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Abstract This work is concerned with peristaltic flow as a result of the influence of ultrasonic 

radiation on the flow of a liquid through the gap between two coaxial tubes (annulus) which 

deforms the wall of the outer tube in the shape of travelling transversal waves. The problem 

studies the effect of slip velocity and viscoelasticity on the dynamics of a compressible and 

electrically conducting Jeffrey fluid through a porous medium in the presence of a constant 

magnetic field. Navier-Stokes equations for the annulus are solved by means of a perturbation 

analysis, in which the ratio of the wave amplitude to the outer tube radius is a small parameter. In 

the second order approximation, the net flow induced by the travelling wave is calculated for 

various values of Reynolds number, relaxation time, retardation time, magnetic parameter, slip 

parameter, permeability, and annulus radius ratio. The calculations disclose that the 

compressibility, the radius ratio, and the non-Newtonian effects have a strong influence on the net 

flow rate induced. This problem has numerous applications in various branches of science, 

including stimulation of fluid flow in annuli under the effect of elastic waves, the production 

process of oil, and studies of blood flow dynamics in living creatures (catheter in an artery). The 

present study investigates novelties brought about into the classic peristaltic mechanism by 

inclusion of the annulus radius ratio and the non-Newtonian effects that were found to lessen the 

oscillatory behavior of the net flow rate. Several results of other models can be deduced as the 

limiting cases of our situation. Finally, variations of the emerging parameters embedded in the 

flow system are discussed numerically and graphically. 
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                Compressible flow 

 

1. Introduction  

It is accepted now that the majority of biological and industrial fluids are non-Newtonian 

because it is known that non-Newtonian effects produce unexpected changes in fluid 

behavior through viscoelastic regimes. Unlike the Newtonian fluids, the non-Newtonian 

fluids cannot be described by a single constitutive relationship between stress and strain 

rates. Such constitutive equations give rise to complicated mathematical problems and 

thus, the mathematicians, modelers, physicists, and computer scientists encounter wide 

variety of challenges in constructing analytical and numerical solutions.  Ali et al. [2] 

have studied the peristaltic flow of a Maxwell fluid in a channel with compliant walls. 

Elkoumy et al. [9] have studied peristaltic transport through porous medium of a Maxwell 

model in the presence of magnetic field and Hall effect. Hayat et al. [13] studied 

peristaltic flow of a Maxwell fluid in a porous medium in the presence of Hall effects. 

The models in which beside the time derivatives of the stress tensor also the derivative of 

the rate of strain tensor is included show relaxation as well as retardation behavior. An 

important example of this kind is the Jeffrey's version of the Oldroyd model [5, 17, 20, 

29, 32]. This fluid model includes elastic and memory effects exhibited by dilute polymer 

solutions and biological liquids. Industrial and biological flows in pipes are quite 
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common and have relevant applications. Biofluids, in general, are propelled in ducts by 

means of transverse progressive waves propagating along the walls of the ducts. This 

process is called peristalsis. The flow of urine through the ureter, the movement of chyme 

in the entire gastro-intestinal tract, and the transport of the food grains and liquids from 

the mouth through the oesophagus are very common examples of this mechanism in the 

physiological world. Biomechanical pump works in accordance with the same mechanism 

are man-made instruments to pump physiological fluids. Several investigations on 

peristaltic transport through circular cylindrical tubes have been carried out by different 

researchers for Newtonian fluids [3, 34, 36, 37, 41] as well as for non-Newtonian ones [6, 

31, 35]. 

     The compressible flow is a subset of fluid mechanics/hydraulics, and therefore the 

knowledge development followed the understanding of the incompressible flows. Most of 

the investigations show that the compressibility has an interesting effect on liquid flow. 

Aarts and Oams [1] studied the influence of ultrasonic radiation on the flow of a liquid 

through a porous medium in an axisymmetric cylindrical pore, taking the liquid 

compressible. Tsiklauri and Bresenev [39] developed the study of Aarts and Ooms by 

taking the non-Newtonian properties of the fluid into account. Hayat et al. [15] took into 

consideration the retardation time for a Jeffrey fluid that resulted in oscillation decay for 

the net flow rate. Eldesoky [7] studied the peristaltic transport for a Maxwell fluid in the 

presence of a slip condition, while Eldesoky and Mousa [8] studied the case of 

compressible fluid in a porous medium. Also, Mekheimer and Abdel-Wahab [24] studied 

the same compressibility effects for a Maxwell fluid but in an annulus. 

     In the literature, much attention has been given to the flow problems with no-slip 

condition. This is not realistic because many polymeric fluids slip or stick-slip on solid 

boundaries, and hence the no-slip condition is no longer valid. The inadequacy of the no-

slip condition is quite evident in polymer melts which often exhibit microscopic wall slip. 

The fluids that exhibit boundary slip have important technological applications such as in 

polishing valves of artificial heart and internal cavities. Also, there is a disagreement in 

the dynamic response between experimental values and the theoretical prediction. One of 

the possible causes of this disagreement in the response amplitude is because the fluid 

was locally under higher shear rates than its Maxwellian limit. If the shear stress at the 

wall is greater than the critical shear stress, the flow slips at the wall and conversely if the 

shear stress is not large enough, then the classical Poisseuille solution with no-slip is 

observed. So, the slip seems to be critical in determining the characteristics of the flow 

[7]. The effects of slip boundary conditions on the compressible flow were discussed in 

details by El-Shehawy et al. [12]. 

     In mathematics, an annulus (the Latin word for "little ring") is a ring-shaped geometric 

figure, or it is the area between two concentric circles. Studying the flow between coaxial 

tubes where the outer tube has a sinusoidal wave travelling down its wall and the inner 

one is rigid (annulus) has taken a great portion of scientific research [21]. The peristaltic 

flow through a porous medium in an annulus was studied in [22]. The couple stress fluid 

was studied in [23] with application in the endoscope. Catheter applications were studied 

in [26] for an incompressible Newtonian fluid. The Casson fluid was studied in an 

annulus [28], and [27] took it as an application to catheterized artery. Worthy to say that 

Catheterization refers to a procedure in which long, thin, flexible plastic tube (catheter) is 

inserted into an artery. Catheter procedures can both diagnose and treat heart and blood 

vessels condition. The insertion in an artery will form an annular region between the 

walls of the catheter and the artery and this alters the flow field [25]. 

     Flow through a porous medium has been of considerable interest in recent years 

particularly among geophysical fluid dynamicists. Some progress has been made in the 

presence of porous media. For recent contributions, we refer to some interesting studies in 

the references [9, 11, 18, 30, 33]. The most general study of stimulation of fluid flow in 

porous media via peristaltic mechanism is presented in Ref. [1], which has been used as a 

starting point in order to include non-Newtonian effects into the peristaltic model. 

     The magnetohydrodynamic (MHD) flow of a fluid in a channel with elastic, 

rhythmically contracting walls (peristaltic flow) is of interest in connection with certain 



 

 

problems of the movement of conductive physiological fluids, e.g., blood. Peristaltic 

motion of a generalized Newtonian fluid under the effect of a transverse magnetic field is 

studied by El-Shehawey et al. [10]. Elkoumy et al. [9] studied the peristaltic transport of 

a Maxwell fluid through a porous medium. Controlling positions of catheters using 

magnetic fields has been investigated by [40], where a computerized closed-loop control 

system for navigating catheters and other interventional devices containing a permanent 

magnet near its distal tip have been used, and thus, an external magnetostatic field is 

applied to the vicinity of the tissue where the medical procedure is being performed in 

order to orient the catheter tip. 

     To the best of the author’s knowledge, no attempt has yet been made to discuss the 

peristalsis of non-Newtonian Jeffrey fluid through a porous medium taking the 

compressibility of the liquid and the magnetic field into account. Therefore, the main 

purpose of this paper is devoted to observe the effects of the insertion of a catheter in an 

artery. The mathematical model considers the flow of a compressible viscous Jeffrey fluid 

between the annular space (gap) of two concentric tubes; the outer tube (circular cylinder) 

corresponds to the artery and the inner one (solid circular cylinder) to the catheter. The 

flow is induced by sinusoidal peristaltic waves along the length of the outer tube wall 

(artery wall). In this article, we follow Yin and Fung [13] by taking the compressibility of 

the liquid into account and the flow between two coaxial tubes. We extend the analysis of 

Mekheimer and Abdel-Wahab [24] to study the magnetohydrodynamic peristaltic motion 

of a viscous compressible Jeffrey fluid through a flexible porous annulus with boundary 

slip. We further extend the analysis of Tsiklauri and Bresenev [39] by taking the flow into 

an annulus. 

     We formulate the problem in Section 2. In Section 3, we solve the problem. The 

results and discussion as well as the conclusions are presented in Sections 4 and 5, 

respectively. We have found that oscillatory decay strongly depends on the annulus radius 

ratio as on the retardation time.   

                                                                                                                                      
2  Formulation of the problem 

We consider a viscous, compressible, and electrically conducting Jeffrey fluid in between 

flexible axisymmetric coaxial tubes. The inner tube is kept rigid and the flow in the 

porous space is due to sinusoidal wave travelling down the walls of the outer tube. We 

introduce the cylindrical coordinates (r,  , z) with the z-axis along the centerline of the 

inner tube. The fluid is subjected to a constant transverse magnetic field Bo where the 

induced magnetic field is assumed negligible. The geometry of the wall surface is 

described in Fig. 6.1. The equations for the radii are 

1 1 2 2

2R =  , R (z,t)= bcos ( c ).a a z t


                        (1) 

 where 
1

a , 
2

a  are the radii of the inner and outer tubes respectively, b is the amplitude of 

the wave,   is the wavelength and c is the propagation velocity along z-direction. 

 

 
Fig. 1 Geometry of the problem 
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     The flow is governed by the mass and momentum laws given by 

.( ) 0,
t





 


V                                                      (2) 

,( . ) div
t

 
    

  
V V T R J B                                   (3) 

where   and t are the density of fluid and the time. Also, V, J, R, and B are the velocity 

vector, electric current density, Darcy's resistance in the porous medium, and magnetic 

induction vector, respectively. The constitutive equations for a Jeffrey fluid are [15] 

,p  T I S                                                            (4) 

1 2
(1 ) (1 )

t t
 

 
 

 
S γ ,                                           (5) 

† 2

3
,( ) .    V V Vγ                                              (6) 

where T, S, and I are the Cauchy stress tensor, extra stress tensor, and the identity tensor, 

respectively. And p, 
1

 ,
2

 , † ,   are the pressure, the relaxation time, the retardation 

time, the transpose, and the dynamic viscosity, respectively. 

     On the basis of Jeffrey fluid model [38], the following expression of Darcy's resistance 

has been suggested: 

1 2
K

(1 ) (1 )
t t


 


 

 
 

 
R V ,                                     (7) 

where   (0 <   < 1) and K ( > 0) are, respectively, the (constant) porosity and 

permeability of the porous medium. The conducting fluid is permeated by an imposed 

uniform magnetic field B0 which acts in the transverse direction. For low magnetic 

Reynolds number, the induced magnetic field can be ignored, the magnetic body force 

J B  becomes ( )  V B B  when imposed, induced electric fields are negligible, and 

only the magnetic field B contributes to the current ( ) J V B . Here,   is the 

electrical conductivity of the fluid. 

     The characteristic response of the liquid to a compression is described by the 

constitutive equation 

1
c

t
k








 ,                                                             (8) 

where ck is the compressibility of the liquid. The solution to (8) for the density as a 

function of the pressure is given by 

exp( ( ))c ck p p   ,                                            (9) 

where   is the (constant) density at the reference pressure cp . With the flow 

parameters independent of the azimuthal coordinate  , the velocity takes the form 

,u( , , ) w( , , )r zr z t r z te e V                                   (10) 

where re  and ze  are unit vectors in the positive  r and z direction, respectively. 

     In cylindrical coordinates the continuity equation (2) reads 

u u w
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r r zt r z

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
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 

 
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Upon making use of Eqs. (5), (6), (7) into Eq. (3), the equation of momentum becomes 
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At the boundary 2R  the fluid is subjected to the motion of the outer wall with slip effect. 

For the slip flow the fluid still obeys Navier-Stokes equation, but the no-slip condition is 

replaced by the slip equation t
tu

u A
n




 where tu  is the tangential velocity, n is the 

normal to the surface, and A is the coefficient close to mean free path of the molecules of 

the fluid. This condition has been attributed to Beavers and Joseph [4] for a porous 

boundary, but it was Navier who proposed it a century ago. Although Navier condition 

looked simple, analytically it is more difficult than the no-slip condition. The boundary 

conditions at the inner and outer walls thus requires 

1
0,u(R , , )z t                

1
0.w(R , , )z t                               (13) 
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Finally, the flow rate Q through the tube is given by 

2

1

R

R

2 wQ ( , , ) .r z t r dr                                         (15) 

     The equations are made dimensionless by scaling length by 
2

a  and time by 
2

/ ca . 

Furthermore, we introduce the dimensionless variables 
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and the dimensionless parameters 
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which represent the amplitude ratio, wave number, Reynolds number, slip parameter, 

magnetic parameter, radius ratio, and the compressibility parameter, respectively. We 

disclose that although the compressibility ck  is small, the dimensionless parameter   

has a magnitude of order 1 for the flows considered. In terms of these variables, equations 

(9) and (12) [if dropping the tilde signs] reduce to 

 exp ( )cp p   ,                                              (18) 
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while the boundary conditions (13) for u at r = 1R  remain the same after scaling, where 

1R  and 2R in their dimensionless form read 

1R  ,                 2 1 ( , )R z t  . 

with ( , ) cos ( )z t z t    . Thus, the boundary conditions in their dimensionless 

form read 
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From Eq. (15), the dimensionless flow rate will then be 
1

2 wQ ( , , ) .r z t r dr


                                               (23) 

     We note with interest that if M = 0, kn = 0, K  , and 
2

0  , Eqs. (19) to (22) 

reduce to that of non-slip flow [24], and if M = 0,, kn = 0, K  , and   = 0, we recover 

the governing equations of [15]. 

 

3  Method of solution 

To illustrate the nature of solution we shall consider the important case of no flow in the 

absence of the peristaltic wave. As a consequence, the pressure p is equal to the reference 

po and we assume the solutions for the pressure, velocity and density in the form 
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Substituting the expansions (24) in (18 – 20) and equating the coefficients of equal 

powers of  on both sides of the equations, we obtain for  : 
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And for 
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 etc. We represent the boundary conditions (21) and (22) by a Taylor expansion around 
1r  , then by the aid of the expansions (24) we express the sines and cosines in 

exponential powers and equate equal powers of   in both sides of the equations. We 

obtain for  : 

1
0,u ( , ),z t                                   

1
0.w ( , , )z t              (27) 

 1

( ) ( )
1

2
,u ( , , ) i z t i z ti

z t e e    
    

1 1n .w (1, w (1,, ) k , )rz t z t  (28) 
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Finally, using the expansions (24) we represent the flow rate Q in Eq. (23) as 

2 3

1 2

1 1

2 w w( , , ) ( , , ) ( ) .Q r z t r dr r z t r dr O
 

   
 

  
 

           (31) 

     Examination of Eqs. (25) with (27, 28) shows that a solution can be chosen in the form 
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                         (32) 

And for equations (26) with (29, 30) shows that a solution can be chosen in the form 
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Here, the overbar denotes the complex conjugate. 

     Substituting (32) in (25) and (27, 28), we obtain the following set of equations: 
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                             n 1(1) (1)1 k ,W W                     (36) 

The set of equations for 
1

U , 
1

W , and 
1

P  is conjugate to (34) so that it need not be 

written out explicitly. First, the system of equation (34) is solved. Substitution of (34)
1
 in 

(34)
2,3

 yields 
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where the complex parameters   and   are given by 
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With W1 eliminated by means of (34)
1
, we rewrite (37)

 2
 as 
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Differentiating (39) with respect to r and using (37)
1
 to express the derivatives of 1P  in 

terms of 1U  and its derivatives, we are led to the following equation 
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which can be expressed as 
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where the complex parameters B and   are given by 
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By using (38) and (42)
1
, the expression in (42)

2
 for   can be written in terms of  , R, 

and   as 
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           (43) 

Notice that if M = 0, 
2

0  , and K  , then 
2

 of Mekheimer and Abdel-Wahab [24] 

is recovered. Also notice that    for 0   and M = 0, i.e. for incompressible liquids. 

The solution for 1U  with its boundary conditions is given by 

1 1 1 11 1 2 3 4( ) ( ) ( ) ( ) ( ),r I r I r K r K rU C C C C                (44) 

where I1 and K1 are the first-order modified Bessel functions of the first and second kind, 

respectively, and C1, C2, C3, and C4 are complex constants. Substitution of (44) into (37)
1
 

yields 

1 1
2 2 2 2

1 31 ( ) ( )( ) ( ) ,I r K rC CP                            (45) 

By using the properties 
01

( ) ( )I z I z  and 
01( ) ( )K z K z  , where I0 and K0 are the 

zero-order modified Bessel functions of the first and second kind, respectively, it is easily 

seen that 
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 

 
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where 5C  is a complex constant. Substitution of (44) and (46) in (34)
1
, and using the 

properties 
1 1 0( ) ( ) / ( )I z I z z I z    and 

1 1 0( ) ( ) / ( )K z K z z K z     we obtain   
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Finally, by putting (46) into (37)
2
 we deduce that 

5 0.C                                                           (48) 

By using the boundary conditions (35) and (36) we get the constants C1, C2, C3, and C4 

with the help of Mathematica 5.0 program. Thus, the first-order approximation of the 

velocity and pressure is described by the set of equations (44), (46) and (47). It should be 

pointed out that the expressions for P1(r) and V1(r) in [24] are incorrect. For the correct 

expressions, the above properties of the second-kind modified Bessel should be used, and 

which results in a negative sign multiplied by each of C3 and C4 in Eqs. (3.22,3.23) of 

[24]. 

     To solve the system of the second order of  , we use Eq. (33) into Eqs. (26) and (29, 

30), we then obtain the following set of equations: 
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      It will be seen that, as far as the net flow is considered, only the functions U20, W20, 
P20, and D20 participate in the solution, as long as terms up to O( 2 ) are retained. Thus, 
the functions U2, W2, P2, and D2 do not contribute to the net flow, and therefore, we shall 
not write down the equations that these functions satisfy, nor solve them. It should be 
noted that Eqs (3.25, 3.26) in [24] and Eqs. (3.34, 3.35) in [8] are incorrect. In fact, for 
the correct expressions the term (1

m
i t ) should be 1. We continue with the solutions 

for P20, W20, and U20. 
We rewrite the Eqs. (49)

2, 3, 4
 as 
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where the functions H, F, and G, corresponding to the right-hand sides of (6.49)
2, 3, 4

 are 

given by 
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with 
22

1 \ K M Rn   . It should be noted that the differential equation (3.35) of [8] 

resembles, after simplification, our eq. (52)
3
, but with M = 0, which is a modified Bessel 

differential equation and therefore should have the same solution given here and not the 

ones in [1, 15, 24, 39]. The same goes for eq. (15) in [7]. 

Here, Eqs. (34)
 3

 is used to eliminate P1 in function G. With H given by (53)
1
, it is easily 

seen that the solution for U20 is given by  
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U UP U P                       (54) 

where the complex constant D1 follows from the boundary condition (51). It should be 

noted that the factor (1
m

i t ) in Eq. (3.28)
2,3

 of [24] is incorrect and should be 1. 

     Elimination of U1' by means of (34)
1
 and by using (35) and (36) leads to 
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k
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 
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Notice that D1 = 0 at kn = 0 as in [1, 8, 15, 24, 39], in addition, 
20

( ) 0rU   for  = 0, i.e., 

for incompressible liquids. With G given by (53)
3
, it is easily seen that the solution for 

W20 is given by 

2 3 1 220( ) ( ) ( ) R ( ) ( ) R ( ) ( ) ,
r r

W r D I nr D nr I nr S y dy K nr S y dyK    
                 

(56) 

where  
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The constants of integration D2 and D3 are defined as             
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Then W20 can be simplified as  
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(57) 

    Finally, it is easily seen that the solution for P20 is given by 
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Here, the complex constant 204 ( ) ( )4 / 3RHD P     follows from a given pressure 

P20( ) on the inner tube of the annulus. Note that if 
2

0n   (that is; M = 0 and K  ), 

P20 will be the same as [24]. It should be noted that the factor (1
m

i t ) in Eqs. (3.32, 

3.33, 3.34), and in the constants D2, D3, and D4 of [24] is incorrect and should be 1. The 

same applies for Eq. (31), Eq. (3.40), and the solution of V20 of [7], [8], and [39], 

respectively. Further, the integral in Eq. (3.34) of [24] should be for F(y) rather than

( )y . 

Next, the net flow is considered which is the flow averaged over one period of time. We 

introduce the average of a variable g over one period T of time t as 

0
( , , ) ,

1 T
g r z t dt

T
g                                          (59) 

where 2 /T   . Consequently, the net axial velocity w   reads 

2

20
( ),rWw                                                     (60) 

By neglecting the terms of 
3( )O  , the net flow rate Q   is given by 

2

20

1
2 ( ) .r r drWQ


                                    (61) 

Thus, the travelling wave induces a net flow of the liquid, of which the (dimensionless) 

rate is expressed by (6.61). Hence, the net flow is an effect of order 
2 . It should be 

noted that the factor (1
m

i t ) in Eq. (4.1), Eq. (36), Eq. (4.1), and Eq. (16) of [24], [7], 

[8], and [39], respectively, is incorrect and should be 1. 

 

4 Numerical results and discussion 

Our primary interest in this model is to study the effects of the radius ratio  , non-

Newtonian parameters 
1

  and 
2

 , compressibility  , Reynolds number R, magnetic 

parameter M, permeability K, and slip parameter kn on the net flow rate < Q > though an 

annulus with peristaltic mechanism on the outer wall. 

     It is obvious that we have to choose (  < 1) because we have used the perturbation 

method with the amplitude ratio ( ) as a parameter. We consider the net flow rate given 

by (61). After integrating by parts, < Q > can be expressed as 
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where I3 and I4 are given by 
2 2

0 1 0 1
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with
2

0 1(2; ) \ 2
4

n
F defined as the regularized confluent hypergeometric function for 

fixed n. 

Here, the solution (57) for W20 (r) is used. For the flow in an annulus, we compare our 

results to that of Mekheimer and Abdel-Wahab [24] which present the flow rate of 

compressible Maxwell fluid in an annulus in the absence of M, kn, and K. We also 

compare our results to that of the authors in references [1, 7, 8, 15], which present the 

flow rate of a compressible non-Newtonian fluid in a tube, and we discuss the results 

numerically and graphically. Following [1] and [39], the value of   is chosen between 0 

and 1 in all the graphs. It is observed that viscoelastic behavior is more pronounced at 

great values of  . It is also seen that for large values of 
1

  the system exhibits 

viscoelastic behavior, while for small values of 
1

  the conventional viscous effects 

dominate. The situation is reversed in case of 
2

  for a fixed value of 
1

 . 

     Now, we start to explain the effect of radius ratio   on the flow rate for the annulus 

and the tube. In Figs. 2a and 2b, we investigate the dependence of the dimensionless flow 

rate < Q > on the compressibility parameter   to compare the behavior of Newtonian, 

Maxwell, and Jeffrey fluids for a fixed value of R. We compare the flow pattern for   = 

0.001 and   = 0.2 at   = 0.001, R = 5000,   = 0.001, M = 0.001, kn = 0.05, and K = 

0.1. For the curve 
1

  = 0 with 
2

  = 0 (Newtonian limiting) at   = 0.001, we notice a 

deviation in the flow rate going towards negative values, which means a backflow. The 

same curve attains positive values for   = 0.2. For the two curves 
1

  = 5000 with 
2

  = 

0 (non-Newtonian Maxwell fluid) and 
1

  = 5000 with 
2

  = 1000 (Jeffrey fluid), there is 

a noticeable change in the plot, where the flow rate values for the Maxwell fluid is 

smaller than that of Jeffrey's at   = 0.001. And, although the flow rate values for both 

curves increase with an increase in  , they coincide at a certain value of   at   = 0.2. 

The dependence of the flow rate on   indicates that < Q > increases with an increase in 

 , accordingly, the flow rate for an annulus is more than that of a tube as shown in Fig. 

2b. It is interesting to note that for   = 0, the results of the tube-like structure are 

recovered. Moreover, setting M = 0, kn = 0, K  , and 
2

0  , the results of the 

annulus in [24] are recovered.  

     For the flow in an annulus, we compare the behavior of the Newtonian, Maxwell, and 

Jeffrey fluids for different values of R. The values of R in Figs. 2a and 2c are 5000 and 

2000, respectively. Figure 2a shows that for small values of  , the net flow rate in case 

of Maxwell fluid is less than that of Jeffrey fluid. Moreover, the net flow rate attains a 



 

 

minimum value in case of Newtonian fluid when compared to Maxwell and Jeffrey 

fluids. The noticeable fact is that both Newtonian and Jeffrey fluids attain a minimum 

value and then increase as   increases, but this feature in absent in the Maxwell fluid. 

Figure 2c shows that the flow rate for the Newtonian fluid decays rapidly as compared to 

Maxwell and Jeffrey fluids, however, they all remain constant over a certain range of   

( 0.5  ). It is shown that the flow rate, for the three curves, has positive values over the 

whole range of  . It is interesting to note that for   < 0.15, the values of < Q > for the 

Jeffrey fluid are larger than that of Maxwell's. It is clear from Figs. 2a and 2c that for 

fixed values of 
1

  and 
2

  if Reynolds number is small enough, the curves of Maxwell 

and Jeffrey fluids coincide within a plotting accuracy but as Reynolds number increases 

the difference between the curves become more prominent. In other words, for fixed 

value of R, if 
1

  and 
2

  are small the difference between Maxwell and Jeffrey fluids is 

less prominent as shown in Fig. 2d. Note that, while much of hemodynamics in a healthy 

human body has low Reynolds number resulting in a laminar flow, relatively high 

Reynolds number flows are observed at some specific locations which can cause 

transition to turbulence, e.g. the Reynolds number in the human aorta [16, 19]. 

     In Fig. 3a, the dependence of < Q > on the compressibility parameter is displayed for 

various values of R. It is observed that R has an increasing effect on < Q >. In particular, 

for   = 0, < Q >  is weakly affected by R. For   > 0, however, < Q > strongly depends 

on R. We notice that at any value within 0 0.15   (approximately), the net flow rate 

decreases rapidly until a certain value of   where the flow becomes steady. Thus, the 

compressibility parameter   has a significant influence on the net flow rate, and the 

Reynolds number R plays a more significant role in the net flow of a compressible liquid 

than that of an incompressible one. It is interesting to note that in order to compare our 

results with the ones in [15] we set M = 0, kn = 0, K  , and   = 0 which corroborates 

the validity of our numerical codes. 

     Figure 3b represents the variation of < Q > with wave number   for various values of 

R. It is shown that < Q > decreases with an increase in R. We notice that for R = 1000 

and R = 10000, the flow rate changes in the sense that it attains lower values as   

increases, and specifically for R = 10000, the values of < Q > tend to slightly rise up 

again after reaching the minima of the curve. However, for R = 100, the curve tends to 

deviate slightly attaining also negative values and then no change is observed, i.e. it 

becomes constant. 

     In order to illustrate the dependence of < Q > on   for various values of the magnetic 

parameter M, we prepared Fig. 4a. It is noticed that < Q > increases with an increase in 

M. Furthermore, at   = 0, < Q > is weakly affected by M. For   > 0, < Q > attains a 

minimum for a certain value of   and then no change is observed. 

    Figure 4b elucidates the variations of < Q > with   for different values of M. It is 

noticed that < Q > is weakly affected by M at low values of   ( 0 0.002   

approximately). It is observed that for all the values of 0.002  , < Q > has negative 

values, i.e., we observe a backflow. We notice that for each curve < Q > attains a 

minimum value for a certain value of  , and this minimum decreases with an increase in 

M. In particular, for M = 0.002, < Q >  attains a minimum value of –2.36686
3

10


 . 

Furthermore, the minima of the curves for the flow rate are shifting towards larger   as 

the magnetic parameter increases. From the above discussion, we observe that < Q > 

increases with an increase in M. 

     Figure 5a depicts the variations of < Q > with   for various values of the 

permeability parameter K. It is shown that the permeability K has an increasing effect on 

< Q >, and this happens because the permeability parameter allows more fluid to pass 

through the pores. On the other hand, the flow rate decreases monotonically as the 

compressibility parameter increases. Moreover, at very low compressibility (   = 0), the 



 

 

net flow rate is weakly affected by K. It is also observed that for K = 0.5 and K  , 

< Q >  remains constant over a certain range of   and this range increases by increasing

 .  

     In Fig. 5b, the net flow rate is plotted versus   for various values of K. It is noticed 

that < Q > is weakly affected by K at low values of   ( 0 0.0015   approximately), 

while for all the values of 0.0015  , < Q > possesses negative values, i.e., we observe 

a backflow. It is shown that < Q > increases with an increase in K and this happens 

because the permeability parameter allows more fluid to pass through the pores. 

Furthermore, it is observed the flow rate decreases monotonically as the wave number 

increases. For the two curves corresponding to K = 0.5 and K  , it is noticed that 

both of them coincide within a plotting accuracy. It is interesting to note that in order to 

check the consistency of our results with the ones in [8], we set M = 0, n 0k  , 
2

  = 0, 

and   = 0 which corroborates the validity of our numerical codes. 

     Figure 6a shows the effects of Knudsen number kn on the net flow rate < Q > when 

plotted against  . It is clear that the flow rate changes in the sense that it decays rapidly 

as   increases until reaching the minima of each curve at a specific value of   (at 

0.25   for n 0k  , at   = 0.3 for n 0.05k   and n 0.1k  ), where the values of < Q > 

starts to increase. It is observed that at 0.07  , the net flow rate is weakly affected by 

kn since the values of < Q > lie within the range (1.13571 
6

10


 –2.27986
6

10


 ). It is 

shown that < Q > decreases with an increase in kn for 0 0.625  , and that each curve 

reaches a minimum value before it starts to increase towards the largest   within the 

indicated range. Moreover, we notice that < Q > has more magnitude for the slip fluid 

when compared with the nonslip fluid within the same range, and that for kn = 0.05 and 

kn = 0.1, the curves coincide within a plotting accuracy. For 0.625 1  , it is observed 

that the net flow rate increases with an increase in kn, and that < Q > has less magnitude 

for the slip fluid when compared with the nonslip fluid. We notice a deviation in the flow 

rate going towards negative values, which means a backflow.  

     In order to illustrate the dependence of the flow rate < Q > on the parameter   for 

different values of kn, we prepared Fig. 6b. It is shown that kn has decreasing effect on 

< Q >  within the indicated range of  . It is also shown that < Q > is weakly affected by 

kn within 0 0.002  .  It is noticed that < Q > goes to negative values, which indicates 

to a backflow. For kn = 0 and kn = 0.05, the flow rate decreases monotonically as   

increases unlike the curve of nk 0.01 ; here the flow rate values tend to reach its 

minimum at 0.008   where its value starts to increase again with an increase in  . It 

is noticed that the magnitude of < Q >  for the nonslip flows is less than that of slip flows 

for the range of   considered. Note that if we set M = 0, 
2

  = 0, and 0   in our 

numerical codes, the results of [7] are recovered. 

     In Figs. 7a and 7b, the dependence of < Q > on the compressibility parameter is 

displayed for various values of the retardation time 
2

  for both the annulus and the tube. 

It is noticed that < Q > decreases with an increase in 
2

  and that it is weakly affected by 

2
  for   = 0. For 

2
0  (Maxwell fluid) and 

2
  = 100 (Jeffrey fluid), it is shown that 

the flow rate coincides within a plotting accuracy and that it attains positive values. 

However, for 
2

 = 1000, the flow rate decays rapidly possessing negative values over a 

certain range of   ( 0.15 0.35  ) but increases again as   increases ( 0.35 1  ). 

It is interesting to note that for large values of 
2

 , Jeffrey fluid possesses the 

characteristics of Newtonian fluid [15], i.e., it decays rapidly as the compressibility 

parameter increases. The phenomenon brought by introducing the retardation time 



 

 

investigated. Further, the retardation time has an increasing effect on the flow rate in a 

tube as shown in Fig. 7b. 

     Figure 7c represents the net flow rate < Q > versus the wave number   for different 

values of 
2

  and two values of the radius ratio  , the curves are plotted for the interval 

of variation of   up to 0.01. It is clear that for   = 0 that the flow rate is weakly 

affected by  . Furthermore, for the deeply non-Newtonian regime (the solid curve), the 

flow exhibit viscoelastic behavior at   = 0.2 and a highly oscillatory pattern (appearance 

of numerous maxima in the behavior of the physical variable) appears for the values of  

  larger than 0.002. It is quite obvious that < Q > attains negative values over the 

indicated range of   (backflow) and increases with an increase in  . The negative flow 

rate is interpreted as follows: the flow occurs in the direction opposite to the direction of 

propagation of traveling wave on the annulus wall, and as the annulus radius ratio 

increases, less backflow occurs at certain values of  . However, the fluid flow by a 

peristaltic mechanism in the opposite direction should be attributed to a complicated, non-

linear form of the response of a Jeffrey fluid to the stress exerted by the wave.  We 

confirm our results by studying the effect of   on the flow rate < Q > for 
2

  = 1000. At 

  = 0.2 (the dashed curve), the flow rate values are larger than that of   = 0.001 (the 

dot-dashed curve). From the above discussion, we observe that there is a rapid decrease in 

the flow rate, and that it increases by increasing   (backflow decreases). It is interesting 

to note that < Q > is negative and has highly oscillatory behavior for Maxwell fluid, 

which is in agreement with the results of [39]. This proves that oscillation decay depends 

upon the retardation time occurring in the constitutive equation of the Jeffrey fluid unlike 

that of the Maxwell fluid model [15]. 

     In order to investigate novelties brought about by the introduction of radius ratio into 

the model, we plot Fig. 7d for a larger value of  . It is observed that as   increases, the 

viscoelastic behavior becomes more pronounced at small values of the wave number  . 

On the other hand, the behavior of Jeffrey fluid is less oscillatory when compared with 

the Maxwell fluid and vanishes for larger values of  . It is further observed that the net 

flow rate increases by increasing  . This provides a clear-cut indication to the fact that 

oscillation decay is highly dependent upon the radius ratio occurring in our Jeffrey 

model. Such kind of decay is not possible in the tube-like structure of [15], because we 

have included the non-Newtonian effects into the flow through an annulus with peristaltic 

mechanism on the outer wall by using a Jeffrey fluid model. Finally, we note that if M = 

0,   = 0, kn = 0, and K   the results of [15] are recovered.  
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Fig. 2 Plot showing the dimensionless flow rate < Q > versus   for: R 5000 , M = 0.001, kn = 0.05, 

K 0.1 ,   = 0.001,   = 0.001, and 0.001  . For Maxwell fluid 
1

5000   and for Jefrrey fluid

1
5000  , 

2
1000   (panel a); R 5000 , M = 0.001, kn = 0.05, K 0.1 ,   = 0.001, and 

0.001  . For Maxwell fluid 
1

5000   and for Jefrrey fluid
1

5000  , 
2

1000   (panel b); 

R 2000 , M = 0.001, kn = 0.05, K 0.1 ,   = 0.001,   = 0.001, and 0.001  . For Maxwell fluid 

1
5000   and for Jefrrey fluid

1
5000  , 

2
1000   (panel c); R 5000 , M = 0.001, kn = 0.05, 

K 0.1 ,   = 0.001,   = 0.001, and 0.001  . For Maxwell fluid 
1

1000   and for Jefrrey fluid

1
1000  , 

2
200   (panel d). 

 

 
Fig. 3 Plot showing the dimensionless flow rate < Q >: versus   for M = 0.002, kn = 0.01, K 0.5 , 

0.2  , 
1

1000  , 
2

800  ,   = 0.001, and 0.001   (panel a); versus   for M = 0.001, 

n 0.05k  , K 0.05 ,   = 0.001, 
1

10000  , 
2

2000  ,   = 0.6, and 0.001   (panel b). 

 

 
Fig. 4 Plot showing the dimensionless flow rate < Q >: versus   for R = 10000, kn = 0.1, K 0.5 , 

0.2  , 
1

1000  , 
2

1000  ,   = 0.001, and 0.001   (panel a); versus   for R = 10000, 

n 0.1k  , K 0.5 , 0.2  , 
1

1000  , 
2

800  ,   = 0.6, and 0.001   (panel b). 
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Fig. 5 Plot showing the dimensionless flow rate < Q >: versus   for R = 10000, M = 0.002, kn = 0.1, 

0.2  , 
1

1000  , 
2

200  ,   = 0.001, and 0.001   (panel a); versus   for R = 10000, 

M 0.004 , n 0.05k  , 0.2  , 
1

1000  , 
2

800  ,   = 0.6, and 0.001   (panel b). 

 

 

Fig. 6 Plot showing the dimensionless flow rate < Q >: versus   for R = 10000, M = 0.001, K 0.05 , 

0.001  , 
1

1000  , 
2

400  ,   = 0.001, and 0.001   (panel a); versus   for R = 10000, 

M 0.004 , K 0.05 , 0.001  , 
1

1000  , 
2

800  ,   = 0.6, and 0.001   (panel b). 

 

 

Fig. 7 Plot showing the dimensionless flow rate < Q >: versus   for R = 10000, M = 0.001, n 0.01k  , 

K 0.1 , 0.2  , 
1

1000  ,   = 0.001, and 0.001   (panel a);  versus   for R = 10000, M = 
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0.001, n 0.01k  , K 0.5 , 
1

1000  ,   = 0.001, and 0.001   (panel b); versus   for R = 10000, 

M 0.01 , n 0.01k  , K 0.1 , 0.2  , 
1

10000  ,   = 0.6, and 0.001   (panel c); versus   

for R = 10000, M 0.01 , n 0.01k  , K 0.1 , 0.4  , 
1

10000  ,   = 0.6, and 0.001   

(panel d). 

 

5 Conclusions 

     In this study, we observed the inclusion of a magnetic field, permeability, and slip 

boundary effects into the flow through an annulus with peristaltic mechanism on the outer 

wall by using a compressible Jeffrey fluid model. The problem is solved by means of a 

perturbation analysis. This considered problem is important from the rheological point of 

view and has applications in various branches of science including stimulation of fluid 

flow in an annulus under the effect of elastic waves. The main findings can be 

summarized as follows: 

 

1. The net flow increases with an increase in  , M, and K, while decreases with an 

increase in R, kn, and 2 . 

2. The backflow decreases with an increase in  , M, K, and 2 , while increases with 

an increase in kn. 

3. It is noticed that the backflow for Newtonian fluids is more than that of non-

Newtonian fluids. Also, the backflow of slip fluids is larger than that of nonslip ones. 

4. The net flow rate strongly depends on   which causes the viscoelastic behavior to 

become more pronounced as it increases. 

5. Oscillatory decay strongly depends on   as on 2 . 

6. At very low compressibility, the net flow is weakly affected by M, kn, K, R, and 2 . 

7. Setting M = 0, kn = 0, K  , and 2 0  , the results of Mekheimer and Abdel-

Wahab [24] in an annulus are recovered. 

8. The results of compressible Jeffrey fluid filling the non-porous medium in a tube of 

Hayat et al. [15] can be obtained by taking M = 0, kn = 0, K  , and   = 0 in our 

investigation. 

9. Our results agree with the results of Maxwell fluid of Eldesoky and Mousa [8] if we 

choose M = 0, n 0k  , 2  = 0, and   = 0 in our investigation. 

10. The results of Eldesoky [7] are recovered if we set M = 0, 2 0  , and 0   in our 

investigation. 

11. Setting M = 0, n 0k  , K  , 2 0  , and 0   in our investigation, the results 

of Tsiklauri and Beresnev [39] are recovered. 

12. Choosing M = 0, n 0k  , K  , 1 2 0   , and 0   implies to a well-agreed 

physical situation for Newtonian fluids as obtained by Aarts  and Ooms [1]. 
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