Using Deep learning to Improve the Classification of Weather Phenomena from Images

By: Abdelmonaim Fakhry Kamel Mohamad

Abstract

One of the most important phenomena at the moment is the identification of weather phenomena, which are crucial for numerous facets of daily life and are especially important for weather forecasts, transportation, tracking road conditions, farming, and forest management to protect of environment.

Contrarily, few studies have attempted to classify images of actual weather events because it is challenging to do so using pictures, which are primarily reliant on human visual observations. This lessens the possibility of changing weather patterns. As far as we can determine, it takes time and is difficult to accurately distinguish between various weather events using traditional artificial vision. Even though some research has increased precision, also efficacy to recognizing phenomena employing artificial intelligence and even though AI approaches are better suited for categorization, they have discovered less different weather phenomena. This study suggests five artificial intelligence classification methods for meteorological events.

In the meantime, we created a brand- The Weather Phenomenon Database (WEAPD), a brand-new dataset with 6,691 photos and 11 different types of weather phenomena, was just released. The categorization accuracy for AI methods in the WEAPD test group is about 84%. and the experimental results show how effective and better the models are for the specified AI tactics. Next studies on the classification of weather photographs and weather forecasting may use the creation of automatic, high-quality categorization of weather photos as a benchmark. The proportion is not higher than these values since the images are difficult to categorizes because they combine a variety of events.

Keyword:

Classification of meteorological phenomena, Deep Learning, Weather forecasting, and Databases of meteorological phenomena.

1. Introduction

The analysis of meteorological occurrences is crucial for many applications, such as environmental monitoring, predicting the weather, and evaluating the state of the environment. A range of weather events also have an impact on agriculture in different ways. Therefore, accurate classification of climatic events can improve agricultural planning. In addition, weather occurrences affect our daily lives through affecting items like solar technology [1], clothes, and transportation. Due to things like snow, sandstorms, haze, etc., they have a substantial impact on car assistant driving systems as well. Meanwhile, weather conditions can affect the operation of different visual systems, including outside video monitoring.

The weather during the next few days will be influenced by weather from the day before, such as the haze, snow, sandstorm, and so forth. Sandstorms, downpours, rime, hazardous local or regional weather conditions include snow, thick fog, and others. Also, the factor in a considerable number of expressway accidents. In light of the foregoing, it is clear that categorization Understanding weather events is vital and can assist meteorologists comprehend climatic conditions and enhance weather forecasting [2].

The bulk of the time, traditional techniques of recognizing meteorological phenomena rely on human observation. The artificial visual differentiation used in the past to distinguish between different climatic occurrences, however, is slow and prone to inaccuracy. Therefore, developing highly accurate, efficient, and automated techniques for identifying meteorological phenomena is essential. In recent years, a collaborative learning approach has been used to classify weather into two categories (cloudy and sunny). Furthermore, a simple linear classifier successfully distinguished between scenes with and without fog. Now that machine learning is developing swiftly, academics can use it in a variety of academic fields. Meteorological phenomena were recognized as weather conditions utilizing K-Nearest Neighbor and feature extraction[3].

Nevertheless, weather phenomenon recognition based on standard machine learning cannot accurately learn the features of weather phenomena. Artificial intelligence (AI) and deep learning are both algorithms. Due to the use of deep structure, local receptive fields, spatial sub-sampling, shared weights, and other techniques, it can produce effective feature representations for images, also other methods [4].

Since the AlexNet model took first place when participating in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), a number of problems, such as object detection, face recognition, and regression prediction, have been tackled using AI. A growing number of studies have recently applied AI methods to solve meteorological issues. [5] used deep learning to extract the snow cover from remote sensing data. Using AI methods, [6] created two cloud recognition architectures that improved cloud recognition's precision. Additionally, [7] merged Using a simple deep learning architecture, one framework can separate images into day and night. also did better than rivals in research from accessible databases.

In summary, it is evident to AI methods has numerous benefits for identifying meteorological imagery. In order to identify different weather events, including two-departments climate (sunny and cloudy) and three-class weather phenomena, some studies examined the potential of AI Techniques (AI) (rainy, foggy, and snowy). Additionally, using deep learning, [8] developed six fictitious meteorological occurrences (such as Rain, dust, and dew, freezing, haze, and snow) and effectively detected all. Additionally, a convolutional neural network with three channels was successfully used to classify six meteorological phenomena (3C-CNN). In addition, [9] managed the multi-label task of classifying weather-related events. These studies, however, only think of a little portion different weather type, but kinds of climate occurrences we experience daily are significantly more diverse and numerous. As a result, there are now more categories of meteorological phenomena that need to be considered while studying and identifying them [10].

According to several countries, the method for manually determining cloud coverage in meteorological stations goes like this. First, field observers send satellite-free photos of clouds to the ground-based stations, it may include balloons or observation towers but not satellites. The gathered photos are then divided equivalent to eight into halves, which are then sent to human analysts for independent review. Each piece has three possible results: cloudy, clear, or no result if there are no sky pieces present and the piece includes irrelevant information for weather forecasting [11]. The item is regarded to have significant noise and is disqualified from the procedure if it has no sky sections and contains irrelevant information for weather fore-

casting. After determining how foggy each element is, depending on whether the cloudy portions make up 50% or more of the entire image when the non-noise bits are combined to form the original image [12], it can be said if the image is cloudy or clear. The flow described is using a solid architecture for deep learning, a big dataset will be trained, its volume would be continually increased, and the data would be processed instead of gathering weekly or daily image data and using human experts to analyses it. This would provide a contemporary viewpoint and increase predicting accuracy at an exponential rate. Technologies utilizing artificial intelligence with large data (AI) make it possible to convert a difficult human task into an automated computation. Systems based on deep learning are capable of labelling new data using the knowledge they have learned from training on similar massive amounts of data. Several layers are used in the machine learning subfield known as deep learning that learn by developing hypotheses and analyzing data [13]. Despite having various definitions, Artificial intelligence, machine learning, and deep learning (AI) are all subsets of one another. As an illustration, while AI is a methodology, deep learning is a subset of machine learning, which is a subset of it with its own distinct set of unique techniques and architecture [14].

2. Related Work

The application of AI technology has increased recently while they are still evolving. In accordance with this, several nations are testing or have already implemented a number of AI technology initiatives in the meteorological sector, a history of combining deep learning with certain AI techniques for weather forecasting. [15] They employed AI algorithms to forecast fundamental meteorological factors globally. In the course of their inquiry, the temperature is measured. Observation, analysis, and prediction are the three phases of weather forecasting. During these phases, a number of factors including atmospheric pressure, air temperature, humidity, wind speed, and cloud cover are taken into consideration [16].

One of these crucial elements is cloud coverage, also known as cloudiness, cloud quantity, or cloudiness in the sky. Cloud coverage is the number of clouds present in the sky.

Traditionally speaking, utilizing cloud coverage typically entails dispatching staff to the field to take ground-level photos during the observation stage, having knowledgeable staff analyses for images while in stations for the analysis phase [17], and then computing the desired outcome in a weather prediction using all additional information mentioned before, encompassing clouds, during the prediction phase. It is acknowledged on a global scale that a traditional meteorological institution may make forecasts with varied levels of approximation accuracy for particular time frames: 90% for a period of five days, 80% for a period of 50% after seven days for a period of 10 days [18]. Analysis for prediction tools and methodologies are still far from error-free, especially over longer time periods, despite the use of sophisticated technologies and procedures. Additionally, when humans are affected by human-based systems, they make more mistakes than usual in unexpected situations, such as the COVID-19 pandemic [19]. Due to field personnel, experts at stations, and meteorology regularly reporting weather forecasting at work worsened during the epidemic. Errors in meteorology increased as a result.

3. Methodology

3.1 Dataset Description:

Classify the weather based on an image using this dataset, which consists of 6691 images of various weather conditions that have been tagged with specific meteorological conditions. The photographs are separated to dew, fog/smog, frost, glazing, hail, lightning, rain, rainbow, rime, sandstorm, and snow are among the eleven categories. To the best of our knowledge, before any classification models in supervised learning can be proposed, a sizeable, labelled dataset must be used [20]. The size and caliber of the dataset have an important effect for classification effectiveness of the model, and by creating a sizable training and test database, It is possible to considerably increase categorization accuracy. Therefore, it is essential to take enough images of weather occurrences and mark them appropriately.

In this paper, JPG images of weather events were first acquired through the internet and academic exchanges, and then the images were manually categorized according to meteorological standards. Finally, based on visual shape and color attributes, a database of weather phenomena (WEAPD) was developed and divided into 11 classes [21].

This database includes different and exemplary images of meteorological events. The primary elements of the WEAPD include hail (591), rainbow (232), Frost (475), dew (698), sandstorm (692), snow (621), rain (526), light-ning (377), fog/smog (851), rime (1160), and glazing (639). the validation set, testing set, and training set that we divided WEAPD into do not have any image overlap.

In this study, we used a set of 6691 pictures grouped into 11 categories

of weather occurrences to construct a network called AI Techniques, a deep learning algorithm, for classifying weather phenomena [22]. The AI methods were subsequently taught to validate them. The trained AI Techniques model was then assessed using the testing set.

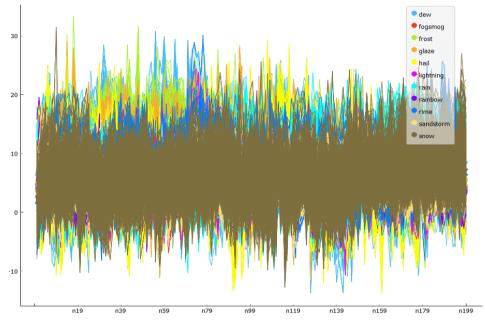


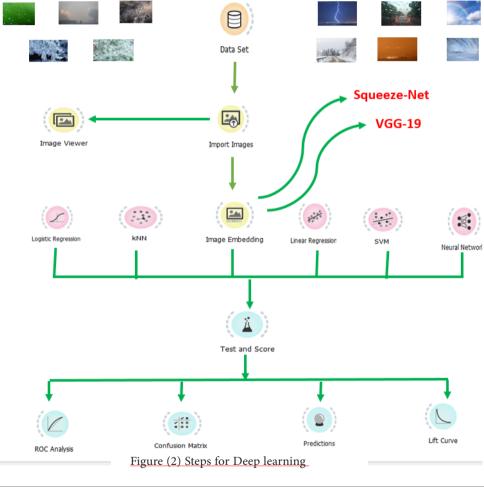
Figure (1) Plot a line representing meteorological phenomena

This essay's remaining sections are set up as follows. We present the information. Information on the experimental use of the suggested classification model presents the experiment's results before assessing the AI Techniques model using a range of evaluation metrics. This paper discusses the opportunities for additional research. This study divided equal amounts of ground-based cloud photographs into equal grid squares, and each square was labelled as either clear or cloudy [23].

In contrast, objects with a high level of undesirable unclassifiable noise

are considered, eliminated from information set data. Following this step, the collection is fed into pretrained model-based architectures in four different forms, including method VGG-19 and Squeeze Net (local), in order to undergo training and testing of deep learning system of classification [24]. To create a robust model for image identification that reaches AlexNet-Level accuracy on ImageNet with 50x less parameters, we worked on two image processing algorithms in this study:

1 - Squeeze - Net (local) 2 - VGG -19.



3.2. Model Architecture

An optimized approach to classifying photographs of weather phenomena is AI techniques. AI techniques develop as VGG19 is improved. In comparison to other popular models, VGG19 of straightforward framework and has rapid training, takes up little memory, as well as prevent overfitting regarding tiny information sets [25]. As a result, the decision to use VGG19 as the foundation for our suggested AI Techniques model. AI techniques have a quality classification impact and may correctly understand for characteristics to each weather condition phenomena.

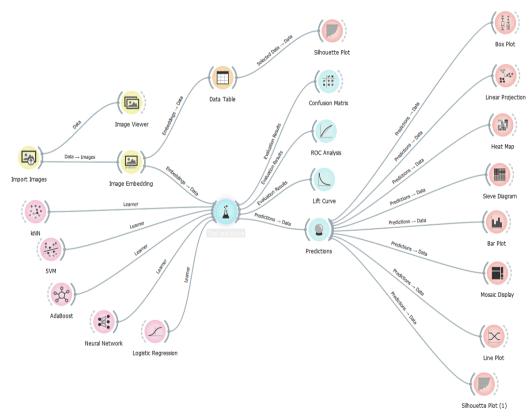


Figure (3) Represent Model Architecture for study

In contrast to VGG19, our AI Techniques employ the squeeze and excitation module. A collection of fixed-size photos representing meteorological phenomena provides the input for AI techniques [26]. The AI Techniques layers serve as a feature extractor, turning input photos into representations of abstract weather phenomena features. A variety of feature maps are produced by each layer of AI techniques utilizing a trainable. A collection of fixed-size photos representing meteorological phenomena provides the input for AI techniques. The AI Techniques layers serve as a feature extractor, turning input photos into representations of abstract weather phenomena features. Using a trainable, each layer of AI techniques generates a variety of feature maps [27].

4. Analysis of Results

where stands for the expected label for the sample, and is the corresponding true label. Furthermore, the trained AI Techniques model was assessed using quantitative evaluation indicators. In this research, we specifically implemented the Precision (P), Recall (R), and -measure (F1). Precision is the model's capacity to avoid making a positive prediction when the Analyte is unfavorable [28]. And Recall is a measurement to locate everything of the samples that are positive. An average of Precision and Recall, that is weighted, is denoted by symbol measure. Using False positives, genuine positives, true negatives, and false positives, the concepts of P, R, and F1 are defined. where the values of the assessment metrics are uniformly between 0 and 1. The model's classification performance improves when macro-average values, F1-measure, accuracy, precision, recall increase [29].

Squeeze Net, VGG-19, and F1-measure were used to evaluate accuracy, against the popular models, a macro-average of Precision, Recall, and F1-measure. Within a 5% improvement, there was a considerable improvement in the classification results utilizing the (VGG-19) approach as opposed to the (Squeeze-Net) method. The parameter maps that the feature extractor creates hierarchical layers inside AI Techniques, can disclose the many semantic meanings. The experiments demonstrated that while the deeper levels are more likely to exhibit high-level and sophisticated semantic properties [30], the thinner layers have a higher likelihood of collecting details about the texture. This is confirmed, and the feature maps of AI techniques are understood. In conclusion, with the development of AI techniques, it will be possible to identify more subtle semantic properties of weather photos, such as some non-linear image attributes. The outcome is consistent with earlier studies.

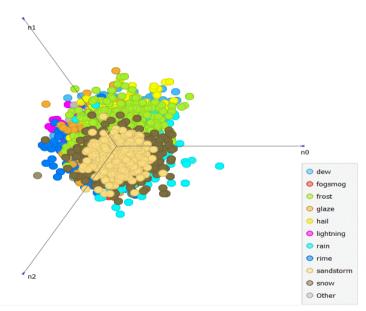


Figure (4) Linear Projection

The five models significantly improved when the model (VGG-19) was

used, thus the training time was raised to further enhance the models, and the test duration was also increased [31]. The best models for classification were (Squeeze-Net) and (Logistic Regression), which produced results with classification accuracy of 0.980 in the VGG-19 model and (Precision of 0.980) in the Logistic Regression model. Additionally, the result (0.836) in the (VGG-19) model, whereas the results (Precision= 0.822) in the (Squeeze-Net) model, followed by the model (Support Vector Machine) in the prediction values showing for every table (1, also 2).

Table (1) Evaluation of Classification Performance of AI Techniques by Precision, for Squeeze- Net.

Model	Train time [s]	Test time [s]	AŬC	CA	F1	Precision	Recall	Specificity
Logistic Regression	1617.492	3.348	0.974	0.822	0.821	0.822	0.822	0.979
SVM	112.456	64.388	0.970	0.738	0.736	0.738	0.738	0.971
kNN	7.150	14.908	0.948	0.766	0.759	0.766	0.766	0.971
Neural Network	35.714	6.725	0.886	0.378	0.219	0.222	0.378	0.894
AdaBoost	3604.622	10.705	0.846	0.705	0.702	0.701	0.705	0.965

Table (2) The classification performance of AI Techniques Precision and Recall

Modeling For VGG-19.

Model	Train time [s]	Test time [s]	AUC	ČĂ	F1	Precision	Recall	Specificity
Logistic Regression	341.873	22.789	0.981	0.836	0.835	0.835	0.836	0.980
SVM	875.512	369.536	0.970	0.732	0.731	0.734	0.732	0.969
kNN	51.172	50.300	0.940	0.727	0.720	0.740	0.727	0.965
AdaBoost	6477.481	55.697	0.844	0.700	0.698	0.698	0.700	0.964
Neural Network	182.286	43.519	0.899	0.418	0.288	0.335	0.418	0.900

ples. Even if there are few images in some categories, the suggested model can nevertheless correctly categories them with a Recall of 1 and 0.98, respectively (Table 1). Fog/smog (1160) and rime (1160) are the categories with the most and second-most images, respectively (851). Nevertheless, a little or high number of photos (such as a rainbow or a snowflake) had no discernible impact on the categorization outcomes, showing that the data set's quantity distribution is appropriate [32].

The confusion matrix was utilized as additional evidence of Performance in terms of classification for AI Techniques design of meteorological occurrence (Figure 3 to 7). The AI Techniques model's categorization accuracy for weather phenomena is greater than 89%. The AI Techniques model still makes some classification mistakes, though. This might be the case, for instance, because glaze's sceneries and shapes are fairly similar to those of it has rime or frost on it.

It is difficult for AI systems to tell each person apart. Also, the proposed model has a 3.9% risk of mistaking rime for snow, which may be caused by how similar the colors in the two types of images are. The suggested model, in general, simply detects incorrect meteorological information.

It can be brought on by how similar and intricate the visuals are. Utilizing the confusion matrix on test was designed to assess its effectiveness in the AI Techniques model. As is well known, a probability mask representing the projected probability of several types of weather occurrences is the result of AI techniques. The potential must be converted into a particular kind of meteorological for phenomenon. We employ the Receiver Operating Curve (ROC) method in this study to examine the model's capacity for classification using AI techniques. Figure (6) shows ROC graph for AI Techniques simulate different probability thresholds in the range [0,1] for the testing set. False Positive Rate (FPR) and True Positive Rate (TPR) are also variable when the probability threshold shifts from 0 to 1. Each class of meteorological occurrence has an area behind the ROC curve (AUC) value that is greater than 0.96; in particular, the AUC values for hail, rainbows, lightning, sandstorms, and dew are close to 1.00. It once more demonstrates how the AI techniques model can reorganize hail, rainbows, lightning, sandstorms, and dew with almost perfect accuracy. Additionally, the ROCs on a large-scale AUC value is 0.99, highlighting for model's excellent classification performance.

State Information Service

							Predic	bed					
		dew 1	ogamog	frost	giate	hall 6	ghtning	rain r	ainbow	rime sa	ndetorm	-	I
	dew	4380	14	104	75	83	24	24	6	9	0	- 1	4722
	fegamog	7	4185	8	. 4	4	7	.78	18	43	1172	50	5576
	freet	183	6	1991	471	141	0	34	2	251		188	3220
	glaze	211	29	545	2093	50	. 1	40	0	620	- 14	311	4358
	hall	108	2	122	60	1410	.0	129	2	. 9	0	- 36	3878
3	lightning	15	26	10	10	0	2399	3	14	1	16	5	2499
Achiel	rain	50	164	54	60	158	2	2632	11	36	31	182	3355
	rainbow	25	29	4	1	1	28	41	1380	5	50	0	1564
	rime	26	114	563	634	17	32	25	9	5502	7	767	7677
	sandstarm	1	762	11	-13	2	54	40	17	15	3627	21	4543
	snow	31	231	219	377	119	5	661	1	487	47	1980	4108
	Σ	5037	5542	4032	3798	4023	2492	3708	1480	6908	4972	3488	45500

							Predic						
		dew	fegsmog	frest	glase	hall li	phtning	rain r	wodnie	rime sa	ndstorm	snow	
	dew	4256	19	127	116	108	28	33	. 9	18	8	2	472
	fogamog	21	1821	0	1	0	16	58	15	43	1519	74	55
	freet	216	13	2195	415	69	6	30	3	212	90	51	322
	glace	287	20	757	2471	68	2	43	0	502	3	205	435
	hall	133	0	49	83	3514	0	68	0	8	0	23	38
3	lightning	15	25	13	9	0	2384	2	15	7	29	0	245
Athak	rain	67	126	29	38	103	4	2758	2	25	38	130	335
	rainbow	5	76	11	1	1	24	41	1314		77	1	154
	rime	23	141	463	658	5	20	24	7	5208	.36	1252	767
	sandstorm	12	870	19	18	2	36	53	61	102	3313	37	454
	snow	41	214	146	356	103	0	585	5	526	47	2085	410
	Σ	5076	5327	3829	4174	3975	2520	3495	1431	6658	5075	3740	4550

Table (3) Confusion Matrix to SVM (a) Squeeze - Net, (b) VGG-19.

							. Predic	hid					
		dew	logsmag	frest	place	hell 6	phining	rain r	sinbow	rime sa	ndstorm	men	
	dew	3914	37	153	205	102	66	32	36	-46	21	36	47
	Togsmog	21	4369	18	n	27	64	110	68	104	585	179	15
	freet	172	12	1610	581	212	16	47	- 14	454	39	103	32
	glaze	226	66	455	2480	181	33	50		657	20	226	43
	hall	109	3	207	129	3010	21	131	20	89	52	105	38
Actual	lightning	70	.92	- 16	38	21	1967	.16	60	62	113	22	24
ų,	rain	38	175	39	63	121	24	2105	18	146	106	440	33
	rainbow	54	122	15	- 12	37	\overline{n}	37	1000	15	129	21	154
	rime	40	87	214	494	87	45	66	26	6110	92	414	763
	sandatorm	.11	700	20	28	29	62	106	58	89	3292	136	454
	snow	54	255	94	225	116	27	404	26	647	156	2004	411
	Σ	4785	5940	2852	4272	3893	2417	3268	1349	8399	4619	3686	455

							Prefic	sel -					
		dew f	ogemage	front	glass	hal 6	ghtning	rain r	winbow	rime sa	motorm	snow	
	dew	2262	85	221	199	155	58	67	45	58	40	32	472
	fegamog	- 40	4339	10	18		54	112	.6	140	655	114	557
	freet	216	. 4	1706	563	137	12	37	7	388	26	106	322
	glaze	223	43	404	2510	96	10	81	5	671	Q	173	435
	hall	126	25	108	135	3152	6	196	12	52	81	100	347
At a set	Syltning	74	152	12	17	10	1963	25	48	49	135	н	249
â	rain	.98	158	м	43	132	29	2186	22	122	172	160	335
	rainbow	54	94	10	7	н	40	49	1068	49	169	13	156
	rime	34	99	. 254	547	35	15	70	42	6073	136	438	767
	sandstorm	15	899	22	31	28	77	119	72	229	2902	149	454
	snow	10	173	94	257	119	-13	365	v	796	142	2077	410
	1	4724	6067	2822	4424	3887	2338	3267	1352	8593	4450	3576	4550

Table (4) Confusion Matrix to AdaBoost (a) Squeeze - Net, (b) VGG-19.

							Predic	bed .					
		dew f	ogamog	frest	giaze	hall is	ghtning	rain r	wodnia	rime a	endstorm	-	1
	dew	4101	17	75	162	118	90	2	42	22	t3	0	4722
	fogunog	0	5059	0	4	D	10	39	36	79	303	45	5576
	front	155	10	1636	653	255		35	10	403	22	30	3220
	glaze	246	79	381	2712	189	32	17	- 1	571	23	105	4358
	hall	57	18	139	95	3405	٥	74	16	29	25	30	3474
1	Sphening	2	104	t	19	0	2276	1	38	18	40	0	2499
Attes	rain	39	262	18	21	106	- 6	2457	12	120	136	168	3355
	rainbow	3	57	0	1	7	18	30	1985	12	303	0	1564
	rime	8	75	12	\$75	28	30	18	16	6640	47	158	7677
	sandstorm	0	846	ż	6	0	9	21	45	38	3573	5	4543
	show	27	416	70	126	.114	2	609	28	761	125	1630	4100
	1	4718	6986	2404	4584	4222	2481	3293	1549	8681	4410	2172	45500

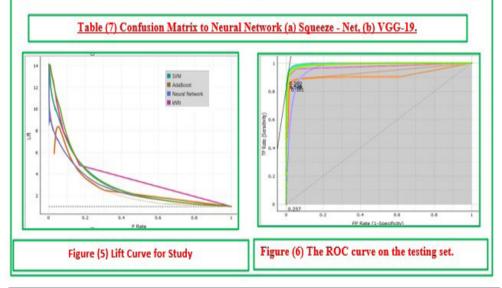
							Pedic	Sed.					
		dew t	ogamag	front	giaze	hail B	ghtning	rain r	wodnia	rime as	ndstorm	anow	3
	dew	3068	123	159	182	н	154	-41	10	38	25	0	472
	fogamog	0	5091	8	8	8	28	13	12	16	330		\$\$7
	freet	228	10	1722	662	133	7	10	0	383	18	24	322
	glaze	228	58	414	2717	89	30	43	1	697	15	4)	435
	hall	97	30	75	132	3317	5	104	2	54	23	29	387
3	lightning	- 3	252	7	1	0	2139	2	1	28	- 62	2	249
N.	rain	71	373	25	-43	64	22	2303	4	113	199	142	335
	rainbow	- 3	210		0	5	106	- 56	1873	18	. 95	0	154
	time	36	113	- 89	618	11	41	15	0	6581	51	122	767
	sandstorm		1472	. 1	13	0	-44	16	14	197	2762	15	454
	snow	15	402	65	362	72	12	519	0	1017	176	1528	410
	Σ	4558	8149	2553	4690	3777	2613	3085	1130	9244	\$772	1929	4550

Table (5) Confusion Matrix to KNN (a) Squeeze - Net, (b) VGG-19.

Table (6) Confusion Matrix to Logistic Regression (a) Squeeze - Net, (b) VGG-19.

		dew	openage	feet	gaze	hat sy	trang	rain rai	nbow	rine san	datione	show	
	dew	4548	N	¢	0	0	0		ņ	258	0	0	472
	fegunog	- 1	\$176		0	0	0		0	262		0	557
	frost	490	0	0	0	0	0		0	2730		0	322
	giaze	796	68		0	0	0	0	0	3554	. 0	0	415
	hell	1940	161	4	0	0	0	0	Ó	1777		0	347
1	Sphering	292	1836			0	0	0	0	411		0	249
Ş,	nin	н	1213	0		.0	0	41	0	2027	. 0	0	335
	rainbow	274	105		0	0	0	0	Ø	265		0	154
	rime	.40	19	. 0	0	0	0	0	0	7618		0	767
	sandstorm	0	3758		0	0	0	0	0	785			454
	anow	10	. 105	0	.0	0	0	4	0	3001	. 1	0	410
	1	8289	14308	0			0	45		22858		0	4550

							PH00	lod .					
		des 1	porneg	freet	place	hel lig	inning	rain rai	nbew	rime san	datorm.	snow	2
	dew	4025	337	0	27	80	0	0	0	252	0	0	4722
	gamag	12	\$254	0	0	0	0	0	0	110	0	0	\$576
	freet	419	8	0	103	142	0	0	0	2498	0	0	3220
	glase	418	56	0	6	111	0	0		9661	0	0	4358
	hall	734	51	0	38	1988	0	0	0	1067	0	0	387
4	printing	30	2011	0	0	0	0	0	0	138	0	0	2499
	nin	368	659	0	1	15	0	94	\$	2218	0	0	3955
	-	49	1356	0	0	0	0	0	0	158	0	0	156
	ine	18	. 54	0	0	0	0	0	\$	7605	0	0	7677
san	datorm	7	1533	0	0	0	0	2	0	1001	0	0	454
	-	78	307	0	1	24	0	6	0	3690	0	0	410
	I	6279	13926		234	2560		102		22599	0	0	45500



Utilizing weather information criterion, in this study, we propose a fresh, representative library of images of meteorological phenomena. This database, which includes 6,691 photos of 11 different weather events, can be used as a study foundation for upcoming studies on weather public relations. In the meantime, we created a classification model for meteorological phenomena called AI Techniques. The AI techniques model is good at picking up on the characteristics of weather events. Numerous tests have demonstrated the effectiveness of the proposed AI techniques model for classifying weather occurrences and its ability to prevent errors brought on by subjectivity. making it better than conventional techniques. However, the AI techniques model misinterprets several types of meteorological occurrences, maybe as a result of how similar and intricate the images are. Overall, the AI techniques model's classification accuracy is as high as 84%, and on our dataset, it performs competitively with several widely used models (Squeeze - Net, Vgg19). Regarding the suggested approach, it can therefore be widely used to the daily observation of weather phenomenon photos and provides weather advise for environmental monitoring, agriculture, and transportation, particularly in relation to weather change and forecasting. We created a dataset with a complicated and interference-filled background. Each image consists of the object to be detected as well as other interference objects. Future study must therefore identify and discuss interference backgrounds. In addition, we are aware of the numerous weather events that affect our daily life. Therefore, new types of weather occurrences are important to consider in future studies. To improve classification results and enhance the classification model, the quantity of images of each weather phenomenon can be increased. Because consumers can quickly access weather forecasts via their mobile devices, for meteorological errors draw greater attention than they did in the past and undermine public faith in weather predictions. Error rates will be high as long as meteorological forecasts are made by humans. When people's participation levels drop, errors spike, especially in unusual situations.

References

- 1. Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., "Deep learning for identifying metastatic breast cancer," arXiv, 2019.
- Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N. Kingsbury, B.," Deep neural networks for acoustic modeling in speech recognition, "IEEE Signal Processing Magazine, pp. 82-97, 2020.
- Ayon S.I., Islam M.M., Hossain M.R., "Coronary artery heart disease prediction: a comparative study of computational intelligence techniques," IETE Journal of Research, pp. 1-20, 2020.
- 4. Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S.: "CNN features off-the shelf: an astounding baseline for recognition["], "Book CNN features off-the-shelf: an astounding baseline for recognition["] pp. 806-813, 2018.
- Ghaleb M.S., Ebied H.M., Shedeed H.A., Tolba M.F., "COVID-19 X-rays Model Detection Using Convolution Neural Network," International Conference on Artificial Intelligence and Computer Vision (AICV2021), Springer International Publishing, pp. 3- 11, Morocco, 2021.
- Krizhevsky," Imagenet classification with deep convolutional neural networks," In Advances in neural information processing systems, pp.1097-1105, 2017.
- He, K., Zhang, X., Ren, S., and Sun, J., "Deep residual learning for image recognition", "Book Deep residual learning for image recognition", pp. 770-778, 2016.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," [Online]. Available: https://arxiv.org/ abs/1409.1556, 2018.
- Martin Roser and Frank Moosmann, "Classification of weather situations on single color images," Intelligent Vehicles Symposium, IEEE, pp. 798– 803, 2018.
- 10. Hiroyuki Kurihata, Tomokazu Takahashi, Ichiro Ide, Yoshito Mekada, Hiroshi Murase, Yukimasa Tamatsu, and Takayuki Miyahara, "Rainy weather

recognition from in-vehicle camera images for driver assistance," IEEE Intelligent Vehicles Symposium. 205 – 210, 2019.

- Aurelien Cord and Nicolas Gimonet, "Detecting unfocused raindrops: In-vehicle multipurpose cameras," IEEE Robotics & Automation Magazine, vol. 21, pp. 49–56, 2019.
- 12. Andreas Kuehnle, "Method and system for weather condition detection with image-based road characterization," US Patent, May 7, 2018.
- 13. Mario Pavlic, Gerhard Rigoll, and Slobodan Ilic, "Classification of images in fog and fog-free scenes for use in vehicles," IEEE Intelligent Vehicles Symposium (IV), pp. 481– 486, 2018.
- 14. Rachid Belaroussi and Dominique Gruyer, "Convergence of a traffic signsbased fog density model," IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 783–787, 2017.
- 15. Mario Pavlic, "Method for fog detection," US Patent, July 5, 2017.
- Cewu Lu, Di Lin, Jiaya Jia, and Chi-Keung Tang, "Two-class weather classification," IEEE Conference on Computer Vision and Pattern Recognition, pp. 3718–3725, 2017.
- Zheng Zhang and Huadong Ma, "Multi-class weather classification on single images," IEEE International Conference on Image Processing (ICIP), pp. 4396–4400, 2019.
- Ghaleb M.S., Ebied H.M., Shedeed H.A., Tolba M.F., "Image Retrieval based on self-organizing feature map and map and Multilayer perceptron Neural Networks Classifier." Ninth International Conference on Intelligent Computing and Information science (ICICS), pp. 189-193, Cairo, Egypt, 2019.
- 19. P Rama and Anna Schirokoff, "Effects of weather-controlled variable speed limits on injury accidents," 4th European Congress on Intelligent Transportation Systems and Services, Budapest, Hungary, 2020.
- 20. Walter I Christensen JR and Reid a Bryson, "An investigation of the potential of component analysis for weather classification," Monthly Weather Review, vol. 94, pp. 697–709, 2019.
- 21. Jeffrey A Nystuen and Harry D Selsor, "Weather classification using passive acoustic drifters," Journal of Atmospheric and Oceanic Technology, vol. 14, pp. 656–666, 2019.
- 22. Reiner Schnur and Dennis P Lettenmaier, "A case study of statistical downscaling in Australia using weather classification by recursive partitioning," Journal of Hydrology, vol. 212, pp. 362–379, 2020.
- 23. Cewu Lu, Di Lin, Jiaya Jia, and Chi-Keung Tang, "Two-class weather clas-

sification," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3718–3725, 2020.

- 24. Martin Roser and Frank Moosmann, "Classification of weather situations on single color images," IEEE Intelligent Vehicles Symposium, pp. 798–803, 2018.
- 25. Xunshi Yan, Yupin Luo, and Xiaoming Zheng, "Weather recognition based on images captured by vision system in vehicle," Advances in Neural Networks, pp. 390–398, 2019.
- Zichong Chen, Feng Yang, Albrecht Lindner, Guillermo Barrenetxea, and Martin Vetterli, "How is the weather: Automatic inference from images," IEEE International Conference on Image Processing (ICIP), pp. 1853– 1856, 2019.
- 27. Cewu Lu, Di Lin, Jiaya Jia, and Chi-Keung Tang, "Two-class weather classification," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3718–3725, 2018.
- 28. Sharma, Atul and Phonsa, Gurbakash, "Image Classification Using CNN," The International Conference on Innovative Computing & Communication (ICICC) 2021.
- 29. Wang, Z.,"The applications of deep learning on traffic identification," BlackHat USA, 2018.
- 30. B. Javidi, Image Recognition and Classification. CRC Press, 2017.
- L. W. Kang, K. L. Chou, and R. H. Fu, "Deep learning-based weather image recognition," *Proc. - 2019 Int. Symp. Comput. Consum. Control. IS3C 2018*, pp. 384–387, 2019, doi: https://doi.org/10.1109/IS3C.2018.00103. Google ScholarCrossref
- 32. J. Xia, D. Xuan, L. Tan, and L. Xing, "ResNet15: Weather Recognition on Traffic Road with Deep Convolutional Neural Network," *Adv. Meteorol.*, vol. 2020, 2020, doi: https://doi.org/10.1155/2020/6972826.