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Abstract: The Genetic Algorithm (GA) is a relatively simple heuristic algorithm that can be 

implemented in a straightforward manner. It can be applied to a wide variety of problems 

including unconstrained and constrained optimization problems, nonlinear programming, 

stochastic programming, and combinatorial optimization problems. It is widely used in several 

fields such as management decision making, data processing ...Information and 

Financial Engineering. Because of their population approach, they have also been extended to 

solve other search and optimization problems efficiently, including multimodal, multiobjective. 

In this paper, a brief description of a simple GA, GAs vs. traditional methods and GAs to handle 

constrained optimization problems are described. Also, GAs for multiobjective optimization 

MOP is proposed. Thereafter, GAs applications are presented. The intended audience of this 

paper is those who wish to know the main concepts of GAs and how to apply it to different 

optimization problems. Also, to familiarize readers to the algorithm proceeding. 
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1. Introduction: 

    
    Genetic Algorithms (GAs) provide a general search method based on principles derived from 

biological evolution. GAs are apart of the evolutionary algorithms, which is a rapidly growing 

areas of artificial intelligence [1].The theory behind Genetic Algorithms has a long history, 

starting by Holland[2]. GAs are inspired by Darwin's theory of biological evolution. By 

mimicking this process, genetic algorithm are able to "evolve" solutions to real world problems. 

GAs are optimization algorithms based on the concepts of biological evolution and genetics. In 

this algorithm, the design variables are represented as genes on a chromosome. GAs feature a 

group of candidate individuals (which is called population) on the response surface. Through 

environmental selection and the genetic operators, mutation and recombination, chromosomes 

with better fitness are found. Natural selection guarantees that best chromosomes with better 

fitness will survive in the future populations. Using the recombination operator the GA combines 

genes from two parent chromosomes to form children (new chromosomes) that have a high 

probability of having better fitness than their parents. On the other hand, mutation allows new 

areas of the response surface to be explored. GAs offer a generation improvement in the fitness 

of the chromosomes and after many generations will create chromosomes containing the 

optimized variable settings [3-7]. 

    Genetic algorithm was invented by "John Holland" in the 1960s and it was later developed by 

Holland and his students and colleagues at the University of Michigan in 1960s and 1970s. 

Holland's 1975 book" Adaptation in Natural and Artificial Systems"[2,7] presented the genetic 

algorithms as an abstraction of biological evolution and gave a theoretical framework for 

adaptation under the genetic algorithms. Holland's original goal was not to design an algorithm to 

solve specific problems, but rather to formally study the phenomenon of adaptation as it occurs in 
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nature and to develop ways in which the mechanisms of natural adaptation might be imported to 

computer systems [7,8]. 

 

2. The basic Genetic Algorithms 

 
     The basic or simple GA comprises four important steps [5]: 

 

Step 1: The initial candidate population of chromosomes is created either randomly or by 

perturbing an input chromosome. Indeed, how the initialization step is done is not critical as long 

as the initial population spans a wide range of design variable settings. Thus, if you have explicit 

knowledge about the system being optimized that information can be included in the initial 

population [7]. In  the binary representation, every chromosome is a string of bits, 0 or 1. The 

length of the string depends on the required precision (number of decimal places). Suppose that 

each variable xi can take values from the domain [ , ]i i iD a b R  : suppose Q decimal places for 

the variables values is desirable. It is clear to achieve such precision each domain Di should be 

cut into ( ).10Q

i ib a equal size ranges. Let mi be the smallest integer such that 

( ).10 2 1imQ

i ib a   .Then a representation having each variable xi coded as a binary string of 

length mi additionally, the following formula interprets each such string:  

2(1001.......001 ).
2 1i

i i
i i m

b a
x a decimal


 


.                                   (1) 

Step 2: Evaluation, the fitness is computed this step,. The goal of the fitness function is to 

numerically encode the performance of the chromosome. For real-world applications of 

optimization methods such as evolutionary algorithms the choice of the fitness function is the 

most critical step [7].  

Step 3: In this step, the chromosomes with the largest fitness scores are placed one or more times 

into a mating pool subset in a semi-random fashion. Chromosomes with low fitness are removed 

from the population. There are several methods for performing selection. One of the most 

common methods roulette wheel selection where every chromosome has its place big accordingly 

to its fitness function, as in Figure (1) 

 

Fig. 1:  Roulette-wheel selection 

 

Step 4: Exploration, consists of the crossover and mutation operators. Two chromosomes (i.e., 

parents) from the mating pool subset are randomly selected to be mated. The probability that 

these parents are recombined (mated) is a user-controlled option and is usually set to a high 

value. If the parents are allowed to mate, a crossover operator is employed to exchange genes 

between the two parents to produce two offspring. If they are not allowed to mate, the parents are 
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copied into the next generation unchanged. The two most common recombination operators are 

the one-point and two-point crossover methods. In the one-point method, a crossover point is 

selected along the chromosome and the genes up to that point are swapped between the two 

parents. However, in the two-point method, two crossover points are selected and the genes 

between the two points are swapped. The children then replace the parents in the next generation. 

A third recombination operator, which has become quite popular, recently, is the uniform 

crossover method. In this crossover method, recombination is applied to the individual genes in 

the chromosome. If crossover is performed, the genes between the parents are swapped and if no 

crossover is performed the genes are left intact. This crossover method has a higher probability of 

producing children which are much different than their parents so the probability of 

recombination is usually set to a low value. The probability that a mutation will occur is another 

user-controlled option and is usually set to a low value so that good chromosomes are not 

destroyed. A mutation simply changes the value for a particular gene.  After the exploration step, 

the population is full of newly created chromosomes (children) and steps two through four are 

repeated. This process continues for a fixed number of generations [7]. Figure (2) shows a 

flowchart of the working of a GA. 

 

 
 

Fig. 2 Main flowchart of GA. 

 

3. Genetic Algorithms Vs Traditional Methods 
 

Traditional methods [9-12] 

 

Calculus-based methods:  The main disadvantages of calculus-based search are, firstly, a 

tendency for the search to get trapped on local maxima even a though a better solution may exist , 

all moves from local maxima seem to decrease the fitness of the solution, secondly the 

application of such searches depends on the existence of derivatives. 

Dynamic programming: This optimization technique builds towards a solution by first solving a 

small part of the whole problem, and then gradually incrementing the size in a series of stages 

until the whole problem is solved, This is a method for solving multistage control problems, but 

Step4: Apply genetic operators to the selected    

individuals and generate the offspring for the next 

generation. 

Step2: calculate the fitness value for each individual 

I in the current population 

Step3: Select an individual I from the population 

according to the probabilistic distribution of the 

fitness values. 

Step1: Generate the initial population randomly. 

Termination 
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can only use where the number of state and stages are small, and there is no interaction between 

stages. 

Random search: This is a brute force approach to difficult functions, also called an enumerated 

search. points in the search space are selected randomly this is a very unintelligent strategy[4,5]. 

Gradient methods:  Such methods are generally referred to as hill-climbing, and perform well 

on functions with only one peak. However, on functions with many peaks, the first peak found 

will be climbed, whether is it the highest peak or not. 

     Finally, four difference that separate GAs from conventional optimization techniques are 

concluded [4,5,13]: 

 

    1-Direct manipulation of a coding: GAs manipulate decision or control variable representations 

at a string level to exploit similarities among high- performance strings. Other methods usually 

deal with functions and their control variables directly [14]. 

    2- Search form a population, not a single point: In this way GAs find safety in numbers. By 

maintaining a population of well adapted sample points, the probability of reaching a false peak 

is reduced. The search starts from a population of many points, rather than starting from just one 

point. This parallelism means that the search will not become trapped on a local maxima 

especially if a measure of diversity maintenance is incorporated into the algorithm, for then one 

candidate may become trapped on a local maxima, but the need of maintain diversity in the 

search population means that other candidates will therefore avoid that particular area of the 

search space. 

    3- Search via sampling, a blind search: GAs achieve much of their breadth by ignoring 

information except that concerning payoff. other methods rely heavily on such information, and 

in problems where the necessary information is not available or difficult to obtain, these other 

techniques break down[14]. 

    4- Search using stochastic, not deterministic rules: The transition rules used by genetic 

algorithms are probabilistic, not deterministic.  

 

    Finally, the advantages and disadvantages of using GAs are concluded as follows [7]: 

 

Advantages to using genetic algorithms 

 They require no gradient information about the response surface.  

 Discontinuities present on the response surface have little effect on overall  optimization  

 Performance.       

 They are resistant to trapped in local optima.  

 They perform very well for large scale optimization problems.  

 Can be employed for a wide variety of optimization problems. 

Disadvantages to using genetic algorithms 

 

 Have trouble finding the exact global optima.  

 Require large number of response (fitness) function evaluations.  

 GAs configuration is not straightforward.  

    4- Why Do GAs Work? 

    The heuristic search of a GAs is based upon Holland's schema theorem. The mathematics of 

this theorem were developed using the binary representation [5,7]. A brief nonmathematical 

introduction of the schema will be given assuming a binary coding.  A schema S is defined as a 

template for describing a subset of chromosomes with similar partitions. The template consists of 
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multiple 0's, 1's, and don't care symbols (*), this character is simply a notational device used to 

signify that either a 1 or 0 will match that pattern. Given an example, consider a schema such as, 

*0000. This schema matches two chromosomes, 10000 and 00000. The template is a powerful 

way of describing similarities among patterns in the chromosomes. According to Holland, the 

order of a schema o(s) is equal to the number of fixed positions (i.e., non-meta-characters) and 

the defining length of a schema  δ(s) is the distance between the first and the last fixed string 

positions. Thus, the schema #00#0 is an order 3 schema (o(s) = 3) and has defining length of 

(δ=5-2=3). Holland derived an expression that predicts the number of copies a particular 

schema, s, w=3ould have in the next generation after undergoing exploitation, recombination and 

mutation. This expression is shown below  

( )
( , 1) ( , ). ( , ) / ( )[1 . ( ). ]

1
c m

s
s t s t eval s t F t p o s p

m


    


                  (2) 

where s is a particular schema, t is the generation, ( , 1)s t  is the number of times a particular 

schema is expected in the next generation, ( , )s t is the number of times the schema is in the 

current generation, ( , )eval s t is the average fitness of all chromosomes that contain schema s, 

( )F t  is the average fitness for all chromosomes, Pc is the probability of crossover occurring, and 

Pm is the mutation probability. The primary conclusion that can be drawn from inspection of this 

equation is that as the ratio of ( , )eval s t  to ( )F t becomes larger, the number of the times s is 

expected in the next generation increases. Thus, particularly good schemata will propagate in 

future generations.  Two more points need to be made concerning Holland's schema theorem. 

Although both mutation and recombination destroy existing schemata, they are necessary for 

building better ones. The degree to which they are destroyed is dependent upon the order (o(s)) 

and the length (δ(s)) of the schemata. Thus, schemata that are  short, low-order, and have above 

average fitness are preferred and are termed "building blocks". This definition leads to the 

building block principle of GAs which states that there is a high probability that short, low-

order, average fitness schemata will combine through recombination to form higher order, above 

average fitness schemata.  

 

5. An Example of Applying Genetic Algorithms 
     Here we present a simple example of applying genetic algorithm, which taken from [6]. 

 

2 2 2 2 2 2     Z= [30 (2 3 ) (18 32 12 48 36 27 )][1 ( 1) (19 14 3 14 6 3 )]

        . .   

                             - 2.0 2.0,    - 2.0 2.0

Min

x y x x y xy y x y xy x x xy y

s t

x y

              

   

 

5.1 Representation 

      First, decision variables must be encode into binary strings. Here 16 bits (Suppose that 4 

decimal places for the variables values is desirable) are used to represent a variable. The mapping 

from a binary string to a real number for a variable x or y is computed from equation (1) as 

follows: 

16 16

4.0 4.0
2.0 ,       y 2.0

2 1 2 1
x x y        

 
 

Here x  and y  represent the decimal value of the substring for decision variable x and y 

respectively. 

 

5.2  Initial Population 
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       In each generation the population size is set as 20. Initial population is randomly generated 

as follows: 
 

1

2

3

[11100110110011000110101110000010] [1.606256, 0.320165]     F=2907.700817;    EVAL=700242.428

[11000000001100011011110001010101] [1.003037,0.942733]       F=1470.604014;    EVAL=701679.525

[110

v

v

v

  

 



4

5

00001010000101011010100011000] [1.019699, 0.829633]       F=998.466596;      EVAL=702151.663

[01001000111100011001110110001100] [ .860273,0.461707]      F=9680.870631;    EVAL=693469.258

[001100110

v

v



  



6

7

11111100101110110001010] [ 1.195422, 0.538430]  F=1439.880786;    EVAL=701710.248

[01000110111110000000011110011000] [ .891096, 1.881346]    F=11273.574224;  EVAL=691876.555

[011010000001111010000

v

v

  

   



8

9

11001111010] [ .373144,.101228]        F=951.091206;      EVAL=702199.038

[00010110000101111010111111110000] [ 1.654841,.749065]       F=8068.650332;    EVAL=695081.479

[10110111110111111010110000

v

v

 

  



10

11

111111] [.873030,0.691386]         F=982.663173;      EVAL=702167.466

[00000000010111111100110101111111] [ 1.1994202,1.210925]   F=45585.613158;  EVAL=657564.516

[1001100110101010000011101101010

v

v



  



12

13

0] [.41038, 1.768307]        F=8488.275825;    EVAL=694661.853

[00111000000010011111101010110010] [ 1.124437,1.917174]    F=703150.129106; EVAL=0.000

[01110111110010101111101101101011] [ 0.12826

v

v

 

  

  

14

15

7,1.928466]    F=234882.112971;  EVAL=468268.016

[00010110110111110010001011111110] [ 1.642634, 1.453239] F=14013.064752;   EVAL=689137.064

[10001101001001001110011110001110] [0.205356,1.613443]

v

v

   

 

16

17

      F=84257.482260;   EVAL=618892.647

[10010100011101110010000111001000] [0.319799, 1.472160]   F=730.102530;       EVAL=702420.027

[11110010010010111010011101000010] [1.785885,0.618090]      

v

v

  

 

18

19

F=890.983919;      EVAL=702259.145

[11011001111111110101110001000111] [1.406241, .558145]       F=5332.051371;   EVAL=697818.078

[00000110101010100001101111110001] [ 1.895872, 1.563409]  F=21833

v

v

  

   

20

.496910; EVAL=681316.632

[11011101010010010100001101000110] [1.457633, .948836]      F=26032.543455; EVAL=677117.586v   

 

5.3 Evaluation 

     The first step after creating a generation is to calculate the fitness value (F) of each member in 

the population by calculating the objective function for each individual. The process of 

evaluating the fitness of a chromosome consists of the following three steps: 

      1. Convert the chromosome’s genotype to its phenotype. This means converting the binary string 

into corresponding real values as in Equation (1). 

      2. Evaluate the objective function, which we refer as the fitness value (F) 

      3. Convert the value of objective function into fitness. Here, in order to make fitness values 

positive,(the positive values needed for Roulette Wheel Algorithm) the fitness of each 

chromosome (EVAL) equals the maximization of the objective function minus the objective 

function evaluated for each chromosome in the population. The objective function values F and 

the fitness values EVAL of above chromosomes (the first population) are depicted before. It is 

clear that in the first generation chromosome V16 is the best one ( EVAL=702420.027 ) and that 

chromosome V12 is the poorest one ( EVAL=0.000 ) 

5.4 Create a new population 

      After evaluation, a new population should be created from the current generation. Here the 

three operators (Elitism, Crossover, and Mutation) are used. 

5.4.1 Elitism: The two chromosomes (strings) with best fitness are allowed to survive and 

produce offspring in the next generation. For example, in first population, chromosome V16 and 

V17 are allowed to live in the second generation. 

5.4.2 Selection and Crossover: The cumulative probability is used to decide which chromosomes 

will be selected to crossover. The cumulative probability is calculated with Roulette Wheel 

Algorithm 

1 1 2 2 3 3

4 4 5 5 6 6

7 7

0.054         Q 0.054          P 0.054      Q 0.109           P 0.055    Q 0.163

0.054         Q 0.217          P 0.054      Q 0.272           P 0.054    Q 0.325

0.055         Q 0.38

P

P

P

     

     

  8 8 9 9

10 10 11 11 12 12

13 13 14

0          P 0.054      Q 0.434           P 0.055    Q 0.488

0.014         Q 0.539          P 0.054      Q 0.593           P 000    Q 0.593

0.036         Q 0.630          P 0.0

P

P

   

     

   14 15 15

16 16 17 17 18 18

19 19 20 20

54      Q 0.683           P .048    Q 0.731

0.055         Q .786          P 0.055      Q 0.840           P 0.054    Q 0.895

0.053         Q 0.947          P 0.053      Q 1.

P

P

  

     

    00           
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     The crossover used here is one-cut-point method, which randomly selects one cut-point and 

exchanges the right parts of two parents to generate offspring with 1cP  . 

1. Generate a random number r from the range [0,1]; 

2. If 
1i i iQ r Q    select the ith chromosome Vi to be parent one. 

3. Repeat step 1 and 2 to reproduce another parent. 

4. Generate a random number r from the range [0,1]. If r is less than the probability of crossover  

(the probability of crossover as 1.0), the crossover will undergoes, the cut-point is selected 

behind the gene which place is the nearest integers greater than or equal to r(length-1).  

5. Repeat step 1 to step 4 altogether nine times to finish the whole crossover. 

           The creation of 18 offspring plus 2 chromosomes obtained using elitism strategy keeps the 

population the same in each generation in this case 20. 

 

5.4.3 Mutation: Mutation [5] is performed after crossover. Mutation alters one or more genes 

with a probability equal to the mutation rate. (In the example, the mutation rate is set to 

0.02mp  )  

1. Generate a sequence of random numbers rk (k=1,.....,640) (Here, the numbers of bits in the 

whole population is 20=640). 

2. If ri is 1, change the ith bit in the whole population from 1 to 0 or from 0 to 1. 

3. The chromosomes reproduced are not subject to mutation, so after mutation, they should be 

restored. A new population is created as a result of completing one iteration of the genetic 

algorithm. The procedure can be repeated as many times as desired. In this example, the test 

run is terminated after 50 generations. 

The best value of the objective function in each generation is reported by [6] as follows: 
 

Generation 1: f (0.319799, -1.472160)=730.102530 

……………………………………………….. 

Generation 49: f (-0.005158, -0.999924)=3.006779 

Generation 50: f (-0.005158, -0.999924)=3.006779 

 

By using GAs in [6] they finally guarantee that GAs converge to the optimal solution after 50 

generation.  

6- Constrained optimization using GAs. 
     The above discussion of optimization problems avoid detailed consideration of constrains. On 

the other hand, many real-world optimization problems involve inequality and/or equality 

constraints are thus posed as constrained optimization problems. In trying to optimize constrained 

optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty 

function methods have been the most popular approach. However, since the penalty function 

approach is generic and applicable to any type of constraint, their performance is not always 

satisfactory. Thus, several methods for handling unfeasible solutions have emerged recently.  

General form of the nonlinear programming problem (NLPP) can be defined as follows [15]:  

 

NLPP:  Max   f(x) 

 Subject to: 

{ | ( ) 0,  1,2,...,  and  ( ) 0 1,..., }

{ | ( ) ( ), 1,2,...., }

n

i j

n

i i i

x R g x i k h x j k m

x R l x x u x i n

      

    

                                        (3) 

Where x  . The set nR defines the search space and the set  defines a feasible 

part of the search space. Usually, the search space  is defined as n-dimensional rectangle in 
nR (domains of variables defined as lower and upper bounds): ( ) ( ),  1ileft i x right i i n     

Whereas the feasible set  is defined by the search space  and an additional set of constraints: 
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( ) 0,  1,2,...,  and  ( ) 0 1,...,i jg x i k h x j k m      

   One of the major components of any evolutionary system is the evaluation function. 

Evaluation functions are used for assign a quality measure for individuals in a population. 

Whereas evolutionary computation techniques assume the existence of an (efficient) evaluation 

function for feasible individuals, there is no uniform methodology for handling ( i.e., evaluating ) 

unfeasible ones. The simplest approach, incorporated by evaluation strategies and the version of 

evolutionary programming (for numerical optimization problems), is to reject unfeasible 

solutions. But several other methods for handling unfeasible individuals have emerged recently.  

 

6.1 Methods Based on Penalty Functions [15-17] 

      The penalty function method is widely used in the mathematical Programming literature. It 

essentially adds to the objective function some terms which punish a solution that is not feasible.  

the above NLPP (3) can be transformed into an unconstrained optimization problem. The 

objective function of the unconstrained optimization problem, which will be used as the fitness 

function in the associated genetic algorithm designed to solve the initial constrained problem, has 

the following format: 

( ),
( )

( ) ( ),

f x if x
eval x

f x penalty x otherwise


 



                         (4) 

where penalty(x) is zero, if no violation occurs, and is positive, otherwise. Usually, the penalty 

function is based on the distance of the solution form the feasible region , or on the effort to 

"repair" the solution, i.e., to force it into . The former case is the most popular one; in many 

methods a set of functions (1 )jf j m   is used to construct the penalty, where the function 

( )jf x  measures the violation of the j-th constraint in the following way: 

 {0, ( )}  1
( )

( ) 1

j

j

j

max g x if j k
f x

h x if k j m

 
 

  

                       (5) 

How the penalty function is designed and applied to unfeasible solutions may differ in important 

details across problems. 

 

6.1.1 Static Penalty Function 

The static penalty function assumes that for every constraint we establish a family of 

intervals which determine an appropriate penalty coefficient
ijR . It works as follows: (1) for each 

constraint, create several (l) levels of violation (these levels measure the degree of violation, e.g., 

slightly or heavily); (2) for each level of violation and for each constraint, create a penalty 

coefficient ( 1,2,..., ,  1,2,..., )ijR i l j m  ; higher degree of violation requires heavier punishment 

(i.e., larger ijR  ). The evaluation function has the following structure: 

2

1

( ) ( ) ( )
m

ij j

j

eval x f x R f x


                                                   (6) 

Where the ( )jf x are as defined above and m is the number of constraints in the problem the 

central issue in this method is the determination of the relative magnitudes of the coefficients 

{ |1 ,1 }.ijR i l j m     

The weakness of the method is in the number of parameters. For m constraints the method 

requires m(2l+1) parameters in total: m parameters to establish number of intervals for each 

constraint, l parameters for each constraint, defining the boundaries of the intervals (levels of 

violation), and l parameters for each constraint representing the penalty coefficient ijR . 
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6.1.2 Dynamic Penalty Function 

Dynamic penalty function method differs from the previous one in that it punishes "harder" 

as the number of generations increases. The implementation of this method is through the 

following evaluation function such that individuals are evaluated (at the iteration t) by the 

following formula: 

1

( ) ( ) ( * ) ( )
m

j

j

eval x f x C t f x 



                                              (7) 

Where ,  and C    is a constant. A reasonable choice for these parameters is 0.5, 2C      

i.e., 

2 2

1

( ) ( ) (0.5 ) ( )
m

j

j

eval x f x t f x


                                                  (8) 

The method requires much smaller number of parameters than the first method. Also, instead of 

defining several levels of violation, the pressure on unfeasible solutions is increased due to the 

( * )C t  component of the penalty term: towards the end of the process (for high values of the 

generation number t), this component assumes large values. 

6.1.3 Rejection of Unfeasible Individuals 

         This "death penalty functions" method is a popular option in many evolutionary techniques 

like evolutionary strategies or evolutionary programming, this method rejects all unfeasible 

solutions in the population. Thus, under this method, if in some current population unfeasible 

solutions result after the GA operators are applied; these are simply eliminated and replaced by 

randomly drawn new solutions.   

 

6.2 Behavioral memory method [16,18] 

     The idea of this technique is to satisfy sequentially (one to one) the constraints imposed on the 

problem. Once a certain percentage of the population (defined by the flip threshold) satisfies the 

first constraint, an attempt to satisfy the second constraint (while still satisfying the first) will be 

made. Notice that in its last step of the algorithm, death penalty was used, because unfeasible 

individual are completely eliminated from the population. 

 

6.3 Repair Methods [16,18] 

      Repair algorithms enjoy a particular popularity in the evolutionary computation community. 

GENOCOP III [16] is based on the idea of repairing unfeasible solutions, and its algorithm needs 

at least one feasible point to enter the evolution process. In this algorithm any unfeasible point 

must be repaired to become feasible one. The weakness in this algorithm is locating such a 

reference point especially when the problem have small  for the purpose of initialization. So 

the major difference between constraint and unconstraint optimization is the evaluation function , 

that is, how to handle unfeasible solution thus the flowchart of SGA are still as it for constrained 

optimization but step2 will be modified to handle both feasible and unfeasible solutions. 

 

7- Multiobjective Optimization  
     In a multiobjective optimization problem MOP, there are more than one objective functions, 

which are to be optimized simultaneously. Traditionally, the practice is to convert multiple 

objectives into one objective function (usually a weighted average of the objective is used ) and 

then to treat the problem as a single objective optimization problem. Unfortunately this 

techniques is subjective to the user, with the optima solution being dependent on the chosen 

weight vector. In fact, the solutions of the multiobjective optimization problem can be thought as 

a collection of optimal solutions obtained by solving different single objective functions formed 

using different weight vectors. these solutions are known as Pareto optimal solutions[19]. 
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Therefore, the optimization goal for an MOP may be reformulated in a more general fashion 

based on three objectives: 

 The distance of the resulting nondominated front to the Pareto-optimal front should be 

minimized. 

 A good (in most cases uniform) distribution of the solutions found is desirable. 

 The spread of the obtained nondominated front should be maximized, i.e., for each objective a 

wide range of values should be covered by the nondominated solutions. 

 

    The subject of here is the question of how these subgoals can be attained in evolutionary 

multiobjective search. After the basic terminology, fundamental ideas of MOEAs are introduced 

in the following section, where in particular the differences between evolutionary single-

objective and multiobjective optimization are worked out. Then, a brief summary of three salient 

evolutionary approaches to multiobjective optimization is presented. 

 

7.1 Basic Definitions and Concept 

      Here we introduce some of the basic terminology used in the field of evolutionary Algorithms 

for Multiobjective Optimization. 

Local Pareto-optimal Set:  If for every member x  in a set p , there exist no solution 

y satisfying y x 


  , where   is a small positive number (in principle, y  is obtained by 

perturbing x  in a small neighborhood), which dominates any member in the set p , then the 

solutions belonging to the set p  constitute a local Pareto-optimal set. 

Global Pareto-optimal Set: If there exists no solution in the search space which dominates any 

member in the set p , then the solutions belonging to the set p , constitute a global Pareto-optimal 

set. 

A solution 
(1)x is said to dominate the other solution

(2)x , if both the following conditions are 

true [20] : 

      1. The solution 
(1)x is no worse (say the operator  denotes worse and  denotes better) than 

(2)x  in all 

objectives, or 
(1) (2)( ) ( )j jf x f x for all 1,.....,j q objectives. 

      2. The solution 
(1)x is strictly better than 

(2)x in at least one objective, or 
(1) (2)( ) ( )j jf x f x for at least 

one {1,....., }j q  

Genetic drift: one of the problems of genetic algorithms for solving multimodal  function is that 

the finite population will eventually converge to only one optimum, due to stochastic errors in the 

selection process. This phenomena is known as genetic drift. 

A niche: is a group of individuals which have similar fitness. Normally in multiobjective and 

multimodal optimization, a technique called sharing is used to reduce the fitness of those 

individuals who are in the same niche, in order to prevent the population to converge to a single 

solution, so that stable sub-populations can be formed, each one corresponding to a different 

objective or peak (in a multimodal optimization problem) of the function. 

Fitness sharing [4]: is the technique used to maintain population diversity, which is the most 

frequently used technique, aims at promoting the formulation and maintenance of stable 

subpopulations (niches). It is based on the idea that individuals in a particular niche have to share 

the available resources. The more individuals are located in the neighborhood of a certain 

individual, the more its fitness value is degraded. The neighborhood is defined in terms of a 

distance measure d(i, j) and specified by the so-called niche radius share . Mathematically, the 

shared fitness F(i) of  an individual i  is equal to its old fitness ( )F i  divided by its niche count 

im : 
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_

1

( ) ( )
( )

( ( , ))
pop size

i

j

F i F i
F i

m
sh d i j



 
 


 

An individual’s niche count is the sum of sharing function ( sh ) values between itself and the 

individuals in the population. A commonly-used sharing function is 

( , )
1 ( , )

( ( , ))

0

share

share

d i j
if d i j

sh d i j

otherwise






  
   

   



 

Where  is a constant and 
share is the niche radius, fixed by the user at some estimate of the 

minimal separation desired or expected between  individuals. Furthermore, depending on how the 

distance function d(i , j ) is defined, one distinguishes two types of sharing: 

1. Fitness sharing in solution space ( , )d i j i j   

( ) ( )

1

( , ) ,

i jp
p p

u l
p p p

x x
d i j

x x

 
    
  where p is the number of variables 

2. fitness sharing in objective space ( , ) ( ) ( )d i j f i f j   

( ) ( )

max min
1

( , ) ,
i jq

k k

k k k

f f
d i j

f f

 
  

 
  where q is the number of objectives 

where  .  denotes an appropriate distance metric. Currently, most MOEAs implement fitness 

sharing, e.g., (Hajela and Lin 1992[21]; Horn, et al. 1994 [22]; Srinivas and Deb 1994[23]). 

7.2 Overview of Evolutionary Techniques 

      Three of the most salient MOEAs have been chosen for the comparative studies. A brief 

summary of their main features and their differences is given in the following. For a thorough 

discussion of different evolutionary approaches to multiobjective optimization, the interested 

reader is referred to [2,6,9,18,24] 

1-Schaffer's vector evaluated genetic algorithm (VEGA) 
   Being aware of the potential GAs have in multiobjective optimization, Schaffer1985 [25] 

proposed an extension of the simple GA (SGA) to accommodate vector_valued fitness measures, 

which he called the Vector Evaluated Genetic Algorithm (VEGA) The selection step was 

modified so that, at each generation, a number of subpopulations was generated by performing 

proportional selection according to each objective function in turn. Thus, for a problem with q 

objectives, q subpopulations of size (N/q) each would be generated, assuming a population size 

of N. These would then be shuffled together to obtain a new population of size N as in Figure (3), 

in order for the algorithm to proceed with the application of crossover and mutation in the usual 

way 

 

INPUT: tp   ( population ) 

Output: p  (mating pool) 

Step 1: Set i = 1 and mating pool p    

Step 2: For j = 1, . . . , N/q do select individual i from tp  according to a given scheme and 

copy it to the mating pool: { }p p i   . 

Step 3: Set i = i + 1. 
Step 4: If i ≤ k then go to Step 2 else stop. 

Fig.3: Fitness assignment and selection in VEGA 
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    This mechanism is graphically depicted in Figure (5a) where the best individuals in each 

dimension are chosen for reproduction. Afterwards, the mating pool is shuffled and crossover and 

mutation are performed as usual. Schaffer implemented this method in combination with fitness 

proportionate selection. 

2-Srinivas and Deb’s non-dominated sorting genetic algorithm (NSGA) 

   Using the concept of sharing functions, Srinivas and Deb[26]  have implemented Goldberg’s 

idea most directly. The idea behind NSGA is that a ranking selection method is used to 

emphasize current non-dominated points and sharing function method is used to maintain 

diversity in the population. the NSGA procedure will be described in somewhat more details. 

NSGA varies from a simple genetic algorithm only in the way the selection operator in 

used. The crossover and mutation operators remain as usual. Before the selection is performed, 

two procedures are performed serially. First, the population is ranked on the basis of an 

individual’s non-domination level and then sharing function method is used to assign fitness to 

each individual. We describe both these mechanisms in the following subsections. 

 Classifying a population according to non-domination 

     Consider a set of N population members, each having q (>1) objective function values. The 

following procedure in Figure (4) can be used to find the non-dominated set of solutions: 

 

Step 0: Begin with i=1 

Step 1: For all j=1,….,N  and j i ,compare solutions 
( )ix and 

( )jx  for domination using two 

conditions for all q objectives. 

Step 2: If for any j, 
( )ix is dominated by 

( )jx ,mark 
( )ix as ‘dominated’. 

Step 3: If all solutions (that is, when i=N  is reached) in the set are considered,  Go to Step 4, 
else increment i by one and Go to Step 1. 

Step 4: All solutions that are not marked ‘dominated’ are non-dominated solutions. 
 

Fig.4: Classifying a population according to non-domination 

 

    All these non-dominated solutions are assumed to constitute the first non-dominated front in 

the population. In order to find the solutions belonging to the second level of non-domination, we 

temporarily disregard the solutions of the first level of non-domination and follow the above 

procedure. The resulting non-dominated solutions are the solutions of the second level of non-

domination. This procedure is continued till all solutions are classified into a level of non-

domination. It is important to realize that the number of different non-domination levels could 

vary between one to N. Figure (5b) shows how the procedure can be used to identify five 

different levels of non-domination. 

 

 Fitness assignment 

    In NSGA, fitness is assigned to each individual according to its non-domination level. An 

individual in a higher level gets lower fitness .This done in order to maintain pressure for 

choosing solutions from the lower levels of non-domination. Since solutions in lower levels of 

non-domination are better, a selection mechanism that selects individuals with higher fitness 

provides a search direction towards the Pareto-optimal region. 

    First, all solutions in the first non-dominated front 1n are assigned a fitness equal to the 

population size (N). This becomes the maximum fitness that any solution can have in any 

population. Based on the sharing strategy, if a solution has many neighboring solutions in the 

same front, its dummy fitness is reduced by a factor and a shared fitness is computed. The factor 

depends on the number and proximity of neighboring solutions. Once all solutions in the first 

front are assigned their shared fitness values if  for all 11,...,i n , the smallest shared fitness 
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value is determined 
min

1f of all 
if  in the first non-domination level. Thereafter, the individuals in 

the second non-domination level are all assigned a dummy   fitness equal to a number smaller 

than the smallest shared fitness of the previous front 
min

2 1 1f f   where 
1 is a small positive 

number. This makes sure that no solution in the second front has a shared fitness better than that 

of any solution in the first front. This maintains a pressure for the solutions to lead towards the 

Pareto-optimal region. The sharing method is again used among the individuals of second front 

and shared fitness of each individual is found. This procedure is continued till all individuals are 

assigned a shared fitness.  

3. Niched Pareto Genetic Algorithm (NPGA) 

    The niched Pareto genetic algorithm (NPGA) proposed in (Horn, et al. [22]) combines 

tournament selection and the concept of Pareto dominance in the following way. The main idea 

of this approach, is that a comparison set comprising of a specific number (
domt  ) of individuals 

is picked at random from the population at the beginning of each selection process. Two random 

individuals are picked at random from the population for selecting a winner in a tournament 

selection according to the following procedure.  

Both competitors are compared with the members of the comparison set for domination with 

respect to objective functions. If one of them is non-dominated and the other is dominated, then 

the non-dominated point is selected. When both competitors were either dominated or non-

dominated the result of the tournament was decided through fitness sharing, the niche count is 

found for each individual in the population by counting the number of points in the population 

within a certain distance from the individual. The individual with least niche count is selected. 

Figure (5c) outlined the NPGA procedure.  

So the major difference between MOP and single objective optimization is the selection 

process , that is, how to parent to construct mating pool thus the flowchart of SGA are still as it 

for single optimization but STEP 3 will be changed such as the previous three methods or any 

other methods for handling MOP. 

 (a) VEGA 

 
(b) NSGA 

 
(c) NPGA 

Fig.5: Illustration of three selection mechanisms in objective space 
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8-Aplications of Genetic Algorithms [27-47] 

 
    Since the Genetic Algorithm can be used to solve both unconstrained and constrained 

problems it is merely a way to obtaining a solution in a standard optimization problem. Thus it 

can be used to solve classic optimization problems such as maximizing volume while 

minimization the amount of material required to produce a container.  By applying the Genetic 

Algorithm to linear, nonlinear programming problems and multiobjective, it is possible to solve 

typical problems such as the diet problem (choosing the cheapest diet from a set of foods that 

must meet certain nutritional requirements). Another area where Genetic Algorithms can be 

applied is combinatorial optimization problems including several common computer science 

problems such as the knapsack, traveling salesman, and job scheduling problems. In the 

following section several common applications where the Genetic Algorithm can be applied.  

 

Reliability Optimization: The reliability of a system can be defined as the probability that the 

system has operated successfully over a specified interval of time under stated conditions. Many 

systems play a critical role in various operations and if they are down then the consequences can 

be pretty severe. Measures of reliability for systems such as communication switches is desired in 

order to access current reliability and also determine areas where reliability can be improved. 

Optimization in this field often involves in finding the best way to allocate redundant 

components to systems. Components are assigned probabilities to effectively gauge their 

reliability [27-29]. 

 

Job-Shop Scheduling: Imagine there is a sequence of machines that each performs a small task 

in a production line. These machines are labeled from 1 to m. For a single job to be completed 

work must be done first with machine 1, then machine 2, etc., all the way to machine m. There 

are a total of n jobs to be done and each job requires a certain amount of time on each machine 

(note that the amount of time required on one machine may vary from one job to another). A 

machine can only work on one job at any given time and once a machine starts work it cannot be 

interrupted until it has completed its task. The objective is to find the ideal schedule so that the 

total time to complete all (n) jobs is minimized [30-33]. 

 

Transportation: The Transportation Problem involves shipping a single commodity from 

suppliers to consumers to satisfy demand via the minimum cost. Assume that the supply equals 

the demand. There are m suppliers and n consumers. The cost of shipping one unit from a single 

supplier to each consumer is known. The problem is to find the best allocation of the commodity 

at the suppliers so that the demand can be satisfied and the lowest costs are incurred [34-39]. 

 

Machine learning: GAs has been used for many machine learning tasks, including classification 

and prediction tasks, such as prediction of weather and protein structure. GAs have been used to 

evolve some particular aspects of machine learning systems, such as weights of neural networks, 

rules for learning classifier systems or symbolic production systems and sensors for robots[40-

42]. 

 

Economics: GAs have been used to model processes of innovation, the development of bidding 

strategies, and the emergence of economic market [43,45].  

 
Electrical Power Systems: Optimal power flow OPF is one of the main functions of power 

generation operation and control in electrical power systems. It determines the optimal setting of 

generating units. It is therefore of great importance to solve this problem as quickly and 

accurately as possible [46,47].  
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9-Conclusion  
    The Genetic Algorithm is a relatively simple algorithm that can be implemented in a 

straightforward manner. It can be applied to a wide variety of problems including unconstrained 

and constrained optimization problems, nonlinear programming, stochastic programming, and 

combinatorial optimization problems with single or multiple objectives. An advantage of the 

Genetic Algorithm is that it works well during global optimization especially with poorly 

behaved objective functions such as those that are discontinuous or with many local minima. It 

also performs adequately with computationally hard problems. Finally it can be believed that 

GAs may hopefully be a new effective approach for solving complex real applications. 
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