
Application of Stochastic Linear Programming in the 

Solution of a Transportation Problem 
Ahmed M. Shams

1
, El Sayed Sorour

2
, Elewa Roshdy

3
 and Sameh Farahat

4 

 

Abstract: 

Stochastic Linear Programming (SLP), has a great importance due to its various 

applications in real life. In particular, the two-stage SLP or, sometimes, recourse 

programming. We used the two-stage SLP to describe the common transportation 

problem in case of random levels of supplies and demands. The randomness in the 

supplies and demands levels gives more realistic description of the problem. The random 

parameters in such problems may be continuously or discretely distributed. Indeed, there 

are many algorithms used to solve such problems in both continuous and discrete cases. 

The L-shape algorithm is the most commonly used in the discrete case two-stage SLP, 

but the problem in this method is the need for large computer memory to perform the 

iterations in such problems which have large numbers of decision variables. We give an 

example of such transportation problems and carry out using two distinct designs for the 

problem. One, using a subcontract with very high cost as penalty for demands not met. 

The other, using a virtual extra-demand at each supplier and these extra amounts act like 

supplying the over-demands. In each design, we calculate the total expected cost once 

using the expectation of each random variable, and another using the most likely 

realization of each random variable. We perform analysis of variance ANOVA to 

compare the four treatments from statistical point of view. Detailed results were 

illustrated for each design. All computations were performed with Matlab R2014a and 

MS-Excel2014. 

Keywords: Stochastic Linear programming (SLP), transportation problem, Stochastic 

Integer Programming, Analysis of variance, Test hypothesis, Pairwise comparison. 
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1- Introduction: 

Mathematical programming problems involving uncertain parameters, for which 

stochastic models are available, occurs in almost all areas of science and engineering, 

from telecommunication and medicine to finance. In particular, linear programs have 

been studied in many aspects during the last 50 years. They have shown to be appropriate 

models for a wide variety of practical problems and, at the same time, they became 

numerically tractable even for very large scale instances. The fundamental assumption for 

linear programming, that the problem entries-except for the decision variables-be known 

fixed data, does often happen not to hold, but usually they are random data. In general, a 

LPP of the form: 

         

                                                                          (1) 

    

Where                  ,   is convex polyhedral set and   is     matrix 

representing the decision variables and the problem data, with some or all         are 

random data with known (joint) probability distribution is called Stochastic Linear 

Programming Problem [2]. Stochastic models gained that importance due to: 

1- Randomness is needed to obtain a correct evaluation of the future income and 

objectives. 

2- Flexibility only has value (and meaning) in a setting of randomness. 

3- Only by explicitly evaluating future decisions, can decisions containing flexibility be 

correctly valued. 

The basic assumption is that the probability distribution of the random entries does not 

depend on the decision vector  . Note that the presence of uncertainty affects both 

feasibility and optimality. To understand this, consider the following four variables 

LPP[4]: 

       

                        

                          

                                                                    

           

Suppose that the coefficients of    and    are not known with certainty, and all what is 

known is their joint probability distribution        : 
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In this case,  [  ]     and  [  ]   , so if we replaced         with their expected 

values and examined its solution                         under uncertainty, so that the 

constraints are equally likely to be either: 

   
 

 
        

   
 

 
        

Or 

     
 

 
        

     
 

 
        

We will find that the vector           does not satisfy either of these constraints, thus is 

infeasible under uncertainty. That is, the solution of SLP problem in which the expected 

values are used to represent the random data is not always feasible. 

Another approach is the wait-and-see analysis (sometimes referred to as scenario 

analysis or what-if analysis). This approach mimics the process of delaying all the 

decisions until all uncertain data are realized. As a result, we have a set of deterministic 

LPs correspond to each possible realization of the random data. This yields a set of 

decision vectors one for each LP, but none of these may be worthwhile. In the previous 

example, the solution associated with            
 

 
  is            while the solution 

associated with             
 

 
  is          . Neither of these solutions is feasible with 

respect to the alternate case. From this results, the decision maker should consider the 

consequences of future infeasibility within the model under uncertainity. In the stochastic 

programming literature, two approaches are widely studied: one is based on modeling 

future recourse (response) and another restricts the probability of infeasibility (typically 

equivalent to system failures) to be no greater than a prespecified threshold. The first 

approach yields the so-called recourse problems (or two-stage problem), and the second 

approach yields problems with probabilistic (or chance) constraints. We focus on the 

recourse (two-stage) SLP. The paper is arranged as follows: in part 2 we clarify the 

concept of SLP with recourse, in part 3 we give an example of transportation problem 

formulated as two-stage SLP with two designs and a full statistical analysis of all 

outcomes. 

2- The two-stage SLP: 

A simple formulation of the Two-stage SLP is given, in which the randomness is 

introduced in the objective function of the recourse problem. 



            

                                        

Where the expected recourse cost                                                                                                                          

                

and 

          {      |                      

Where                    ,                             . The 

function        is called the recourse function and therefore the function      is called 

the expected recourse function.[3] 

This representation clearly illustrates the sequence of events in the recourse problem. 

First-stage decisions x are taken in the presence of uncertainty about future realizations of 

 . In the second stage, the actual value of   becomes known and some corrective actions 

or recourse decisions y can be taken. First-stage decisions are, however, chosen by taking 

their future effects into account. These future effects are measured by the value function 

or recourse function, Q(x) , which computes the expected value of taking decision x. If  

    and      are both convex in       , and   is convex set then the SLP is convex. 

If ,for some           , the second stage problem is infeasible, then by definition 

         . Also, if the second stage problem is unbounded from below then 

         .  

 For any given   the function        is convex. Moreover,        is polyhedral if the 

set {         of feasible solutions of the dual problem of the second stage problem 

is nonempty, and the second stage problem itself is feasible for at least one  . 

A two stage SLP in which the       matrix         (deterministic) is called two-

stage SLP with fixed recourse. If this fixed matrix   satisfies [the system        

  has a solution for every      ], then the problem is complete fixed recourse. 

For the full proof of these properties, see [3 Chapter 2]. The objective function in (3) 

contains a deterministic term     and the expectation of the second-stage objective 

           taken over all realizations of the random event ω. In case of   is a discrete 

random variable, which is an important class of random variables, and is widely used in 

applications, then, if   =   ,        with respective probabilities   , represent   

realizations of the random variable  ,which is discontinuous measure of noisy data or  

sampling with size   of  a continuous distribution, then we may write the whole large 

scale linear program: 

         ∑          

 

   

 

s.t.                                                                                     (4) 

     



                       

Of course, if for at least one   {        the system                     has no 

solution, i.e. the corresponding second-stage program is infeasible, then its optimal value 

is   , then the expected recourse  [      ]  ∑          
 
  equal    if at least one 

of         is   . The proof of the optimality of problem (3) is given in [3]. 

In many situations, certain design variables can have only integer values. Typical 

example in some cases of transportation problem in which the decision variables must 

have integer values like people, cars and so on. One can say it is possible to round off the 

solution obtained from any solution algorithm to the nearest integer. However, in many 

cases, it is very difficult to round off the solution without violating any of the constraints. 

Frequently, the rounding of certain variables requires substantial changes in the values of 

some other variables to satisfy all the constraints. Further, the round-off solution may 

give a value of the objective function that is very far from the original optimum value. 

All these difficulties can be avoided if the program is posed and solved as an integer-

programming problem. 

When all the variables are constrained to take only integer values in a programming 

problem, it is called an all-integer programming problem. When some variables only are 

restricted to take integer values, the programming problem is called a mixed-integer 

programming problem.[5] 

The interfering of integrality in the two-stage SLP is simply adding a condition to restrict 

the desired decision variables to the set of integer numbers: 

         [{       |                ] 

                

Here,             such that   and/or   are subsets of   . In general, the expected 

recourse cost in this case is nonconvex and discontinuous, and the second-stage 

feasibility set    is nonconvex, for more discussion of feasibility and optimality 

conditions,[2]. 

Computation in stochastic programs with recourse has focused on two-stage problems 

with finite numbers of realizations. The general model is to choose some initial decision 

that minimizes current costs plus the expected value of future recourse actions. With a 

finite number of second stage realizations and all linear functions, we can always form 

the full deterministic equivalent linear program or extensive form. With many 

realizations, this form of the problem becomes quite large. The most common solution 

algorithm is the L-shape (Decomposition) method due to Van Slyke and Wets 1969, 

which solves two-stage SLP with   having finite discrete distribution. For a brief 

discussion of SLP with recourse algorithms, see [1 chapter 7]. 

The basic difficulty of these methods is the need to perform too many iterations including 

solutions of many – quite large- linear programs which requires a powerful computer and 

more effort to reach a solution with small error.  

3- Application of the Two-stage SLP in Transportation problem: 



We consider a capacity expansion problem that has the form of a transportation problem. 

This example was contributed by David Morton at the University of Texas, [7]. A supply 

chain network with two suppliers is designed to supply three customers. The unit cost of 

supplying each customer from each supplier site is given in the following table: 

Transport Cost Dem. 1 Dem. 2 Dem. 3 

Supplier 1 4.3 2 0.5 

Supplier 2 7.7 3 1 

The amounts required by the three demanders is uncertain. Each demand has three levels 

with amounts and probabilities given below. The probability distributions are 

independent. 

 

Demand/ 

Probability 

Dem. 1 Dem. 2 Dem. 3 

Level    P(  ) 
 

   P(  ) 
 

   P(  ) 
 

1 900 0.35 
 

900 0.35 
 

900 0.35 
 

2 1000 0.55 
 

1000 0.55 
 

1100 0.55 
 

3 1300 0.1 
 

1250 0.1 
 

1400 0.1 
 

The designer will install capacity at the two suppliers’ sites. The first-stage decisions are 

         , 0 the installed capacity at the two suppliers. The unit costs of installed capacity 

are $400 and $350 at supplier 1 and 2 respectively. The total capacity cannot exceed 10,000. 

The reliability of the installed capacity is uncertain. The fractions    and    are the proportions of 

the installed capacity that will actually be available for satisfying demand. There are three levels 

of reliability as given in the table. These probability distributions are independent. They are also 

independent of the demand random variables. 

Reliability/ 

Probability 

Reliability 1 Reliability 2 

Level    P(  ) 
 

   P(  ) 
 

1 1 0.9 
 

1 0.85 
 

2 0.95 0.05 
 

0.8 0.1 
 

3 0.3 0.05 
 

0 0.05 
 

The decision maker must select the supplier capacity to install before knowing the 

demand or reliability. The second-stage decisions are the decisions about which demands 

to service from the suppliers. In the following     is the demand satisfied at 

customer j from supplier i. The problem has the form of a transportation model as shown 

below with random variables and decisions affecting the supplies and demands. 

Transport Cost Dem. 1 Dem. 2 Dem. 3 Supply 

Gen. 1 4.3 2 0.5      

Gen. 2 7.7 3 1      

Demand            

The transportation model cannot be immediately solved because its parameters depend on 

five random variables and two decisions determined elsewhere.  

 



The two-stage SLP model of this problem is formulated as follows: 

              

                  
where the expected recourse cost is:        [      ] 

          ∑∑      

 

   

 

   

 

S.t.                                                 ∑    
 
                   

∑   

 

   

              

Here, the random vector       where                    and 

                                   for each combination of the 5 random 

variables since all random variables are independent. The difficulty of using the L-shape 

algorithm is clear in this example. The two models can be combined to form a 

deterministic linear programming model that represents all 243 combinations of the 

random variables explicitly. This model has 2,189 decision variables and 1,216 structural 

constraints. After 13 optimality cuts and 7345 simplex iterations we obtain the solution 

             with total expected cost 1927689$. However, this is not the optimum 

because a gap of 2.66 remains between the lower and upper bounds. A better solution 

with smaller tolerance can be obtained but it requires more iterations!!. In practical life, 

the problem may have more variables and more random variables with more realizations. 

Carrying on the L-shape algorithm in that case will be very difficult and the result will 

have low precision. 

The major importance in this example is to compute the total expected cost with 

relatively small risk before knowing the realizations of the random variables in such a 

way that if the cost after realization deviates from the calculated, this deviation (risk) is 

affordable. For example, if this problem represents a power supply chain that a 

government wants to establish. It is a must to calculate the capacity to install at each 

power generator and the total expected cost with low penalty before starting the project. 

We studied four different treatments and compared the total cost in each case.  

Case 1: Design with subcontract: 

In this design, an additional subcontract (supply) is added to supply the demands not met 

by the original suppliers. In other words, if the demands exceed the amounts         

decided from the first stage, they are compensated from the subcontract but with 

relatively high cost. This can be considered as a penalty cost for not meeting the 

demands. 

The problem is shown in the following table: 

 

 



Transport Cost Dem. 1 Dem. 2 Dem. 3 Supply 

Gen. 1 4.3 2 0.5 

 

Gen. 2 7.7 3 1 

 

Subcontract 6000 6000 6000 no limit 

Demand 
         

 

The recourse Model: 

                      

            

Where        [      ], and: 

          ∑∑      

 

   

 

   

 

      

                   ∑    

 

   
              

                   ∑    

 

   
              

           

first, we solved the corresponding deterministic LP problem in case of substituting all 

random variables with their expected values. Then, we used the solution  ̂ to solve stage 

two for all combinations of the random variables. The total cost in this case is a random 

variable has 243 realizations. The same procedure is repeated but the random variables 

were replaced by their most likely values. 

Case2: Design with Extra-demand: 

In this design, instead of adding a subcontract to supply the over-demands, we design the 

suppliers as if they have to supply another extra-demand. This extra-demand represents 

the risk in case of over demands, but before the realization of the random variables. The 

problem is formulated in the following table: 

Transport Cost Dem. 1 Dem. 2 Dem. 3 Extra Dem Supply 

Gen. 1 4.3 2 0.5 6000 

 

Gen. 2 7.7 3 1 6000 

 

Demand 
         

  

With the same procedure of case 1 and solving the second stage one time with the 

expectation and another time with the most likely values. The probability distributions of 

the total cost in each case are shown in the following figure: 

Figure(1): pmf of total expected cost, case1 (using expectations) 

     

     

     

     



 

 

 

Figure(2): pmf ot total expected cost, case1 (using the most likely values) 

 

Figure(3): pmf of total expected cost, case2 (using expectations) 

 

Figure(4): pmf of total expected cost, case2 (using the most likely values) 
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Analysis of variance of the four treatments [6] 

Now, we have four distinct treatments for studying our example. ANOVA is used to 

compare a set of independent samples from a set of several populations. Since not all the 

samples are of equal size, then the data set is unbalanced. These type of sets are called 

one-factor layout, and have k-levels corresponding to k populations under testing. Our 

data set is a one-factor layout with 4-levels, the size of the data set is       . The 

ANOVA is based on the modeling assumption: 

           where     represents the     observation from the     population, and the 

error terms     are independently distributed as: 

            

Thus,     can be considered observation from a: 

      
   

 

Point estimates of the unknown population means    are obtained as the   sample 

avareges. An assessment of the evidence that there is a difference between some of the 

population means can be made by testing the null hypothesis: 

                                               

Acceptance of the null hypothesis indicates that there is no evidence that any of the 

population means are unequal. Rejection of the null hypothesis implies that there is 

evidence that at least some of the population means are unequal, and therefore that it is 

not plausible to assume that the population means are all equal. In our example, 

Level 1        Level 2         Level 3          Level 4          

 ̂   ̅   2434345  ̂   ̅   2648750  ̂   ̅   1878413  ̂   ̅   1700852 

Now, testing the hypothesis: 

                

                                    

The average of all the data observations is :  ̅  2252379.99 

0
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The some of squars for treatments :      2.69918E+15. 

As the variability among the population mean estimates  ̂   ̅  increases, the SSTr also 

increases. I.e. The sum of squares for treatments SSTr is a measure of the variability 

between the factor levels.  

Another important consideration in the analysis of a one-factor layout is the amount of 

variability within the k factor levels. This variability can be attributed to the variance    

of the error terms     and can be measured with the statistic known as the sum of squares 

for error.     3.47651E+16. 

The sum of squares for error SSE is a measure of the variability within the factor levels. 

If the   factor levels are ignored so that the data set is thought of as one big sample of 

size   , then the total variability of the total sample can be measured by SST (total sum 

of squares).     2.64868E+16  

The total sum of squares SST is a measure of the total variability in the data set. 

 

 

P-value consideration: 

The plausibility of the null hypothesis that the factor level means are all equal depends 

upon the relative size of the sum of squares for treatments SSTr to the sum of squares for 

error SSE. 

The p-value is directly proportional to the SSE and inversely proportional to the SSTr. 

The SSTr in our example has 3 degrees of freedom, Mean squares of treatments 

      
    

   
 8.99727E+14 

The SSE has          degrees of freedom, and the Mean square error MSE 

     
   

    
 4.41182E+13. 

The MSE is an unbiased point estimate of the error variance   , since            

Consequently, MSE is sometimes written as  ̂ . 

To calculate the p-value for the null hypothesis: 

                

When this null hypothesis is true, then the F-statistics: 

  
    

   
           

The plausibility of the null hypothesis is therefore in doubt whenever the observed value 

of the F-statistic does not look like it is an observation from an           distribution.  



Moreover, MSTr has a larger expected value when the factor means    are unequal than 

under the null hypothesis, thus, larger values of the F-statistics cast doubt on the 

plausibility of the null hypothesis. Consequently, the p-value is calculated as: 

               

Where the random variable   has an           distribution. 

In our example   
    

   
 20.39355  and   has an        distribution, then: 

                        

 

The ANOVA table for our example is given: 

Sources Degrees of freedom Sum of squares Mean squares F-statistics p-value 

Treatments 3 2.69918E+15 8.99727E+14 20.39355   0.00 

Error 788 3.47651E+16 4.41182E+13.   

total 791 2.64868E+16    

Thus the null hypothesis is not plausible. 

Since the null hypothesis is rejected, we shall follow up the analysis with pairwise 

comparisons of the factor level means to discover which ones have been shown to be 

different and by how much. With 4 factor levels we have 6 pairwise differences. 

These confidence intervals are often referred to as the Tukey multiple comparisons 

procedure. Inb our example we calculated 95% confidence level simultaneous confidence 

intervals: 

 

n 

Pairwise 

diff. 

Mean and size Confidence interval 

1        ̅  2434345                                             

 ̅  2648750        

2        ̅  2434345                              

 ̅  1878413        

3        ̅  2434345                                  

 ̅  1700852        

4        ̅  2648750                                

 ̅  1878413        

5        ̅  2648750                                  

 ̅  1700852        



6        ̅  1878413                    (-1773199.677,2128321.677) 

 ̅  1700852        

Since intervals1 to 6 contain 0, then there is no evidence that the means of factor levels 

pairs are different. 

The following graph shows by how much the factor levels means are different. 

  

3- Conclusion: 

According to the results obtained from the previous numerical studies, the following 

conclusions can be made. There is no evidence that any two population means of the four 

treatments are different, therefore, it is plausible to assume that all the population means 

are equal. Also, there is no evidence that designing with subcontract and using either the 

expected values or the most likely values of the random variables will give, in average, 

quite different total expected costs. The confidence interval of the difference between the 

means of both of them shows a small variability between them. There is no evidence that 

designing with extra demand and using either the expectation or the most likely values 

will give, in average, different total expected cost, but the variability between them is 

relatively high.  
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