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ABSTRACT
 

Abstract - An algorithm called ACO-FA is proposed which incorporates concepts from ant colony optimization (ACO) and firefly 

algorithm (FA). The methodology of the proposed algorithm is introduced based on a refining mechanism of ACO and FA for updating 

the solutions of ACO-FA. Moreover, the evolutions of these solutions are performed by using feasibility rule that maintain the solutions 

with lower degrees of constraint violations. The proposed algorithm ACO-FA is tested on several benchmark functions. Numerical 

comparisons with different hybrid meta-heuristics demonstrate its effectiveness and efficiency. 
 

 Index Terms - Ant colony optimization; Firefly algorithm; constrained optimization  
 

I.  INTRODUCTION 

 Traditional optimization methods can be classified into two distinct groups; direct and gradient-based methods. In direct 

search methods, only objective function and constraint value are used to guide the search, whereas gradient-based methods use 

the first and/or second-order derivatives of the objective function and/or constraints to guide the search process. Since derivative 

information is not used, the direct search methods are usually slow, requiring many function evaluations for convergence. For the 

same reason, they can be applied to many problems without a major change of the algorithm. On the other hand, gradient based 

methods quickly converge to an optimal solution, but are not efficient in non-differentiable or discontinuous problems. In 

addition, if there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the 

obtained optimal solution may not necessarily be the global optimum. Furthermore, the gradient search may become difficult and 

unstable when the objective function and constraints have multiple or sharp peaks. The computational drawbacks of existing 

numerical methods have forced researchers to rely on meta-heuristic algorithms based on simulations to solve engineering 

optimization problems. The class of meta-heuristic algorithms includes but is not restricted to- particle swarm optimization 

(PSO), evolutionary computation (EC) including genetic algorithms (GAS), simulated annealing (SA), tabu search (TS) and 

particle swarm (PS). For books and surveys on meta-heuristics see [1, 2,3].  

 Recently, a skilled combination of meta-heuristic with other optimization techniques, a so called hybrid meta-heuristic, can 

provide a more efficient behaviour and a higher flexibility when dealing with real-world and large scale problems. For the above 

reasons, hybrid meta-heuristics currently enjoy an increasing interest in the optimization community. However, the field of hybrid 

meta-heuristics is still in its early days. A substantial amount of further research is necessary in order to develop clearly structured 

hybrid meta-heuristics that can be generally used for optimization. 

 In this paper, we are interested in hybrid two different forms of hybrid algorithms (ACO-FA), specifically based on the ACO 

and FA for solving constrained engineering design problems. The proposed algorithm integrates the merits of both ACO and FA 

as follows: First, the proposed algorithm is parallelized by ants and fireflies in the first stage to enhancement the search by using 

the characteristics of the search of both algorithms. Second, the diversity of the solutions, where, if any of the swarms are going to 

be in equilibrium, the evolution process will be stagnated as time goes on. Thus, ACO and/or FA do not possess the ability to 

improve upon the quality of the solutions as the number of generations is increased. Finally, the proposed algorithm ACO-FA is 

tested on several benchmark functions. The comparisons demonstrated the effectiveness and efficiency of the proposed algorithm 

in terms of the quality of the resulting solutions. 

 The organization of the remaining paper is as follows. In Section II we describe some preliminaries on optimization 

problems. In Sections III, ACO and FA are briefly introduced. In Section IV, hybridizing ant colony optimization with firefly 

algorithm, named ACO-FA, is proposed and explained in detail. Experiments and   discussions are presented in Section V. 

Finally, we conclude the paper in Section VI. 
 

 

 

 

 

II. PRELIMINARIES  
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 Constrained optimization problems (COPs) are always inevitable in many science and engineering disciplines. The COPs can 

be formulated as in (1):  
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where )(xF  is the objective function defined on the search space ,S nS R , x  is called a decision variable and )(),( xx jk hg are 

defined the inequality and equality constraints, respectively. The set S and  S   define the feasible and infeasible 

search spaces, respectively. Usually, the search space S  is defined as an n -dimensional rectangle in 
n

R  as in (2) (domains of 

variables defined by their lower and upper bounds):  
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Any point x  is called a feasible solution, otherwise, x is an infeasible solution. 
 

III. THE BASICS OF ACO AND FA ALGORITHMS 

A. The Basics of  ACO 

Ant Colony Optimization (ACO) algorithms were introduced by Marco Dorigo [4] in the early 1990s. The ACO is a meta-

heuristic approach to solve problems that has been inspired by the ants’ social behaviors in finding shortest paths. Real ants 

walk randomly until they find food and return to their nest while depositing pheromone on the ground in order to mark their 

preferred path to attract other ants to follow [5]. If other ants travel along the path and find food, they will deposit more 

pheromone as to reinforce the path for more ants to follow [5]. Currently, the ACO has also been applied to continuous problems, 

where interesting results are discovered [6,7,8,9]. 
The whole ACO algorithm can be described by taking the travelling salesman problem (TSP) as an example. The TSP is to 

find a minimal length with each city visited once. We are given a set of N  cities, represented by nodes, and a set E  of edges 

with fully connecting nodes N . Let ijd  be the length of the edge
 

Eeij  , which is the distance between cities i  and j . At each 

iteration t , an ant in city i  has to choose the next city j  to head for from among those cities that it has not yet visited. The 

probability of picking a certain city j  is calculated using the distance between cities i and j , and the amount of pheromone on the 

edge between these two cities. Based on this TSP, initially, all the agents (ants) are randomly dispersed across the cities space. 

The two phases of the ACO algorithm are as follows. 

 1) Solution construction rule: the probability with which an ant a  chooses to go from city i  to city j is described as in (3): 
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where )(tij  is the amount of pheromone trails on edge Eeij     ً at iteration t , ijij d1  is the heuristic value of moving from 

city i  to city j , a
iN  is the set of neighbours of city i  for the tha  ant, and parameters   and  controls the relative weight of 

pheromone trail and heuristic value, respectively. 

 Thus an ant a  at city i  chooses the city j  to go to with a probability a
ijp  , which is a function of the town distance and of the 

amount of pheromone trail present on the connecting edge. 

 2) Depositing the pheromone rule: each ant constructs a tour by repeatedly applying the solution construction rule, and the 

ant also updates the amount of pheromone on the visited edges by applying the global updating rule [4] using (4): 
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where 
aL  is the length of tha ant journey, and C  is a constant parameter, )1,0(  is the rate of the pheromone evaporation, m  

is the number of ants, T is the total is the number of iterations and a
ij is the amount of pheromone deposited by tha ant. The 

pseudo code of the ACO can be summarized in the Fig. 1 

B. The Basics of  FA  

 FA [10] is one of the most recent meta-heuristic techniques for approximate optimization. FA is inspired by the firefly’s 

biochemical and social aspects and based upon the following three assumptions: (a) Each firefly attracts all the other fireflies with 

weaker flashes; (b) Attractiveness is proportional to their brightness which is reverse proportional to their distances; (c) No 

fireflies can attract the brightest firefly, and it moves randomly. 

 FA adopts some social terminologies, including: the variation of light intensity and formulation of attractiveness. Yang [10] 

simplified that the attractiveness of a firefly is determined by its brightness which in turn is associated with the objective function. 

In general, the attractiveness is proportional to their brightness. Furthermore, every member of the firefly swarm is characterized 

by its brightness that can be directly expressed as an inverse of an objective function for a minimization problem. Based on this 

objective function, initially, all the agents (fireflies) are randomly dispersed across the search space. The two stages of the firefly 

algorithm are as follows. 
 1) Variation of light intensity: Light intensity is related to objective values [10]. So for a maximization/minimization problem 

a firefly with high/low intensity will attract another firefly with high/low intensity. Assume that there exists a swarm of m  agents 

(fireflies) and ix represents a solution for a firefly i  , whereas )( if x  denotes its fitness value. Here the brightness I  of a firefly is 

selected to reflect its current position x  of its fitness value )(xf  [10], given as in (5): 
 

)5(,...,2,1,)()( mifI ii  xx   

2) Movement toward attractive firefly: The firefly has an attractiveness which is proportional to the light intensity seen by 

adjacent fireflies. Each firefly has its distinctive attractiveness f  which implies how strong it attracts other members of the 

swarm. However, the attractiveness f  is relative; it will vary with the distance ijr   between two fireflies i  and j  at locations ix  

and jx  respectively, is given as in (6): 

)6(jiijr xx   

 The attractiveness function )(rf  of the firefly is determined by using (7): 
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where 0f  is the attractiveness at 0r  and   is the light absorption coefficient. 

 The movement of a firefly i  at location ix  attracted to another more attractive (brighter) firefly j  at location jx  is 

determined as in (8): 
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where the second term is due to the attraction while the third term is randomization with f  being the randomization parameter 

and rand  is a random number generator uniformly distributed in ]1,0[ . The pseudo code of the FA can be summarized in the Fig. 

2. 

Set parameters. 

Initialize the pheromone on each edge. 

while termination conditions not met do 

    for  each ant do 

         Select the start city randomly.  

        Construct the solution by using (3). 

   end for 

   Determine the length of the  tour  

   Update and deposit pheromone on trails by using (4). 

end while 
Fig. 1 The pseudo code of the ACO 
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Initialize a population of fireflies within the search space. 

 while the condition not terminated do 

      Evaluate the fitness of the population )(xF .  

      Calculate light intensity )(xI as in (5). 

      Rank the light intensity. 

      for each firefly do  

Move the less bright firefly towards the brighter            by using (11). 

   Vary attractiveness with distance r  via 
2re   

end do 

end while 
Fig. 2 The pseudo code of the FA 

 

IV. THE PROPOSED ALGORITHM  

In this section, ACO-FA is introduced in detail. In order to handle the constraints, we minimize the original objective 

function as well as the degree of constraint violation. Two kinds of populations with the same size m  are used. In the initial step 

of the algorithm, populations (denoted by pop1 for ACO and pop2 for FA) are created randomly. At each generation, ACO and 

FA generate solutions in parallel and the resulting solutions by using two populations are sorted according to the degree of 

constraint violation in a descending order. Therefore, only  the first half of each population are compared based on feasibility rule 

that determined the reflected back solution into the two populations  but the second half of two populations are also interrelated. 

The main steps of the ACO-FA are summarized as follows: 

Step 1: for this step, pop1 is created randomly in the search     space. For every solution of the ant, the pheromone weighting 

)0(i  is attached to it. 

Step 2:  this step is devoted to evaluate the solution of pop1. The most popular technique to handle constraints is to use penalty 

functions that penalize infeasible solutions by reducing their fitness values in proportion to their degrees of constraint violation 

[11]. Only inequality constraints will be considered in this work, because equality constraints can be transformed into 

inequalities using: 0)( xkh and   is a small positive number. We selected 810 . In particular, the thi  ant in ACO is 

evaluated by using (9): 
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where )( iF x  is the objective value of the thi ant ,  ,  is 1 or 2 and 0 . By driving   to zero, we penalize the constraint 

violations with increasing severity. After evaluating each ant according to )(xFt , the pheromone is updated by using (4) by 

replacing a
ij by 

a
i (pheromone associated with solution) and also replacing 

aL  by )( itF x .On the other hand ij  is replaced by 

)(1 ii F x  

Step 3: Once the pheromone is updated after an iteration, the next iteration starts by changing the ants’ solutions in a manner 

that respects pheromone concentration .For each ant and for each dimension construct a new candidate groups to replace the old 

one by using (3) and replacing ij by i  . 
 

Step 4: Initialize pop2 of fireflies in the search space. And calculate the light intensity for each firefly as in (5). 

Step 5: The movement of a firefly is formulated as mentioned earlier in (8). 
 

Step 6:  After ACO and FA generate solutions in parallel, the resulting solutions by two the populations sorted according to the 

degree of constraint violation in a descending order then the feasibility rule is applied to the first half of the two populations by 

comparing pair-wise solutions. The pair-wise solutions are presented by associating one from ACO onto one from FA. The 

resulting feasible solution is taken for updating the two populations and the infeasible solution is considered by taking the 

minimum violation of constraints. The idea of feasibility rule is described in Fig. 3. 

 After applying the feasibility rule the solutions obtained replace the first half of the two populations and the steps from 2 to 7 

are repeated until the maximum iteration is reached or the best solution is obtained. 
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V. EXPERIMENTAL RESULTS 

In this section, we will carry out numerical simulation based on some well-known constrained optimization problems to 

investigate the performances of the proposed ACO-FA. The selected problems have been well studied before as benchmarks by 

various approaches. We will also compare our results with some good results previously reported by the literature to demonstrate 

the efficiency and robustness of the proposed ACO-FA approach. The algorithm is coded in MATLAB 7 and is run on a Pentium 

IV 2.4 GHz processor with 1.0 GB RAM.  
 

A.   Parameters setting  

The proposed algorithm contains number of parameters. These parameters affect the performance of the proposed algorithm. 

Extensive experimental tests were conducted to see the effect of different values on the performance of the proposed algorithm. 

Based upon these observations, the following parameters have been set as in Table I. 

 

Input: 211 poppop  ; 222 poppop  . 

Set 0i  

21 poppopi  xx  

If xxi ,then )(min iORF xxx   

Else if xxi ,then )(min iOR xxx    

Else if  xxi  then ixx   

End if  

1 ii  

output : x  

Fig.3 The pseudo code of feasibility rule 

B. Benchmark functions  

 There are many different test functions for COPs [3,12].To validate the proposed ACO-FA, we have selected a subset of 

these functions. To be more specific in this paper, we have tested the following five functions: 

 The first test  function can be stated as: 
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 The second test function can be stated as: 
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TABLE I 
PARAMETERS SETTING  

100 The size of ant colony  ( m ) 

20 Initial pheromone ) 0 ( 

0.9 Evaporation rate (  ) 

400 The constant of ACO ( C ) 

1 Pheromone weight ( ) 

1 Heuristic value (  ) 

0 Initial light intensity ( 0I  (  

1 Initial attractiveness ( 0f ) 

1 The light absorption coefficient  (  ) 

0.9 The randomness reduction constant  ( ) 

0.2 Randomization parameter ( f ) 

 The third test function can be stated as: 
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 The fourth test function can be stated as: 
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The obtained results by the proposed ACO-FA for test functions are presented in Table II compared with the previous best 

solutions reported by the other algorithms.  The obtained results demonstrate the effectiveness and efficiency of the proposed 

ACO-FA for solving constrained optimization problems and superiority of the solutions for all test functions. 

 

B)  Optimization problems 

 Design optimization, especially design of electrical devices, has many applications in engineering and industry. Thus, we 

have chosen the linear synchronous motor (LSM) and air-cored solenoid as constrained engineering design problems [13,14].  

  

B.1)  Design of  LSM 

 The linear synchronous motor (LSM) operates on the same working principle as that of a permanent magnet rotary D.C. 

motor [13]. As in a rotary motor there are two parts in a LSM, one is the set of permanent magnets and the other is the armature 
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that has conductors carrying current. The permanent magnets produce a magnetic flux perpendicular to the direction of motion. 

The flow of current is in the direction perpendicular to both the direction of the motion and the direction of the magnetic flux. 

 To validate the proposed algorithm, it is employed to optimize the geometrical design of the linear electric actuator problem 

as is shown in Fig. 4. The objective function is to maximum force subject to some of constraints on heat, radius, saturation, 

demagnetization and maximum force constraint. There are four design variables: the current in each slot,
 1x  ,the dimensions of 

the slot, 2x  and 3x  , the height of the magnet, 4x . The mathematical formulation of the objective function is described as 

follows using (15): 

 
 

TABLE II 

THE OBTAINED RESULTS 

Test function 
1F  2F  3F  

4F
 

Optimal solution 680.6300573 7049.3307 24.3062091 - 

ACO-FA 680.63755 7053.77 24.3367 -30665.533 

Michalewicz [3] 680.642 7377.976 24.690 - 

Lee and Geem [12] 680.6413574 7057.274414 24.3667946 -30665.500 

 

 
Fig. 4 Cross-section of approximately a one pole pitch long section of linear synchronous motor 
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The objective function value obtained by our method is N 162364 F and the objective function value obtained by 

Deshpande is N 161924 F [13]. Therefore the ACO-FA result is superior to those obtained using the Deshpande. Also the 

decision variables found by the ACO-FA is ) mm .1 26 mm, 8 32.  mm, 1.1 ,368.4769A (x  

 

B.2)  Design of an air-cored solenoid 

The optimization problem of a coreless solenoid with rectangular cross section 21 xx   and a mean radius 3x  (see Fig. 5) is 

tackled from [14]. This problem can then be formally defined in the following two terms: maximize the inductance 

),,( 321 xxxL and satisfy some of constraints as in (16) for the given length mk 101  and 26
2 10 mk  of the current carrying 

wire. In order to simplify the analysis, two variables, 1x and 2x  , are considered. Correspondingly, the optimization problem is 

simplified as: 
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Fig.5. Cross section of the solenoid and design variables 
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The obtained solution by our approach is demonstrated in Fig. 6, where the objective is increase with the increasing the 

number of iterations (i.e., ,0016.0,0526.258 15  xHF  3.02 x ).  

In this subsection, a comparative study has been carried out to assess the proposed approach concerning quality of the 

solution. On the first hand, evolutionary techniques suffer from the quality of solution. Therefore the proposed algorithm has been 

used to increase the solution quality by combining the two merits of two meta-heuristic algorithms. On the other hand, unlike 

classical techniques our approach search from a population of points, not single point. Therefore the proposed algorithm can 

provide a globally optimal solution among this population. In addition, our approach uses only the objective function information, 

not derivatives or other auxiliary knowledge. Therefore it can deal with the non-smooth, non-continuous and non-differentiable 

functions which are actually existed in practical optimization problems. Another advantage is that the simulation results prove 

superiority of the proposed approach to those reported in the literature, where it is completely better than the other approaches. 

So, the ACO-FA approach is quite competitive when compared with the other existing methods. Finally, the reality of using the 

proposed approach to handle complex problems of realistic dimensions has been approved due to procedure simplicity. 
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Fig.6. Maximum inductance against the iteration after 50 iterations (left) and after 100 iterations (right) 
 

VI. CONCLUSIONS 

This paper presents a hybrid approach combining two heuristic optimization techniques, ACO and FA. Our approach 

integrates the merits of both ACO and FA to solve COPs where, the position of ants is updated using the local search scheme. 

Therefore, ACO explore and exploit the spare solutions in the search space. Moreover, the fireflies are used in parallel to search 

good decision solutions, where the evolutions of these solutions are performed by using feasibility rule that maintain the solutions 
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with lower degrees of constraint violations. Therefore, the proposed algorithm speeds up the convergence and improves the 

algorithm's performance. The proposed algorithm ACO-FA is tested on several benchmark problems from the usual literature and 

two engineering optimization problems. From the comparative study, ACO-FA has shown its potential to handle various COPs, 

and its performance is much better than other state-of-the-art.  

The future work will be focused on two directions: (i) the application of ACO-FA to real COPs from industry; and (ii) the 

extension of the method to solve the multi-objective problems. 
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