]. The DQM is a numerical 

solution technique for initial and/or boundary value problems. The DQM is an easy and efficient 

numerical method for the rapid solution of various linear and nonlinear differential and integro-

differential equations. The DQM circumvents the above difficulties by computing a moderately accurate 

solution from only a few points. For more details see [3]. The DQM follows the concepts of classical 

integral quadrature. The DQM discretizes any derivative at a point by a weighted linear sum of 

functional values at its neighboring points. The key to DQ is to determine the weighting coefficient for 
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any order derivative discretization. Bellman et al. [2] suggested two methods to determine the weighting 

coefficients of the first order derivative. The first method used a simple function as test functions to 

solve an algebraic equation system. The second method is similar to the first one with the exception, but 

with the coordinates of grid points chosen as the roots of the shifted Legendre polynomial. Most 

pervious application of DQ in engineering use Bellman's first method to obtain the weighting 

coefficients because it lets the coordinates of grid points be chosen arbitrarily. Unfortunately, when the 

order of the algebraic equation system is large, its matrix is ill-conditioned. Thus it is very difficult to 

obtain the weighting coefficients for a large number of grid points using this method. To overcome the 

drawbacks of the above methods, Quan and Chang [4], Shu and Richards [5] and Wen and Yu [6] 

derived a recursive formula to obtain these coefficients directly and irrespective of the number and 

positions of the sampling points. In their approach, they used the Lagrange polynomials as the test 

functions and found a simple recurrence formula for the weighting coefficients for the first and second 

order derivatives discretization. More generally, Shu and Richards [7], and Shu [8] present the 

generalized differential quadrature (GDQ). In GDQ, the weighting coefficients of the first order 

derivative are determined by a simple algebraic formulation without any restriction on choice of grid 

points, and the weighting coefficient of the second and higher order derivatives are determined by a 

recurrence relationship. The major advantage of GDQ over DQ is its ease of the computation of the 

weighting coefficients without any restriction on the choice of grid points. The pioneer works for the 

applications of the DQM to the general area of structural mechanics and fluid mechanics. To solve these 

equations, the boundary conditions have to be implemented appropriately. For the case where there is 

only one boundary condition at each boundary, the implementation is very simple and can be done in a 

straightforward way. However, in some cases, there is more than one boundary condition, which could 

result in difficulties in the numerical implementation of the boundary conditions. One example is the 

solution of Navier-Stokes equations in fluid mechanics. Another example is the flexural vibration 

analysis of a thin beam or a plate. Like some other numerical methods, the GDQM discretizes the 

spatial derivatives and, therefore, reduces the partial differential equations into a set of algebraic 

equations. To solve these equations, the boundary conditions have to be implemented appropriately. 

The details of the DQM and its applications can be found in [3, 9-16]. AL-SAIF and Zheng-You [17] 

presented improve to the traditional DQM by using the upwind difference scheme for the convective 

terms to solve the coupled two-dimensional incompressible Navier-stokes equations and heat equation. 

The results show that the new method is more accurate, and has better convergence than the 

conventional DQM for numerically computing the steady-state solution. AL-SAIF and Zheng-You [18] 

studied the two-dimensional steady flow of an incompressible second-order viscoelastic fluid between 

two parallel plates. By using the DQM with only a few grid points, the high-accurate numerical results 

were obtained.  

The investigations of blood flow through arteries are of considerable importance in many 

cardiovascular diseases particularly atherosclerosis. Under normal conditions, blood flow in the human 

circulatory system depends upon the pumping action of the heart and this produces a pressure gradient 

throughout the arterial network. During recent years, the effect of magnetic field on the flow has been 

studied. MHD viscous flow though pipes plays significant role in different areas of science and 

technology such as Petroleum industry, Biomechanics, Drainage and Irrigation engineering and so on. 

The electromagnetic force (Lorentz force) acts on the blood and this force opposes the motion of blood 

and there by flow of blood is impeded, so that the external magnetic field can be used in the treatment 

of some kinds of diseases like cardiovascular diseases and in the diseases with accelerated blood 

circulation such as hemorrhages and hypertension. Earlier studies in flow in porous media have revealed 

the Darcy law which relates linearly the flow velocity to the pressure gradient across the porous 

medium. An important characteristic for the combination of the fluid and the porous medium is the 

tortuosity which represents the hindrance to flow diffusion imposed by local boundaries or local 

viscosity.  

No slip boundary conditions are a convenient idealization of the behavior of viscous fluids near walls. 

The inadequacy of the no-slip condition is quite evident in polymer melts which often exhibit 

microscopic wall slip. The slip condition plays an important role in shear skin, spurt, and hysteresis 

effects. The boundary conditions relevant to flowing fluids are very important in predicting fluid flows 
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in many applications. The fluids that exhibit boundary slip have important technological applications 

such as in polishing valves of artificial heart and internal cavities. Wang [40] presented exact solution of 

the Navier-Stokes equations of stagnation flows with slip. 

In situations like travel in vehicles, aircraft, operating jackhammer, and sudden movements of body 

during sports activities, the human body experiences external body acceleration. Prolonged exposure of 

a healthy human body to external acceleration may cause serious health problem like headache, increase 

in pulse rate and loss of vision on account of disturbances in blood flow.  

Many mathematical models have already been investigated by several research workers to study the 

unsteady pulsatile blood flow through porous medium under the influence of periodic body acceleration 

in the presence of magnetic field with slip boundary condition numerically and analytically. El-

Shehawey et al. [19–22] studied the effect of body acceleration in different situations. They studied the 

effect of MHD flow of blood under body acceleration, also they studied Womersley problem for 

pulsatile flow of blood through a porous medium. The flow of MHD of an elastic-viscous fluid under 

periodic body acceleration has been studied. The blood flow through porous medium under periodic 

body acceleration has been studied. The analytical solutions of all above cases are obtained by using 

Laplace and finite Hankel transforms. El-Shehawey et al. [23] studied the pulsatile flow through a 

porous medium under the influence of body acceleration. An analytical solution is obtained by using 

Laplace and finite Hankel transforms. El-Shahed [24] studied pulsatile flow of blood through a stenosed 

porous medium under the influence of periodic body acceleration. Analytical solution is obtained by 

using Laplace and finite Hankel transforms. El-Shehawey et al. [25] studied the slip effects on the 

peristaltic flow of a non-Newtonian Maxwellian fluid. The Navier-Stokes equations are solved by using 

a perturbation analysis. Sanyal and Debnath [26] presented a mathematical model for studying the effect 

of magnetic field on pulsatile blood flow through an inclined circular tube with periodic body 

acceleration. The analytical solution is obtained by using Finite Hankel and Laplace transforms. Das 

and Saha [27] studied the arterial MHD pulsatile blood flow through a stenosed porous medium with 

periodic body acceleration. An analytical solution is obtained using Finite Hankel and Laplace 

transforms. Sanyal and Biswas [28] studied the effect of uniform transverse magnetic field on its 

pulsatile motion through an axisymmetric tube by assuming blood as incompressible biviscous fluid. 

The problem is solved by Perturbation technique with small amplitude of pulsation. Mathur and Jain 

[29] studied the pulsatile flow of blood through stenosed arteries, including the effects of body 

acceleration and a magnetic field. An analytical solution is obtained by using Hankel and Laplace 

transforms. Misra et al. [30] presented a mathematical modeling of blood flow in porous vessel having 

double stenosis in the presence of an external magnetic. This model is consistent with the principles of 

ferro-hydrodynamics and magnetohydrodynamics. Eldesoky [31] presented a mathematical analysis of 

unsteady blood flow through parallel plate channel under the action of an applied constant transverse 

magnetic field. Eldesoky [32] studied the slip effects on the unsteady MHD pulsatile blood flow 

through porous medium in an artery under the influence of body acceleration. An analytical solution is 

obtained by applying the Laplace transform. Mohan et al. [33] investigated the effect of magnetic field 

on blood flow in cylindrical artery through porous medium. An analytical solution is obtained by 

applying Laplace transforms and Finite Hankel Transforms. Tzirtzilakis [34] studied a mathematical 

model of biomagnetic fluid dynamics (BFD) under the action of magnetic field. The numerical results 

are obtained using a Finite Differences technique based on a pressure-linked pseudotransient method on 

a collocated grid. Mokhtar et al. [35] study the unsteady motion of the magneto-hydrodynamic 

biviscosity fluid with heat and mass transfer through a uniform porous medium between two permeable 

parallel walls, taking into account pulsation of the pressure gradient. A numerical solution of governing 

equations is obtained using a matching technique of a Runge-Kutta-Merson method and Newton 

iteration in a shooting. Malekzadeh [36] studied the influence of a magnetic field on the skin friction 

factor of steady fully-developed laminar flow through a pipe. A numerical solution of the governing 

equations is obtained by applying Finite Difference scheme. Sankar and Lee [37] developed a 

computational model to analyze the effects of magnetic field in a pulsatile flow of blood through narrow 

arteries with mild stenosis. Finite Difference method is employed to solve the simplified nonlinear 

partial differential equation. Amira et al. [38] presented a mathematical model of Newtonian blood flow 

through the irregular stenosis to study the effect of body acceleration. The radial coordinate 

http://link.springer.com/search?facet-author=%22Pankaj+Mathur%22
http://link.springer.com/search?facet-author=%22Surekha+Jain%22
http://link.springer.com/search?facet-author=%22D.+S.+Sankar%22
http://link.springer.com/search?facet-author=%22Usik+Lee%22
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transformation is used to solve the governing equations and the numerical results are obtained by using 

Finite Difference method. Eldesoky et al. [39] studied the unsteady MHD pulsatile blood flow through 

porous medium under the influence of periodic body acceleration. A numerical solution of the equation 

of motion is obtained by applying a combination of a generalized differential quadrature method and 4
th

 

order Runge-Kutta method.  

In this paper, numerical solution using a new technique is applied to time dependent problem Navier-

Stokes equations. Derivatives with respect to space variables are discretized using GDQM giving a 

system of ordinary differential equations for the time derivative, and time derivatives are discretized 

using 4
th

 order RKM. A new technique gives a very good numerical solution for solving time dependent 

problems. Stability of 4
th

 order RKM criterias are controlled with several values of time increment Δt 

and number of grid points N in space region. In this paper, GDQM used for studying the effect of slip 

condition on unsteady pulsatile blood flow through a porous medium under the influence of periodic 

body acceleration in the presence of magnetic field.  
 

2. MATHEMATICAL FORMULATION 
 

Consider the flow as shown in [32], blood is supposed to be as an electrically conducting, Newtonian, 

incompressible, and viscous fluid in the presence of magnetic field in an axisymmetric cylindrical artery 

of radius R through porous medium with body acceleration. The fluid subjected to a constant magnetic 

field acts perpendicular to the artery. The slip boundary conditions are also taken into account. We 

assume that the magnetic Reynolds number of the flow is taken to be small enough, so that the induced 

magnetic and electric field can be neglected. We consider the flow as axially symmetric, pulsatile. The 

pressure gradient and body acceleration G are given by: 

              
1 cos( ),O p

p
A A t

z



  
      0,t                                                                                      (1) 

                
cos( ),O bG a t

                 0,t                                                                                     (2) 

where AO and A1 are pressure gradient of steady flow and amplitude of oscillatory part respectively, aO 

is the amplitude of the body acceleration,        ,         with fp is the pulse frequency, and fb 

is the body acceleration frequency and t is time. 

The governing equation of the motion for flow in cylindrical polar coordinates is given by 

              2 .
u dp

g u u J B
t dz k


  
  

        
  

                                                                            (3) 

Maxwell’s equations are 

                0,B           ,OB J            ,
B

E
t


  


               .fE




                                         (4) 

Ohm’s law is 

               .J E V B                                                                                                                     (5) 

where  ̅          is the velocity distribution, ρ the blood density, μ the dynamic viscosity of the 

blood, μO magnetic permeability,  ̅           the magnetic field,  ̅ the electric field,    the 

volumetric free charge density,   is the dielectric constant,   ̅ the current density, k is the permeability 

parameter of porous medium, and σ the electric conductivity of the blood. For small magnetic Reynolds 

number, the linearlized magnetohydrodynamic force  ̅   ̅ can be put into the following form: 

              2 .OJ B B u                                                                                                                     (6) 

where        represents the axial velocity of the blood. 

Under the above mentioned assumption, the equation of motion is: 

               
2

2

1 2

1
cos( ) cos( ) .O p O b O

u u u
A A t a t u B u

t r r r k


     

     
         

     
                                  (7) 

The boundary conditions that must be satisfied by the blood on the wall of artery are the slip 

conditions. For slip flow the blood still obeys the Navier-Stokes equation, but the no-slip condition is 

replaced by the slip condition      (
   

  
)  where    is the tangential velocity, n is normal to the 
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surface, and Ap is a coefficient close to the mean free path of the molecules of the blood [40] and then 

the boundary conditions on the wall of the artery are: 

              
( , )

( , ) p

u r t
u R t A

r





  at  ,r R  Slip condition                                                                             (8a) 

              (0, )u t     is finite  at  0,r      axis of the pipe                                                                              (8b) 

Let us introduce the following dimensionless quantities: 

            ,
u

u
R

    ,
r

r
R

    ,t t    ,
z

z
R

   
2

,
k

k
R

    ,O O

R
A A



    
1 1,

R
A A



   ,O O

R
a a





   .b

p

b



   (9) 

The Hartmann number, Ha, the Womersley parameter, α and the Knudsen number, kn are defined 

respectively by: 

              ,a OH B R



         ,R





          .n

A
k

R
                                                                            (10) 

In terms of these variables, equations (7) and (8) can be rewritten in the non-dimensional form after 

dropping the stars becomes: 

              
2

2 2

1 2

1 1
cos( ) cos( ) .O O a

u u u
A A t a bt H u

t r r r k


    
       

    
                                                  (11) 

Also the boundary conditions are: 

              
( , )

( , ) n

u r t
u r t k

r





      on       1,r                                                                                     (12a) 

              (0, )u t           is finite      axis of the pipe                                                                                  (12b) 

And the initial condition is: 

              ( ,0) 1u r            at     0t                                                                                                         (12c) 

  

3. GENERALIZED DIFFERENTIAL QUADRATURE METHOD (GDQM) 

 

The DQM is a numerical solution technique for initial and/or boundary value problems. This 

technique has been successfully employed in a variety of problems in engineering and physical 

sciences. The DQM approximates the derivative of a function at any location by a linear summation of 

all the functional values along a mesh (grid) line. The GDQM is systematically employed to solve 

problems in Fluid mechanics, Vibration analysis and Structural analysis. The technique of GDQM for 

the solution of partial differential equations extended and generalized. Numerical examples have shown 

the super accuracy, efficiency, convenience and the great potential of this method. A GDQM, which 

was recently proposed by Shu and Richards [7, 8] for solving partial differential equations in fluid 

mechanics. For the discretization of the first and higher order derivatives, the following linear 

constrained relationships are applied 

              ( ) ( )

1

( , ) . ( , ),
N

n n

x i ij j

j

f x t C f x t


    1,2,..., 1,n N                                                                           (13) 

for          ; where   
   

 indicate n
th

 order derivatives of f(x,t) with respect to x at   , N is the 

number of grid points in the whole dominant    
   

 are the weighting coefficients. The key to DQ is to 

determine the weighting coefficients for the discretization of a derivative of any order. In order to find a 

simple algebraic expression for calculating the weighting coefficients without restricting the choice of 

grid meshes, Shu choose Lagrange interpolated polynomials as the tests functions. Shu and Richards [7, 

8] gave a convenient and recurrent formula for determining the derivative weighting coefficients.  

To determine the weighting coefficients of the GDQ method as: 

Weighting coefficients for the first order derivative 

              
(1)

(1)

(1)

( )
,

( ). ( )

N i
ij

i j N j

M x
C

x x M x



  , 1,2, ,i j N and  i j                                                                         (14) 

              (1) (1)

1,

,
N

ii ij
j j i

C C
 

         1,2, ,i N                                                                                                   (15) 
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where 

              
1 2( ) ( )( ) ( )NM x x x x x x x                                                                                             (16.1) 

              (1)

1,

( ) ( )
N

i i k
k k i

M x x x
 

                                                                                                          (16.2) 

Weighting coefficients for the second and higher order derivatives 

              
( 1)

( ) (1) ( 1). ,

n

ijn n

ij ij ii

i j

C
C n C C

x x




 

      

       for  ,j i   , 1,2,..., ;i j N   2 3 1., ,...,Nn                                       (17) 

              ( ) ( )

1.

,
N

n n

ii ij

j j i

C C
 

                           for  , 1,2,..., ;i j N  2 3 1., ,...,Nn                                                    (18) 

where    
   

 and    
     

 are the weighting coefficients of the nth and the (n−1)
th

 derivatives. The    
   

 

can be obtained from a relationship similar to equation (15). Thus equations (17) and (18) together with 

equations (14) and (15) give a convenient and general form for determining the weighting coefficients 

for the derivatives of orders one through N–1.  

 

4. NUMERICAL DISCRETIZATION AND STABILITY OF THE SCHEME 

 

In the present study, substituting the GDQ derivative approximations given in equation (13) in the 

governing equation (11). The coordinates of the grid points are chosen according to Chebyshev-Gauss-

Lobatto by using N sampling as: 

              1 1
( ) 1 cos ,

2 1

i
X i

N


   
    

  

                    1,2,3,..., ;i N  

The GDQM is applied for the discretization of space derivatives of the unknown function u, we obtain 

the ordinary differential equation 

              2 (2) (1) 2

1 , ,

1 1

( , ) 1 1
cos( ) cos( ) ,

N N
i

O O i j j i j j a i

j ji

u r t
A A t a bt C u C u H u

t r k


 

  
         

  
      1,2, ,Ni           (19) 

where   ,             is the velocity value at the grid    .    
   

 and    
   

 are the weighting coefficient 

matrixes of the first and second order derivatives.  

Similarly, the derivatives in the boundary conditions can be discretized by the GDQM. As a result, the 

numerical boundary conditions can be written as: 

              (1)

,

1

N

N n N k k

k

u k C u


       Slip conditions                                                                                   (20a) 

              (1)

1,

1

0
N

k k

k

C u


                                                                                                                      (20b) 

Equation (20) can't be easily substituted into the governing equation. However, we can give 

solutions,    and     as: 

              
1 1

(1) ( )

1 1 1, 3 ,

2 2

N N
N

k k N k k

k k

u R C u R C u
 

 

 
     

 
                                                                                           (21a) 

              
1 1

(1) ( )

2 4 1, 5 ,

2 2

N N
N

N k k N k k

k k

u R R C u R C u
 

 

 
      

 
                                                                                 (21b)   

According to equation (21),     and     are expressed in terms of              and can be easily 

substituted into the governing equation (19). In total we have N unknowns             In order to 

close the system, the discretized governing equation (19) has to be applied at     mesh points. This 

can be done by applying equation (19) at grid points              Substituting equation (21) into 

equation (19) gives: 

              
1 1

2 (2) (1) 2

1 , ,

2 2

( , ) 1 1
cos( ) cos( ) ,

N N
i

O O i j j i j j a i

j ji

u r t
A A t a bt C u C u H u

t r k


 

 

  
         

  
     2,3 1, ,Ni      (22) 

It is noted that equation (22) has     equations with     unknowns. 

Now, the discretization for time derivative will be performed by using Runge-Kutta Method. Now, 
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is also considered discretized as 
    

  
  thus equation (22) is a set of DQ algebraic equations which can be 

written in a matrix form 

                    ,A u b                                                                                                                                (23) 

where { }  {            } is a vector of unknown     functional values at all discretized points 

of the region, [ ] is the               coefficient matrix, and the right hand side vector { } of 

size          contains first order time derivatives of the function u at the same discretized points. 

Therefore a numerical scheme is necessary for handling these time derivatives. Equation (23) can be 

solved by several time integration schemes such as Euler, Modified Euler, and Runge-Kutta Methods. 

Here, Runge-Kutta Method is going to be used since it is a one step method obtained from the Taylor 

series expansion of u up to and including the terms involving        where    is the step size with 

respect to time. The 4
th

 order RKM since its stability region is larger comparing to the other time 

integration methods and simple for the computations.  

The 4
th

 order RKM is applied to discretized time derivatives in the resulting system of algebraic 

equation (23). RKM is a one step method for solving initial value problems. Therefore the resulting 

algebraic system of equation (23) can originally be considered as an initial value problem in the form (a 

set of ordinary differential equations in time) 

               
 

   
d u

b A u
dt

                                                                                                                     (24) 

Thus the 4
th

 order RKM gives for the governing equation the following vector equation 

                         1 1 2 3 42 2
6

n n

t
u u K K K K


      

                                                                                    (25) 

where; 

 1 , ,n nK f t u  

2 1, ,
2 2

n n

t t
K f t u K

  
   

 
 

3 2, ,
2 2

n n

t t
K f t u K

  
   

 
 

 4 3,   ,n nK f t t u t K    

Applying 4
th

 order RKM equation ( 25) in equation (24). Thus, we can easily write by taking [ ]{ } 
as the vector function {    { } } in the sample initial value problem  ̇         So, 

                    ,  f t u A u                                                                                                                      (26) 

The Matlab program has been used to solve this problem and get the velocity distribution. 

  
5. NUMERICAL RESULTS AND DISCUSSION 

 

 
Figure 1: Comparisons between exact and numerical solution of velocity with the pipe radius [kn=0, AO=1, A1=0, aO=0, b=0, Ha=1, 

k=0.5, t→∞]. 
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Figure 2: Comparisons between exact and numerical solution of velocity with the pipe radius [kn=0, AO=1, A1=0, aO=0, b=0, Ha=1, 

k=0.5, t→∞]. 
 

 
Figure 3: Comparisons between exact and numerical solution of velocity with the pipe radius [kn=0.09, AO=1, A1=0, aO=0, b=0, Ha=1, k=0.5, t→∞]. 

 

 
Figure 4: Comparisons between exact and numerical solution of velocity with the pipe radius [kn=0.2 AO=1, A1=0, aO=0, b=0, Ha=1, k=0.5, t→∞]. 
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Figure 5: The Velocity Distribution with Time [α=1, kn=0, AO=1, A1=1, aO=0, b=0, Ha=1, k=0.5]. 

 
Figure 6: The Velocity Distribution with Time [α=1, kn=0.09, AO=1, A1=1, aO=0, b=0, Ha=1, k=0.5]. 

 
Figure 7: The Velocity Distribution with Time [α=1, kn=0.2, AO=1, A1=1, aO=0, b=0, Ha=1, k=0.5]. 

 

 
Figure 8: The Velocity Distribution with Time [α=1, kn=0, AO=1, A1=1, aO=1, b=2, Ha=1, k=0.5]. 
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Figure 9: The Velocity distribution with Time [α=1, kn=0.09, AO=1, A1=1, aO=1, b=2, Ha=1, k=0.5]. 

 
Figure 10: The Velocity distribution with Time [α=1, kn=0.2, AO=1, A1=1, aO=1, b=2, Ha=1, k=0.5]. 

 

 
 

Figure 11: The effect of Hartman number on velocity distribution with the pipe radius [α=1, kn=0.02, AO=1, A1=1, aO=1, b=2, k=0.5, t=1]. 

 

 

Figure 12: The effect of Hartman number on velocity distribution with time [α=1, kn=0.02, AO=1, A1=1, aO=1, b=2, k=0.5]. 
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Figure 13: The effect of Knudsen number on velocity distribution with the pipe radius [α=1, Ha=1, AO=1, A1=1, aO=1, b=2, k=0.5, t=1]. 

 
Figure 14: The effect of Knudsen number on velocity distribution with the pipe radius [α=1, Ha=1, AO=1, A1=1, aO=1, b=2, k=0.5, t=1]. 

 

 
Figure 15: The effect of porosity number on velocity distribution with the pipe radius [α=1, kn=0.02, AO=1, A1=1, aO=1, b=2, Ha=1, t=1]. 

 
Figure 16: The effect of porosity number on velocity distribution with the pipe radius [α=1, kn=0.02, AO=1, A1=1, aO=1, b=2, Ha=1]. 
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Figure 17: The effect of frequency of body acceleration on velocity distribution with the pipe radius [α=1, kn=0.02, AO=1, A1=1, aO=1, Ha=1, k=0.5 t=1]. 

 

 

Figure 18: The effect of frequency of body acceleration on velocity distribution with time [α=1, kn=0.02, AO=1, A1=1, aO=1, Ha=1, k=0.5]. 

 

 
Figure 19: The effect of Womersley parameter on velocity distribution with the pipe radius [kn=0.02, AO=1, A1=1, aO=1, b=2, Ha=1, k=0.5, t=1]. 

 

 

 
Figure 20: The effect of Womersley parameter velocity distribution with time [kn=0.02, AO=1, A1=1, aO=1, b=2, Ha=1, k=0.5].     
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A numerical code has been written to calculate the axial velocity according to equation (23). In order to 

check our code and to discuss the stability and accuracy of the new technique, comparison the results 

with the exact solution [41], we run it for the parameters related to a realistic physical problem similar 

to [41]. Figure 1, 2 for steady MHD flow through a porous medium with constant pressure gradient, for 

instance, for Ao=1, Ha=1, k=0.5, kn=0.0, t=∞ and r=0.5, we obtain the axial velocity 

u=0.12374654323755, which equals (if we keep 15 digits after the decimal point) to the result of [41]. 

Also comparison the results of the new technique with the analytical solution [46], we run it for the 

parameters related to a realistic physical problem similar to [46], for unsteady MHD pulsatile flow 

through porous medium in an artery under the effect of body acceleration, for instance, for α=3, Ao=2, 

A1=4, ao=3, b=2, Ha=1, k=0.5, kn=0.0, t=1 and r=0.5, we obtain the axial velocity u=0.60950 (if we 

keep five digits after the decimal point), which compared with the analytical solution [46]. The same 

confirmation was made with [32, 39, 42, 43, 44]. 

In this paper, Slip effects on the unsteady MHD pulsatile blood flow through porous medium in an 

artery under the influence of periodic body acceleration have been studied. Figures 2–10 show effects of 

slip condition on the axial velocity with time. Figures (2, 3 and 4) show the relation between the axial 

velocity with time on the steady MHD blood flow through a porous medium with constant pressure 

gradient, we show from the figures that the presence  of slip condition delay the time that the axial 

velocity need to reaches the steady state, when kn=0.0, the axial velocity reaches to steady state at 

t=0.45 sec., when kn=0.09, the axial velocity reaches to steady state at t=0.55 sec. and when kn=0.2, 

The axial velocity reaches to steady state at t=0.65 sec. Figures (5, 6 and 7) show the relation between 

the axial velocity with time on the unsteady MHD blood flow through a porous medium, we show from 

the figures that the presence of slip condition let to increase the amplitude of velocity oscillation at the 

peak. Figures (8, 9 and 10) show the relation between the axial velocity with time on the unsteady MHD 

pulsatile blood flow through a porous medium under the effect of body acceleration, we show from the 

figures that the presence of slip condition let to increase the amplitude of velocity oscillation at the 

peak. Comparison between Figures (5, 6, 7) and (8, 9, 10) to study the effect of body acceleration we 

note that the velocity profile in  the presence of body acceleration make two peak down and one beak 

above and the magnitude of the velocity increase at the peak. 

The axial velocity profile computed by using the velocity (23) for different values of Hartmann number 

Ha, Knudsen number kn, Womersley parameter α, frequency of body acceleration b, the parameter of 

porous medium k and have been shown through Figures (11–20). Thereby, we can be controlling the 

process of flow. It is observed from Figures (11, 12), that as the Hartmann number increases the axial 

velocity of the blood decreases. Figures (13, 14) show the effect of the Knudsen number on the axial 

velocity distribution, we note that the axial velocity of the blood increases with increasing Knudsen 

number. Figures (15, 16) the axial velocity of the blood increases with increasing the permeability 

parameter of porous medium. Figures (17, 18) the axial velocity of the blood decreases with increasing 

the frequency of body acceleration. Figures (19, 20) the axial velocity of the blood increases with 

increasing Womersley parameter. 

 

6. CONCLUSIONS 

In this paper, a GDQM is presented to obtain numerical solutions of Navier-Stokes equations.  The 

problem is reduced to a system of ODEs that is solved by fourth order Runge-Kutta method. Numerical 

results of the unsteady pulsatile blood flow through porous medium in the presence of magnetic field 

with periodic body acceleration and slip condition through a rigid straight circular tube (artery) has been 

studied. It is of interest to note that the axial velocity increases with increasing of the permeability 

parameter of porous medium, Womersley parameter and Knudsen number whereas it decreases with 

increasing the Hartmann number and frequency of body acceleration.  

The present model gives a numerical solution of velocity distribution with pipe radius and time. It is of 

interest to note that the result of the present model includes results of different mathematical models 

such as:  

- The results of Eldesoky [32] have been recovered, 
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- The results of Eldesoky, Kamel, Reda, and Abumandour [39] have been recovered by taking Knudsen 

number kn = 0.0 (no slip condition).  

- The results of Megahed et al. [46], have been recovered by taking Knudsen number kn = 0.0 (no slip 

condition). 

- the results of Kamel and El-Tawil [43] have been recovered by taking Knudsen number kn = 0.0 (no 

slip condition), the permeability of porous medium k → ∞ without stochastic and no body 

acceleration,  

- The results of El-Shahed [44] have been recovered by taking Knudsen number kn = 0.0 (no slip 

condition) and Hartmann number Ha = 0.0 (no magnetic field),  

- The results of Chaturani and Palanisamy [42] have been recovered by taking Knudsen number kn = 

0.0 (no slip condition), the permeability of porous medium k → ∞ and Hartmann number Ha = 0.0 

(no magnetic field).  

It is possible that a proper understanding of interactions of body acceleration with blood flow may lead 

to a therapeutic use of controlled body acceleration. It is therefore desirable to analyze the effects of 

different types of vibrations on different parts of the body. Such a knowledge of body acceleration could 

be useful in the diagnosis and therapeutic treatment of some health problems (joint pain, vision loss, and 

vascular disorder), to better design of protective pads and machines. 

By using an appropriate magnetic field it is possible to control blood pressure and also it is effective for 

conditions such as poor circulation, travel sickness, pain, headaches, muscle sprains, strains, and joint 

pains. The slip condition plays an important role in shear skin, spurt and hysteresis effects. The fluids 

that exhibit boundary slip have important technological applications such as in polishing valves of 

artificial heart and internal cavities. 

Hoping that this investigation may have for further studies in the field of medical research, the 

application of magnetic field for the treatment of certain cardiovascular diseases, and also the results of 

this analysis can be applied to the pathological situations of blood flow in coronary arteries when fatty 

plaques of cholesterol and artery clogging blood clots are formed in the lumen of the coronary artery. 

The study is useful for evaluating the role of porosity when the body is subjected to magnetic resonance 

imaging (MRI). 
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