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Abstract  
 

 This paper presents two fuzzy goal programming (FGP) procedures for solving multi-level multi-

objective linear fractional programming (ML-MOLFP) problems.  

 

In the proposed procedures, the membership functions for the defined fuzzy goals of all objective 

functions at all levels as well as the membership functions for vectors of fuzzy goals of the decision 

variables, controlled by decision makers at the top levels, are developed in the model formulation of the 

problem. Then fuzzy goal programming approach is used to achieve highest degree of each of the 

membership goals by minimizing their deviational variables and thereby obtaining the most satisfactory 

solution for all decision makers. 

 

The first proposed FGP procedure makes an extension work of Pramanik and Roy [23] and of 

B.B. Pal et al. [17,20]. The second proposed procedure my be seem as lexicographic methods for solving 

multiobjective programming problems that follows Shih et al. concept [28] but by using the FGP approach. 

 

The method of variable change on the under- and over-deviational variables of the membership 

goals associated with the fuzzy goals of the model is introduced to solve the problem efficiently by using 

linear goal programming (LGP) methodology. Illustrative numerical example is given to demonstrate the 

algorithms.       
 

Keywords: Multi-Objective Linear Fractional Programming; Multi-Level Programming Problems; Goal 

Programming; Fuzzy Mathematical Programming; Fuzzy Goal Programming. 
 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
 

1 Introduction 
 

Multi-level mathematical programming (MLP) is defined as mathematical 

programming that solves decentralized planning problems with multiple decision makers 

(DMs) in a multi-level or hierarchical organization [28]. The basic concept of the MLP 

technique is that the first-level decision maker (FLDM) sets his/her goal and/or decision, 

then asks each subordinate levels of the organization for their optima which are 

calculated in isolation. The lower level DMs’ (LLDMs) decisions are then submitted and 

modified by the FLDM in consideration of the overall benefit for the organization. The 

process continues until a satisfactory solution is reached.  

 

Most of the developments in MLP problems focus on bi-level linear programming 

as a class of MLP [5, 9, 7, 24]. Bi-level non-linear programming was studied in [4,6]. In 

[26], an interactive algorithm for bi-level multi-objective programming was presented 

and explained using the concept of satisfactoriness. Bi-level multi-objective with multiple 

interconnected decision makers was discussed in [27]. Three-level programming (TLP) is 

another class of MLP problems in which there are three independent decision-makers 

(DMs) [14,19]. Each DM attempts to optimize its objective function and is affected by 
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the actions of the other DMs.  Several three-level programming problems along with their 

solution methods were studied and introduced, such as the hybrid extreme-point search 

algorithm [9,15], mixed-integer problem with complementary slackness [14], and the 

penalty function approach [6,14]. A bibliography of the related references on bi-level and 

multi-level programming in both linear and non-linear cases, which is updated 

biannually, can be found in [32]. The use of the fuzzy set theory [33] for decision 

problems with several conflicting objectives was first introduced by Zimmermann [34] 

Thereafter, various versions of fuzzy programming (FP) have been investigated and 

widely circulated in literature [14, 15, 16, 17,20,29] 

 

In a hierarchical decision making context, it has been realized that each DM 

should have a motivation to cooperate with other, and a minimum level of satisfaction of 

the DM at a lower-level must be considered for overall benefit of the organization. The 

use of the concept of membership function of fuzzy set theory to multi-level 

programming problems for satisfactory decisions was first introduced by Lai [13] in 

1996. Thereafter, Lai’s satisfactory solution concept was extended by Shih et al. [28] and 

a supervised search procedure with the use of max-min operator of Bellman and Zadeh 

[8] was proposed. Abo-Sinna [4,19] extended the fuzzy approach for multi-level 

programming problems of Shih et al. [28] for solving bi-level and three-level non-linear 

multi-objective programming problems. The basic concept of these fuzzy programming 

(FP) approaches is the same as implies that each lower levels decision makers optimizes 

his/her objective function, taking a goal or preference of the first level decision makers 

into consideration. In the decision process, considering the membership functions of the 

fuzzy goals for the decision variables of all the decision makers solves a FP problem with 

a constraint on an overall satisfactory degree of any upper levels. If the proposed solution 

is not satisfactory to any upper levels, the solution search is continued by redefining the 

elicited membership functions until a satisfactory solution is reached [17, 21]. 

 

The main difficulty arises with the FP approach of Shih et al. is that there is 

possibility of rejecting the solution again and again by the FLDM and re-evaluation of the 

problem is repeatedly needed to reach the satisfactory decision, where the objectives of 

the DMs are over conflicting. Even inconsistency between the fuzzy goals of the 

objectives and the decision variables may arise. This makes the solution process a lengthy 

one [17, 21]. The fuzzy goal programming (FGP) technique introduced by Mohamed [16] 

- for proper distribution of decision powers to the DMs to arrive at a satisficing decision 

for overall benefit of the organization - was developed to overcome the above undesirable 

situation. These advantages of FGP approach indicate the strength of the use of the FGP 

approach compared to other approaches. The FGP of Mohamed [16] was extended to 

solve multiobjective linear fractional programming problems in [20], bi-level 

programming problems in [17], bi-level quadratic programming problems in [21], and in 

[23] a fuzzy goal programming approach to multi-level programming problems, with a 

single objective function in each level, is extended. 
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In this article, the fuzzy goal programming (FGP) approach introduced by 

Mohamed [16] is extend to solve multi-level multi-objective linear fractional 

programming (ML-MOLFP) problems. Two FGP procedures are presented in this article 

to ML-MOLFP problem. To formulate any of the two proposed FGP models of the TL-

MOLFP problem, the fuzzy goals of the objectives are determined by determining 

individual optimal solutions. The fuzzy goals are then characterized by the associated 

membership functions which are transformed into fuzzy flexible membership goals by 

means of introducing over and under deviational variables and assigning highest 

membership value (unity) as aspiration level to each of them. To elicit the membership 

functions of the decision vectors controlled by any level DM, the optimal solution of the 

corresponding MOLFP problem is separately determined. A relaxation of the decisions 

are considered to avoid decision deadlock.  

 

The first proposed FGP procedure makes an extension work of B.B. Pal et al. 

[17,20] and of Pramanik and Roy [23]. B.B. Pal et al. deals in [17] with bi-level linear 

single objective programming problems, and deals with single level multiobjective linear 

fractional programming (MOLFP) problems in [20]. In [23], Pramanik and Roy propose a 

FGP procedure to multi-level programming problems, with a single linear objective in 

each level. The final fuzzy model of Pramanik and Roy groups the membership functions 

for the defined fuzzy goals of the objective functions at all levels as well as the 

membership functions of the fuzzy goals of the decision variables, which evaluated 

separately, for each level except the lower level of the multi-level problem. 

 

The second proposed procedure my be seem as lexicographic methods for solving 

multiobjective programming problems. Firstly, formulates the FGP model of the first 

level problem obtaining the satisfactory solution of FLDM problem. A relaxation of the 

FLDM decisions is considered to avoid decision deadlock.  This decisions of the FLDM 

are modeled by membership functions of fuzzy set theory and passed to the SLDM as 

additional constrains. Then, the SLDM formulates its FGP model that takes into 

consideration the membership goals of the objectives and decision variables of the 

FLDM. Thereafter, the attained solution is sent to the TLDM who seeks the solution in a 

similar manner. The process continuous until the lower level. This procedure may be 

considered as extension of the fuzzy mathematical programming algorithm of Shih et al. 

concept [28] that modified by Sinha in [29,30] following the FGP approach of Mohamed 

[16].   

 

The method of variable change on the under- and over-deviational variables of the 

membership goals associated with the fuzzy goals of the model is introduced to solve the 

problem efficiently by using linear goal programming (LGP) methodology.  

 

2 Problem Formulation  
   

Consider a P-level programming problem of minimization-type multi-objective 

functions at each level. Let DMi denote the decision maker at the i
th

 level, 



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

4 

 

i , 1,2,...,i px , in -dimensional decision variable, where n

1 2= ( , ,..., ) Rx x x xp , 
n

( , ,..., ) R
ii i 1 i 2 i n

ix x x x , i = 1,2,..., p , and 1 2 ...n n n n    p . The DMi has control 

over the decision variable in

i Rx , 1,2,...,i p . Furthermore, assume that: 

 
mnn n1 2F ( ) : R R ... R R ,i

i    x p i = 1,2,..., p.                         (1) 

 

are multi-objective functions of the DMi . Mathematically, the ML-MOLFP problem of 

minimization type may be formulated as follows [2,14,17,18,22,23,28]: 

 

[1
st
 Level] 

1
1 1

1 1 1 1 2 1 mMin ( ) Min ( ( ), ( ),..., ( ))
x x

F f f fx x x x
  

                                                
     

 

where x2 , x3 ,…, 
p

x solves 

[2
nd 

Level] 

2
2 2

2 2 1 2 2 2 mMin ( ) Min ( ( ), ( ),..., ( ))
x x

F f f fx x x x                                                         

. 

. 

. 

where 
p

x solves 

[p
th 

Level] 

 1  2  mMin ( ) Min ( ( ), ( ),..., ( ))
x x

F f f f
p

p p
p p pp

x x x x                                             (2) 

subject to 

 
n m

1 1 2 2= { R | A A A , 0 R }x + x +...+ x  , 







 
 

    
 
 
 

x x b x bG p p  (3)
 

and  ( ) ,
ij ij

ij

ij ij

f





c x +
x

d x +
1,2,..., 1,2,..., ii p j m ,   

 (4) 

 
where G is the multi-level convex constraints feasible choice set, m i , 0,1,2,...,i p ,  are 

the number of DMi 's  objective functions , m is the number of the constraints, iA  are 

coefficients matrices of size  im n , 0,1,2,...,i  p ,  
n, Rij ij c d ,  0ij ij   d x + x  G , 

and ij , ij  are constants.   

 

3 Fuzzy Goal Programming Formulation  
 

In ML-MOLFP problems, if an imprecise aspiration level is assigned to each of 

the objectives in each level of the ML-MOLFP, then these fuzzy objectives are termed as 
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fuzzy goals. They are characterized by their associated membership functions by defining 

the tolerance limits for achievement of their aspired levels. 

 

3.1 Construction of Membership Functions 
 

Since all the DMs are interested of minimizing their own objective functions over 

the same feasible region, defined by the system of constraints (3), the optimal solutions of 

all of them , that calculated  in isolation, can be taken as the aspiration levels of their 

associated fuzzy goals.  

 

Let i j i j j j min

1 2( , ,..., ) ; , 1,2,..., , 1,2,...,i i

p i j if i j m  x x x x p  be the optimal 

solutions of DMi objective functions,  respectively, when calculated in isolation. Let 
min

ij ijg f  be the aspiration level assigned to the ij
 th

 objective ( )ijf x  (the subscript ij 

means that 11,2,...,j m  when 1i   for the objective functions of DM1 problem, 

21,2,...,j m  when 2i   for objective functions of DM2 problem, and 1,2,...,j m p  

when i  p  for objective functions of DMi problem).  Also, let 1 2( , ,..., )i i i i* * * *

x x x xp ,  

1,2,..., 1i p  , the optimal solution of the i
th

-level MOLFP problems. Then, the fuzzy 

goals of the decision makers objective functions at each levels and the vector of fuzzy 

goals of the decision variables controlled by upper 1p  level decision makers are appear 

as: 
 

( )ij ijf g


x    , 1,2,..., , 1,2,..., ii j m p , and   

*

i i

i  


x x  , 1,2,..., 1i  p  

 

where “ 


” and  “ 


” indicates the fuzziness of the aspiration levels, and is to be 

understood as  “essentially less than” and  “essentially equal to”, respectively, [25,34].   

 

It may be noted that, the solutions i j i j j j

1 2( , ,..., ) , 1,2,..., ,i i

p i p x x x x  

1,2,..., ij m  are usually different because the objectives of all the DMs are conflicting 

in nature. Therefore, it can reasonably be assumed that the values 
min

1 2( , ,..., ) 1,2,..., ,m m m

m ijf f  l l l

l
lx x xp p  1,2..., , andim m ij m  l  and all values 

greater than 1 2[ ( , ,..., ), 1,2,..., , 1,2..., , and ]u m m m

m ij if max f i j m ij m   l l l

l
lx x xp p  

is absolutely unacceptable to the objective function  1 2( ) ( , ,..., )m mf fx x x xpl l  . As such, 

( )mf
l

x  can be considered as the upper tolerance limit mu
l  of the fuzzy goal to the 

objective functions. Then, membership functions ( ( ))
ijf ijf x for the ij

th
 fuzzy goal can be 

formulated as (Fig. 1) : 
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1 if ( )

( )
( ( )) if ( )

0 if ( )

ij

ij ij

ij ij

f ij ij ij ij

ij ij

ij ij

f g

u f
f g f u

u g

f u



 



  


 

x

x
x x

x

, 1,2,..., , 1,2,..., ii j m p    (5) 

 

( ( ))
ij

f ijf x

ijuijg

( )ijf x

1

 

1

* L
i

ik kx t
*
ikx * R

i

ik kx t i kx

( )
i k

i kx
x

 

Fig 1.  Membership function of 

minimization-type objective functions 

Fig 2. Membership functions of  decision 

vectors i kx  

 

To build the membership functions for the fuzzy goals of the decision variables 

controlled by DMi, the optimal solutions of the i
th

-level MOLFP problems, 

1 2( , ,..., )i i i i* * * *

x x x xp , 1,2,..., 1i p  , should be determined first [10,11,12,15,20,22].  

Let L
i

kt  and  R
i

kt  , 1,2,..., 1i p  , 1,2,..., ik n   be the maximum negative and positive 

tolerance values on the decision vectors considered by the i
th

-level DM. The tolerances 

L
i

kt  and R
i

kt  are not necessarily same. These tolerances give the i
th

-level DMs an extent 

feasible region to search for the satisfactory solution. In other words the upper level 

decision maker, to the i
th

-level MOLFP problem, set negative and positive tolerances 

depend on the needs, desires and practical situations in the decision making situation. 

Then following the proposed algorithms, the satisfactory solution of the i
th

-level MOLFP 

problem can be achieved. If the feasible region is empty, the negative and positive 

tolerances must be increased to give the i
th

-level DMs an extent feasible region to search 

for the satisfactory solution [17,23].   

 

The linear membership functions (Fig. 2) for each of the in  components of 

decision vector *( , ,..., )
i

i * *

i i 1 i 2 i n

*

x x xx , of  i
th

-level DM, 1,2,..., 1i p  , controlled by  

the upper 1p  levels decision makers can be formulated as:   
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*
* *

*
* *

( )

( )
( )

0 otherwise

i k

L

L

L

R

R

R

i
iik ik k

ik k ik iki

k

i
iik k ik

i k ik ik ik kix

k

x x t
if x t x x

t

x t x
x if x x x t

t

if



  
  




 
   





 ;   
1,2,..., 1

1,2,..., i

i p

k n

 


     (6) 

 

It may be noted that, the decision maker may desire to shift the range of ikx . 

Following Pramanik and Roy [23] or S. Sinha [30], this shift can be achieved. 

 

Now, in a fuzzy decision environment, the achievement of the fuzzy goals - the 

fuzzy goals of the decision makers objective functions at each levels and the vector of 

fuzzy goals of the decision variables controlled by upper 1p  level decision makers - to 

their aspired levels to the extent possible is actually represented by the possible 

achievement of their respective membership values to the highest degree. Regarding this 

aspect of fuzzy programming problems, a goal programming approach seems to be most 

appropriate for the solution of the upper i
th

-levels multi-objective linear fractional 

programming problems and the multi-level multi-objective linear fractional programming 

problem [20]. 

  

3.2 Fuzzy Goal Programming Approach  
 

In fuzzy programming approaches, the highest degree of membership function is 

1. So, as in Mohamed [16], for the defined membership functions in (5) and (6), the 

flexible membership goals with the aspired level 1 can be presented as: 

 

( ( )) 1
ijf ij ij ijf d d    x        1,2,...,i p ,      1,2,..., ij m                  (7) 

( ) 1
ik

ik ik ikx
x d d              1,2,..., 1i p  , 1,2,..., ik n                    (8)  

 

or equivalently as:  
 

(( ))
1

ij ij

ij ij

ij ij

u f
d d

u g

 


  


x
           1,2,...,i p ,      1,2,..., ij m         (9) 

*( )
1

L

L

i

L Lik ik k
ik iki

k

x x t
d d

t

  
        1,2,..., 1i p  ,  1,2,..., ik n       (10)  

*( )
1

R

R

i

R Rik k ik
ik iki

k

x t x
d d

t

  
        1,2,..., 1i p  ,  1,2,..., ik n      (11)  
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Where ( , )L R

ik ik ikd d d   , ( , )L R

ik ik ikd d d   , and  , , , , , 0L R L R

ij ik ik ij ik ikd d d d d d        with 

0ij ijd d   , 0L L

ik ikd d   ,  and 0R R

ik ikd d   , 1,2,..., 1i p  , 1,2,..., ik n , 

represent the under- and over-deviations, respectively, from the aspired levels.   

 

In conventional GP, the under- and/or over-deviational variables are included in 

the achievement function for minimizing them and that depend upon the type of the 

objective functions to be optimized. In this approach, the over-deviational variables for 

the fuzzy goals of objective functions, ijd  , 1,2,..., , 1,2,..., ii j m p , and the over-

deviational and the  under- deviational variables for the fuzzy goals of the decision 

variables , ,L L

ik ikd d  , ,R

ikd  and R

ikd  , 1,2,..., 1i p  , 1,2,..., ik n , are required to be 

minimized to achieve the aspired levels of the fuzzy goals.  It may be noted that any 

under-deviation from a fuzzy goal indicates the full achievement of the membership 

value [20].  

 

It can be easily realized that the membership goals in (5) are inherently nonlinear 

in nature and this may create computational difficulties in the solution process. To avoid 

such problems, a linearization procedure is presented in the following section. 

 

3.3 Linearization of Membership Goals 
 

Following B.B. Pal et al. [20] , the ij
th

 membership goals in (9) can be presented 

as:  

( ) 1ij ij ij ij ij ijL u L f d d    x  where 
1

ij

ij ij

L
u g




  

Introducing the expression of ( )ijf x  from (4), the above goal can be presented as: 

1
ij ij

ij ij ij ij ij

ij ij

L u L d d




    
c x +

d x +
 

       ( ) ( ) ( ) ( ) ( )ij ij ij ij ij ij ij ij ij ij ij ij ij ij ijL u L d d        d x + c x + d x + d x + d x +  

 ( ) ( ) ( ) [1 ]( )ij ij ij ij ij ij ij ij ij ij ij ij ijL d d L u        c x + d x + d x + d x +  

 ( ) ( ) ( ) ( )ij ij ij ij ij ij ij ij ij ij ij ijL d d L       c x + d x + d x + d x +


where 1ij ij ijL L u 
 

 ( ) ( ) ( )ij ij ij ij ij ij ij ij ij ij ij ij ij ijL L d d L L        c d x + d x + d x +
 

 

 ( ) ( )ij ij ij ij ij ij ij ijd d   C x + d x + d x + G           (12)  

where   

          =ij ij ij ij ijL L C c d


  and    ij ij ij ij ijL L  G


 

 

Now, using the method of variable change as presented by Kornbluth and Steuer 

[12,20, 31], the goal expression in (14) can be linearized as follows:  
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Let ( )ij ij ij ijD d   d x +  and ( )ij ij ij ijD d   d x + , the linear form of the expression 

in (14) is obtained as: 
 

 ij ij ij ijD D  C x + G              (13) 

 

with , 0ij ijD D    and 0ij ijD D   since , 0ij ijd d    and 0ij ij d x + . 

 

Now, in making decision, minimization of ijd   means minimization of 

( )ij ij ij ijD d   d x + , which is also a non-linear one. 

 

It may be noted that when a membership goal is fully achieved, 0ijd    and when 

its achievement is zero, 1ijd    are found in the solution [20]. So, involvement of 1ijd    

in the solution leads to impose the following constraint to the model of the problem: 
 

1
ij

ij ij

D






d x +

   i.e.  ij ij ijD  d x +                      (14) 

 

Here, on the basis of the previous discussion, it may be pointed out that any such 

constraint corresponding to ijd   does not arise in the model formulation [20]. 

 

3.4 The FGP model to MOLFP problems 
 

Following any MOLFP approaches [10,11,12,15,22], the optimal solutions 

1 2( , ,..., )i i i i* * * *

x x x xp , 1,2,..., 1i p  ,  of the MOLFP problems of the i
th

-level DM, 

respectively, could be obtained. The FGP approach of B.B. Pal et al approach [20] that 

solve single-level MOLFP problems is considered, in this paper, to solve the MOLFP 

problems of the i
th

-level DM, 1,2,..., 1i p  . The FGP model formulation of this 

approach can be stated as [20]:  

  

1

min
im

ij ij

j

Z w D 



  

subject to  

, 1,2,...,ij ij ij i j iD D j m   C x + G  

ij ij ijD  d x +         
, 1,2,..., ij m
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1 1 2 2A A A , 0x + x +...+ x







 
 


 
 
 

b xp p

      
0ij ijD D   , and , 0ij ijD D   , 1,2,..., ij m                                         (15) 

 

where Z represents the fuzzy achievement function and the numerical weights  

ijw  , 1,2,..., , 1,2,..., ii j m p  represent the relative importance of achieving the 

aspired levels of the respective fuzzy goals subject to the constraints set in the decision 

situation. To assess the relative importance of the fuzzy goals properly, the weighting 

scheme suggested by Mohamed [8] can be used to assign the values of ijw  ,   

1,2,..., , 1,2,..., ii j m p . In the present formulation, these values are determined as: 

 

1
ij

ij ij

w
u g

 


,   1,2,..., , 1,2,..., ii j m p                 (16) 

 

4. FGP Algorithms to TL-MOLFP 
 

The FGP approach to multiobjective programming problems presented by 

Mohamed [16] is extended here to formulate two FGP algorithms to multi-level multi-

objective linear fractional programming problem.  

 

4.1 The First FGP Algorithm to TL-MOLFP 

 

The first FGP procedure proposed in this article, as mentioned in the introduction, 

groups the membership functions for the defined fuzzy goals of the objective functions at 

all levels as well as the membership functions of the fuzzy goals of the decision variables, 

which evaluated separately, of the p-1 upper levels problems. Therefore, considering the 

goal achievement problem of the goals at the same priority level, the equivalent proposed 

fuzzy multi-level multi-objective linear fractional goal programming model of the 

problem, under the framework of minsum GP, can be presented as:  

 

1 2

1 1 2 2

1 1 1

min ...
pmm m

j j j j pj pj

j j j

Z w d w d w d     

  

       

   
1

1 1 1 1 1 1

1

[ ( ) ( )]
n

L L L R R R

k k k k k k

k

w d d w d d   



     

               
2

2 2 2 2 2 2

1

[ ( ) ( )]
n

L L L R R R

k k k k k k

k

w d d w d d   



     

. 

. 

.    



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

11 

 

               
1

1 1 1 1 1 1

1

[ ( ) ( )]

n

L L L R R R

k k k k k k

k

w d d w d d


   

     



   
p

p p p p p p  

subject to  

1
1 1 2( ( )) 1

j
f j j jf d d    x         , 11,2,...,j m  

2
2 2 2( ( )) 1

j
f j j jf d d    x       , 

21,2,...,j m  

. 

. 

.    

( ( )) 1
pj

f j pj pjf d d    x          , 1,2,..., pj m  

1
1 1 1( ) 1

k
k k kx

x d d                 , 11,2,...,k n  

 

2
2 2 2( ) 1

k
k k kx

x d d                , 21,2,...,k n  

. 

. 

. 

1
1 1 1( ) 1

k
k k kx

x d d


 

    
p

p p p   , 11,2,...,k n  p  

1 1 2 2A A A , 0x + x +...+ x







 
  
 
 
 

p p b x      

, 0ij ijd d     and  0ij ijd d     , 1,2,...,i p ,       1,2,..., ij m  

, 0ik ikd d   and  0ik ikd d    ,   1,2,..., 1i p  ,   1,2,..., ik n              

 

the above problem can be rewritten as:  

1 2

1 1 2 2

1 1 1

min ...
pmm m

j j j j pj pj

j j j

Z w d w d w d     

  

       

               
1

1 1 1 1 1 1

1

[ ( ) ( )]
n

L L L R R R

k k k k k k

k

w d d w d d   



     

               
2

2 2 2 2 2 2

1

[ ( ) ( )]
n

L L L R R R

k k k k k k

k

w d d w d d   



     

. 

. 

.    

               
1

1 1 1 1 1 1

1

[ ( ) ( )]

n

L L L R R R

k k k k k k

k

w d d w d d


   

     



   
p

p p p p p p  

subject to  

( )
1

ij ij

ij ij

ij ij

u f
d d

u g

 


  


x
,            1,2,...,i p ,      1,2,..., ij m           
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*( )
1

L

L

i

L Lik ik k
ik iki

k

x x t
d d

t

  
   ,     1,2,..., 1i p  ,  1,2,..., ik n            

*( )
1

R

R

i

R Rik k ik
ik iki

k

x t x
d d

t

  
   ,     1,2,..., 1i p  ,  1,2,..., ik n           

1 1 2 2A A A , 0x + x +...+ x







 
  
 
 
 

p p b x       

, 0ij ijd d     and  0ij ijd d   ,      1,2,...,i p ,       1,2,..., ij m  

, 0L L

ik ikd d   and  0L L

ik ikd d    , 1,2,..., 1i p  ,  1,2,..., ik n             

, 0R R

ik ikd d   and  0R R

ik ikd d    , 1,2,..., 1i p  ,  1,2,..., ik n         (17) 

 

Following the above discussion and linearization process, the equivalent FGP 

model of problem (17), becomes: 

 

1 2

1 1 2 2

1 1 1

min ...
pmm m

j j j j pj pj

j j j

Z w D w D w D     

  

       

               
1

1 1 1 1 1 1

1

[ ( ) ( )]
n

L L L R R R

k k k k k k

k

w d d w d d   



     

               
2

2 2 2 2 2 2

1

[ ( ) ( )]
n

L L L R R R

k k k k k k

k

w d d w d d   



     

. 

. 

.    

               
1

1 1 1 1 1 1

1

[ ( ) ( )]

n

L L L R R R

k k k k k k

k

w d d w d d


   

     



   
p

p p p p p p  

subject to       

ij ij ij ijD D  C x + G ,                        1,2,...,i p ,       1,2,..., ij m  

*( )
1

L

L

i

L Lik ik k
ik iki

k

x x t
d d

t

  
   ,    1,2,..., 1i p  ,  1,2,..., ik n       

*( )
1

R

R

i

R Rik k ik
ik iki

k

x t x
d d

t

  
   ,     1,2,..., 1i p  ,  1,2,..., ik n      

ij ij ijD  d x + ,                              1,2,...,i p ,       1,2,..., ij m
 

1 1 2 2A A A , 0x + x +...+ x







 
 


 
 
 

b xp p       
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, 0ij ijD D     and  0ij ijD D   ,   1,2,...,i p ,      1,2,..., ij m  

, 0L L

ik ikd d   and  0L L

ik ikd d   ,  1,2,..., 1i p  ,  1,2,..., ik n          

, 0R R

ik ikd d   and  0R R

ik ikd d   ,  1,2,..., 1i p  ,  1,2,..., ik n        (18) 

 

Where Z represents the fuzzy achievement function consisting of the weighted 

over-deviational variables  ijD   , 1,2,...,i p , 1,2,..., ij m of the fuzzy goals ijg  and 

the under-deviational and the  over-deviational variables , ,R R

ik ikd d  , andL L

ik ikd d  , 

1,2,..., 1i p  ,  1,2,..., ik n  for the fuzzy goals of all the decision variables for the 

upper 1p  levels, where the numerical weights  ijw  , R

ikw , and L

ikw  represent the relative 

importance of achieving the aspired levels of the respective fuzzy goals subject to the 

constraints set in the decision situation.  

 

Again, to assess the relative importance of the fuzzy goals properly, the weighting 

scheme suggested by Mohamed [16] can be used to assign the values of  R

ikw , and L

ikw . In 

the present formulation, these values are determined as: 

1

L

L

ik i

k

w
t

    and    
1

R

R

ik i

k

w
t

 ,      1,2,..., 1i p  , 1,2,..., ik n             (19) 

 

The FGP model (18) provides the most satisfactory decision for all the DMs at all 

levels by achieving the aspired levels of the membership goals to the extent possible in 

the decision environment. The solution procedure is straightforward and illustrated via 

the illustrative example in section 5. 

 

FGP Alg. I:  

 

Following the above discussion, we can now construct the first proposed FGP 

algorithm for solving ML-MOLFP problems:  
 

Step 1. Calculate the individual minimum and maximum values of all the objective 

functions for all levels under the given constraints 

Step 2. Set the goals and the upper tolerance limits - ,ij iju g , 1,2,..., ,i  p  

1,2,..., ij m  - for all the objective functions in all levels. 

Step 3. Evaluate the weights  
1

ij

ij ij

w
u g

 


,   1,2,..., 1, 1,2,..., ii j m  p  

Step 4. Set =1l  

Step 5. Elicit the membership functions ( ( ))
jf jf

l l x , 1,2,...,j m l   

Step 6. Formulate the Model (15) for the th
l -level MOLFP problem 
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Step 7. Solve the Model (15) to get 
1 2( , ,..., )

* * * *

x x x x p
l l l l . 

Step 8. Set the maximum negative and positive tolerance values on the decision 

vector *( , ,..., )* *

1 2 n

*

x x xx
l

l l l l l
, L

kt
l

 and  R
kt
l

 , 1,2,...,k n
l

. 

Step 9. Evaluate the weights  
1

L

L

k

k

w
t

l l
   and    

1

R

R

k

k

w
t

l l
,   

 

Step 10. Elicit the membership functions ( )
k

kx
x

l
l , 1,2,...,k n

l
 for decision 

vector *( , ,..., )* *

1 2 n

*

x x xx
l

l l l l l
, equation (6). 

Step 11. = +1l l , if 1 l p , then go to Step 12 , else go to Step 5. 

Step 12. Elicit the membership functions ( ( ) )
jf jf
p p x , 1,2,...,j m p  for the 

objective functions in the p
th

 –level. 

Step 13. Evaluate the weights  
1

j

j j

w
u g

 


p

p p

,   1,2,...,j m p  

Step 14. Formulate the Model (18) for the ML-MOLFP problem 

Step 15. Solve the Model (18) to get the satisfactory solution of the ML-MOLFP 

problem 

 

4.2 The Second FGP Algorithm to TL-MOLFP 

 

In Alg I, the final model contains the membership functions for the fuzzy goals of 

the decision variables controlled by p-1 upper levels, that separately solved for the 

MOLFP problem of the p
th

 level DM.   The second proposed algorithm, lexicographically 

solve MOLFP problems of the ML-MOLFP problem that take into consideration, the 

decisions of the MOLFP problems for the upper levels. As mentioned in the introduction, 

after the initialization steps – step 1 to step 3 in Alg I – the solution procedure starts with 

the MOLFP problem of the FLDM obtaining the satisfactory solution. A relaxation of the 

FLDM decisions is considered to avoid decision deadlock. This decisions of the FLDM 

are modeled by membership functions of fuzzy set theory and passed to the SLDM as 

additional constrains. Then, the SLDM take into consideration the membership goals of 

the objectives and decision variables of the FLDM. Thereafter, the attained solution is 

sent to the TLDM who seeks the solution in a similar manner. The process is repeated 

until the lower level is reached. Following this discussion, we now in place to introduce 

the second proposed FGP algorithm for solving ML-MOLFP problems:  

 

FGP Alg. II:  
 

Step 1. Calculate the individual minimum and maximum values of all the objective 

functions for all levels under the given constraints 
 

Step 2. Set the goals and the upper tolerance limits - ,ij iju g , 1,2,..., ,i  p  
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1,2,..., ij m  - for all the objective functions in all levels. 

Step 3. Evaluate the weights  
1

ij

ij ij

w
u g

 


,   1,2,..., 1, 1,2,..., ii j m  p  

Step 4. Set  =1l  

Step 5. Elicit the membership functions ( ( ))
jf jf

l l x , 1,2,...,j m l
  

Step 6. Formulate the Model (15) for the th
l -level MOLFP problem 

Step 7. Solve the Model (15) to get 1 2( , ,..., )
* * * *

x x x x p
l l l l . 

Step 8. Set the maximum negative and positive tolerance values on the decision 

vector *( , ,..., )* *

1 2 n

*

x x xx
l

l l l l l
, L

kt
l

 and  R
kt
l

 , 1,2,...,k n
l . 

Step 9. Evaluate the weights  
1

L

L

k

k

w
t

l l
   and    

1

R

R

k

k

w
t

l l
,   

Step 10. Elicit the membership functions ( )
k

kx
x

l
l , 1,2,...,k n

l
 for decision 

vector *( , ,..., )* *

1 2 n

*

x x xx
l

l l l l l
. 

Step 11. Formulate the Model (18) for the ML-MOLFP problem with lp =   

Step 12. Solve the Model (18) to get the solution 1 2( , ,..., )
* * * *

x x x x p
l l l l  

Step 13 = +1l l   
 

Step 14 if l p , then stop with the satisfactory solution 1 2( , ,..., )
* * * *

x x x x p
l l l l        

              to the ML-MOLFP problem,  

else go to Step 8. 

 

5. Numerical Example 
 

To demonstrate proposed FGP procedures, consider the following Three level multi-

objective linear fractional programming problem:  
 

[1
st
 Level]    

1

1 2 3 1 2 3

1 1 1 2

1 2 3 1 2 3

2 7 2
Min ,

5 2

2 1

3 1x

3x x x x x x
f f

x x x x x x

   
 

    

  
 

   

where x2 and  x3 solve  

[2
nd 

Level]    
2

1 2 3 1 2 3

2 1 2 2

1 2 3 1 2 3

1 2 3
Min ,

3 2 2

4 4

5x

x x x x x x
f f

2x x x x x x

    
 

   

   
 

  
   

where x3 solves  

[3
rd

 Level]    
3

1 2 3 1 2 3

3 1 3 2

1 2 3 1 2 3

4 2
Min ,

2 10 6

4

10x

x x x x x x
f f

x x x x x x

  
 

    

   
 

    

subject to 

1 2 3 5x x x  
 1 2 3 1-x x x  
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1 2 3 2x x x  
 1 2 3 4x x x  

 

1 2 3 1x x x  
 1 32 4x x 

 

1 2 3, 0.x , x x 
 

 

Table (1) summarizes the coefficients ij , ij , ijc , and ijd  for all the three levels 

objectives of the ML-MOLFP problem. Also, the optimal minimum and maximum separate 

solutions of these objectives subjected to given constraints. The decided aspiration levels and 

upper tolerance limits to the objective functions are also mentioned. The values 
ij

L , 
ij

L


, 
ij

C , 

ij
G , and the weights ijw  are calculated and also contained in the table. 

 

The first Algorithm, Alg I, can be explained through the solution procedure of the second 

Algorithm, Alg II.  Then, following Alg II, the proposed FGP procedure to the multi-level multi-

objective linear fractional programming problem proceeds as: 
 

First Level DM FGP model:  
 

11 12min 0.56 0.5Z D D    

subject to  

1 2 3 11 111.96 +0.84 1.4 0.834x x x D D       

                   1 3 12 12 1x x D D      

1 2 3 11 3x x x D       

1 2 3 125 2 1x x x D     
 

1 2 3 5x x x  
 1 2 3 1-x x x  

 

1 2 3 2x x x  
 1 2 3 4x x x  

 

1 2 3 1x x x  
 1 32 4x x 

 

1 2 3, 0.x , x x 
 

, 0ij ijD D     and  0ij ijD D   , 1 1,2,i j   

 

 1 1f  1 2f  2 1f  2 2f  3 1f  32f  

ij  0 1 1 4 -4 4 

ij  3 1 2 5 6 10 

ijc  (3,-2,2) (-7,-2,1) (-1,-4,1) (-2,1,3) (1,1,1) (2,-1,1) 

ijd  (1,1,1) (5,2,1) (2,3,1) (2,-1,1) (1,-2,10) (-1,1,1) 

ij
min

G

f  -0.5 -1.18 -0.733 0 -0.75 0.2727 

ij
max

G

f  1.353 1 0.667 1.25 -0.026 1.125 
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ijg  -0.5 -1 -0.7 0 -0.75 0.25 

iju  1.3 1 0.6 1.2 -0.05 1.125 

ijL  0.56 0.5 0.769 0.83 1.43 1.143 

ijL
 0.278 0.5 0.54 0.004 0.93 -0.29 

ijC  (-1.96,0.84,-1.4) (1,0,-1) (-0.31,1.46,-1.3) (1.65,-0.83,-2.5) (-2.36,0.43,-10.7) (-2.58,1.43,-0.85) 

ijG  0.834 1 1.85 3.34 -0.14 1.67 

ijw  0.56 0.5 0.769 0.83 1.43 1.143 

 

Table 1 
 

Using the LP-ILP linear and integer programming software program, version 1 for 

windows, the optimal solution of this problem is 
1 1 1 1

1 2 3( , , ) = (1,0,0)
* * * *

x x x x . Let the first 

level DM decide 
1

1 1
*

x  with the negative and positive tolerances 
1 1

1 1 0.5L Rt t   with weights 

11 11

1
2

0.5

L Rw w   . 

 

Second Level DM FGP model:  
 

11 12 21 22min 0.56 0.5 0.769 0.83Z D D D D       
1 1 11 1 1 112 ( ) ( )L L R Rd d d d         

subject to  

1 2 3 11 111.96 +0.84 1.4 0.834x x x D D       

      1 3 12 12 1x x D D      

1 2 3 21 210.31 +1.46 1.3 1.85x x x D D       

1 2 3 22 221.65 0.83 2.5 3.34x x x D D       

1 2 3 11 3x x x D     
 1 2 3 125 2 1x x x D     

 

1 2 3 213 22x x x D     
 1 2 3 222 5x x x D     

 

1 11 11 2L L2x d d   
 1 11 11 2R R2x d d     

 

1 2 3 5x x x  
 1 2 3 1-x x x  

 

1 2 3 2x x x  
 1 2 3 4x x x  

 

1 2 3 1x x x  
 1 32 4x x 

 

1 2 3, 0.x , x x 
 

, 0ij ijD D     and 0ij ijD D   , 1,2, 1,2,i j   

11 11 11 11, , , 0,L L R Rd d d d      11 11 0L Ld d   , 11 11 0R Rd d   . 
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The optimal solution of this problem is 
2 2 2 2

1 2 3( , , ) = (1,1,0)
* * * *

x x x x . Let the second 

level DM decide 
2

1 1
*

x  with the negative and positive tolerances 
2 2

1 1 0.5L Rt t   with weights 

21 21

1
2

0.5

L Rw w   . 

 

Third Level DM - and the final FGP model to the three-level MOLFP problem- FGP model:  
 

11 12 21 22 31 32min 0.56 0.5 0.769 0.83 1.43 1.143Z D D D D D D             

                
1 1 11 1 1 112 ( ) ( )L L R Rd d d d        2 1 21 2 1 212 ( ) ( )L L R Rd d d d          

subject to  

1 2 3 11 111.96 +0.84 1.4 0.834x x x D D       

      1 3 12 12 1x x D D    
 

1 2 3 21 210.31 +1.46 1.3 1.85x x x D D       

1 2 3 22 221.65 0.83 2.5 3.34x x x D D       

1 2 3 31 312.36 +0.43 10.7 0.14x x x D D        

1 2 3 11 112.58 +1.43 0.85 1.67x x x D D       

1 2 3 11 3x x x D     
 1 2 3 125 2 1x x x D     

 

1 2 3 213 22x x x D     
 1 2 3 222 5x x x D     

 

1 2 3 312 10 6x x x D     
 1 2 3 32 10x x x D    

 

1 11 11 2L L2x d d     1 11 11 2R R2x d d       

2 21 21 2L L2x d d     2 21 212 2R Rx d d       

1 2 3 5x x x  
 1 2 3 1-x x x  

 

1 2 3 2x x x  
 1 2 3 4x x x  

 

1 2 3 1x x x  
 1 32 4x x 

 

1 2 3, 0.x , x x 
 

, 0ij ijD D     and 0ij ijD D   , 1,2,3, 1,2,i j   

11 11 11 11, , , 0,L L R Rd d d d      11 11 0L Ld d   , 11 11 0R Rd d   . 

21 21 21 21, , , 0,L L R Rd d d d      21 21 0R Rd d   , 21 21 0L Ld d   . 

 

The satisfactory solution of the ML-MOLFP problem is 
3 3 3 3

1 2 3( , , ) = (1,1,0)
* * * *

x x x x  with objective functions values 11 0.2f  , 12 1f   , 

21 0.57f   , 22 0.5f  , 31 0.4f   , and 32 0.5f  , and with membership functions values 

11 0.61  , 21 1  , 21 0.9  , 22 0.58  , 31 0.5  , and 32 0.7  , respectively . 
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6. Conclusion 
 

This paper presents two fuzzy goal programming procedures for solving multi-

level multi-objective linear fractional programming (ML-MOLFP) problems. A fuzzy 

goal programming model to minimize the group regret of degree of satisfactions of all the 

decision makers is developed to achieve the highest degree (unity) of each of the defined 

membership function goals to the extent possible by minimizing their deviational 

variables and thereby obtaining the most satisfactory solution for all the decision makers. 

The main advantage of the proposed fuzzy goal programming algorithms is that the 

possibility of rejecting the solution again and again by the upper decision makers and     

re-evaluation of the problem repeatedly, by redefining the elicited membership functions, 

needed to reach the satisfactory decision does not arise. 

 

The first proposed algorithm groups the membership functions for the defined 

fuzzy goals of the objective functions at all levels as well as the membership functions of 

the fuzzy goals of the decision variables for each level except the lower level of the 

multi-level problem. The second proposed algorithm, lexicographically solve MOLFP 

problems of the ML-MOLFP problem take into consideration, the decisions of the 

MOLFP problems for the upper levels. A linearization process of solving ML-MOLFP 

problems via minsum FGP is investigated. An illustrative numerical example is given to 

demonstrate the algorithms.  
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