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Abstract  

This paper extended the concept of the technique for order preference by similarity to 

ideal solution (TOPSIS) to develop a methodology for solving multi-level non-linear multi-

objective decision-making (MLN-MODM) problems. Also, two new interactive algorithms are 

presented for the proposed TOPSIS approach for solving these types of mathematical 

programming problems. The first proposed interactive TOPSIS algorithm includes the 

membership functions of the decision variables for each level except the lower level of the multi-

level problem. These satisfactory decisions are evaluated separately by solving the corresponding 

single-level MODM problems. The second proposed interactive TOPSIS algorithm 

lexicographically solves the MODM problems of the MLN-MOLP problem by taking into 

consideration the decisions of the MODM problems for the upper levels. Illustrative example is 

presented in order to show the efficiency and superiority of the proposed approach and the two 

interactive TOPSIS algorithms. 
 

Keywords: Multiple objective programming, Multi-level Programming, TOPSIS, Fuzzy Programming  
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1. Introduction 
 

Hierarchical optimization or multi-level programming (MLP) techniques are extensions 

of Stackleberg games for solving decentralized planning problems with multiple decision makers 

(DMs) in a hierarchical organization where each unit seeks its own interests. The basic concept of 

the multi-level programming technique is that the first-level decision maker (FLDM) sets his/her 

goal and/or decision, and then asks each subordinate level of the organization for their optima, 

that calculated in isolation. The lower level decision makers’ decisions are then submitted and 

modified by the FLDM in consideration of the overall benefit for the organization. The process 

continues until a satisfactory solution is reached (for more details see (Ayed, 1993; Bialas and  

Karwan, 1984; Lee and  Shih, 2001; Osman et al ., 2003; Osman et al ., 2004; Pramanik and  

Roy, 2006; Sinha, 2003). Traditional approaches include vertex enumeration algorithms, 

approaches based on KKT conditions and penalty functions (Lai, 1996).The use of the fuzzy set 

theory (Zadeh, 1965) for decision problems with several conflicting objectives was first 

introduced by Zimmermann, 1978. Thereafter, various versions of fuzzy programming (FP) have 

been investigated and widely circulated in literature (Luhandjula, 1984; Mohamed, 1997; Lee and  

Shih, 2001; Moitra, and  Pal, 2002; Osman et al ., 2003; Osman et al ., 2004; Baky, 2010). The 

use of the concept of membership function of fuzzy set theory to multi-level programming 

problems for satisfactory decisions was first introduced by Lai (1996). Then, Lai’s satisfactory 

solution concept was extended by Shih et al. (1996) and a supervised search procedure with the 

use of max–min operator of Bellman and Zadeh (1970) was proposed. Abo-Sinna (2001) and  
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Osman et al. (2004) extended the fuzzy approach for multi-level programming problems of Shih 

et al. (1996) to solve bi-level and three-level non-linear multi-objective programming problems. 

Another multi-level multi-objective programming approaches are presented by Osman et al. 

2003; Abo-Sinna and Baky (2007); Baky, 2010. A bibliography of the related references on 

multi-level programming in both linear and non-linear cases, which is updated biannually, can be 

found in Vicent and  Calamai (1994). 
 

Technique for order preference by similarity to ideal solution (TOPSIS), one of the 

known classical multiple criteria decision making (MCDM) method, bases upon the concept that 

the chosen alternative should have the shortest distance from the positive ideal solution (PIS) and 

the farthest from the negative ideal solution (NIS). It was first developed by Hwang and Yoon  

(1981) for solving a multiple attribute decision making problem. A similar concept has also been 

pointed out by Zeleny (1982). Lai et al. (1994) extended the concept of TOPSIS to develop a 

methodology for solving multiple objective decision making (MODM) problems. Recently, Abo-

Sinna (2000) extended TOPSIS approach to solve multi-objective dynamics programming 

(MODP) problems. He shows, that using the fuzzy max–min operator with non-linear 

membership functions, the obtained solutions are always non-dominated solutions of the original 

MODP problems. A further extensions of TOPSIS for large scale multi-objective non-linear 

programming problems with block angular structure was presented by Abo-Sinna and Amer 

(2000) and Abo-Sinna et al. (2008). Deng et al. (2000) formulated the inter-company comparison 

process as a multi-criteria analysis model, and presented an effective approach by modifying 

TOPSIS for solving such a problem. Chen (2000) extended the concept of TOPSIS to develop a 

methodology for solving multi-person multi-criteria decision-making problems in a fuzzy 

environment and he defined the fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal 

solution (FNIS).  
 

Generally, TOPSIS provides a broader principle of compromise for solving multiple 

criteria decision making problems. It transfers m-objectives (criteria), which are conflicting and 

noncommensurable, into two objectives (the shortest distance from the PIS and the longest 

distance from the NIS). They are commensurable and most of time conflicting. Then, the bi-

objective problem can be solved by using membership functions of fuzzy set theory to represent 

the satisfaction level for both criteria and obtain TOPSIS's compromise solution by a second-

order compromise operation. The max–min operator is then considered as a suitable one to 

resolve the conflict between the new criteria (the shortest distance from the PIS and the longest 

distance from the NIS) (Lai et al., 1994; Abo-Sinna and Amer, 2000); Abo-Sinna et al. (2008)).  
 

In this paper, we further extended the concept of TOPSIS to develop a methodology for 

solving multi-level non-linear multi-objective decision-making (MLN-MODM) problems of 

maximization-type. Two interactive TOPSIS algorithms are presented for the proposed TOPSIS 

approach for solving MLN-MODM problems. The remainder of this paper is organized as 

follows. Section 2 presents the formulation of multi-level non-linear multi-objective decision-

making problems. Section 3 discusses briefly the basic concepts of distance measures of 

“closeness” and its normalization. The proposed TOPSIS approach is developed in section 4 for 

solving MLN-MODM problems. Also in this section, the algorithmic steps of the TOPSIS 
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approach for solving single-level MODM problems of Lia et. al. (1994) is proposed. Section 5 

presents the two interactive algorithm of the proposed TOPSIS approach for solving MLN-

MODM problems. The next section presents an illustrative numerical example in order to show 

the efficiency and superiority of the proposed approach and the two interactive TOPSIS 

algorithms. Finally, the concluding remarks are made in Section 7.  

 
2. Problem Formulation  
   

Consider a q-level programming problem of maximization-type nonlinear multi-objective 

functions at each level. Let DMk denote the decision maker at the k
th

 level that has control over 

the decision variable ( , ,..., ) R
k

n

k k1 k2 k n
kx x x x , k = 1,2,...,q , where 

1 2= ( , ,..., ) Rn

k x x x x  

and 1 2 ... qn n n n     and furthermore assume that: 

 

             
mnn n

1 2
1 2F ( , ,..., ) F ( ) : R R ... R R ,q

q k
k k

    x x x x k = 1,2,...,q                    

 

are the vector of objective functions to the DMk , k = 1,2,...,q   Mathematically, the MLN-

MODM problems of maximization-type may be formulated as follows (Osman et al ., 2004; Abo-

Sinna and Baky, 2007; Baky, 2010): 
 

[1
st
 Level] 

1 1 1 1 2 1 mMax ( ) Max ( ( ), ( ),..., ( ))
1

1 1x x
F f f fx x x x

  
                                               

     
 

where x2 , x3 ,…, 
p

x solves 

[2
nd 

Level] 

2 2 1 2 2 2 mMax ( ) Max ( ( ), ( ),..., ( ))
2

2 2x x
F f f fx x x x                                                         

. 

. 

. 

where 
p

x solves 

[q
th 

Level] 

 1  2  mMax ( ) Min ( ( ), ( ),..., ( ))
q

qq

q q q
xx

qF f f fx x x x                                             

subject to    
n={ R | ( ) 0, 1,2,..., }ig i s     x G x x

   
                                             (1) 

 

where G is the multi-level convex constraints feasible choice set, , , 1,2,...,km k q ,  are the 

number of  DMk 's  objective functions and s is the number of the constraints. 

 

3. Some Basic Concepts of distance Measures    
 

         This section briefly surveys some basic concepts of distance Measures, for more details see: 
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Yu and Zeleny, 1975; Lai et al., 1994; Abo-Sinna and Amer, 2000; Abo-Sinna, 2001; Abo-Sinna 

et al., 2008. Consider the vector of objective functions 1 2 m( ) ( ( ), ( ),..., ( ))F f f fx x x x  and the 

ideal vector of objective functions * * * *

1 2( , ,..., )mF f f f  (ideal point- reference point- positive 

ideal solution (PIS)) in the m-objective space. And consider the vector of anti-ideal solution of 

objective functions 1 2( , ,..., )mF f f f     (anti-ideal point - nadir point – negative ideal solution 

(NIS)). Where *

G
max ( )j j
x

f f


 x  and 
G

min ( ), 1,2,...,j j
x

f f j m


 x . As the measure of 

“closeness”, PL -metric is used.  The PL -metric defines the distance between two points ( )F x  

and *F  as: 

            

1

*

1

( ) , 1,2,...,
m pp

p

p j j j

j

d f f p


 
      

 
 x                                                             (2) 

 

where j , j = 1, …, m are the relative importance (weights) of objectives. If the objective 

functions ( )jf x , j = 1, …, m are not expressed in commensurable units, then a scaling function 

for every objective functions, usually, this dimensionless is the interval [0, 1]. In this case, the 

following metric could be used: 
 

           

1

*

*
1

( )
, 1,2,...,

p p
m

j jp

p j

j j j

f f
d p

f f





   
    

    


x

                                    (3) 

 

To obtain a compromise solution of MODM problems of the form :  

 

1 2 mmax ( ) ( ( ), ( ),..., ( ))F f f fx x x x  

subject to   n={ R | ( ) 0, 1,2,..., }ig i s     x G x x
 

                        (4) 

 

The global criterion method, goal programming, fuzzy programming, and interactive approaches 

use the distance family of (2) and (3) when the ideal vector of objective functions 
* * * *

1 2( , ,..., )mF f f f  being the reference point. The problem becomes how to solve the following 

auxiliary problem (Lai et al., 1994): 
 

            

1

*

*
1

( )
min , 1,2,...,

p p
m

j jp

p j

j j j

f f
d p

f f







   
    

    


Gx

x
                                                (5)  

 

The value chosen for p reflects the way of achieving a compromise by minimize the weight sum 

of the divisions of objective from their respective reference point (ideal solution). The parameter 

p plays the role of the “balancing factor” between the group utility and maximal individual regret; 
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as p increase, the group utility (distance Pd ) decrease, i.e. pddd  ...21 and greater emphasis 

is given to the largest deviation in forming the total. Specifically, p = 1 implies an equal 

importance (weights) for all these deviations, while p = 2 implies that these deviations are 

weighted proportionately with the largest deviation having the largest weight (Lai et al., 1994). 

Finally for p =  , the largest deviation completely dominates the distance determination, the 

L metric is of the form:  
 

            *max ( )j j j
j

d f f
   x    or   

*

*

( )
max

j j

j
j

j j

f f
d

f f
 

   
   

    

x
                (6) 

 

4. TOPSIS for MLN-MODM Problems  
 

In most practical situations, we might like to have a decision, which not only makes as 

much profit as possible, but also avoids as much risk as possible. This concept has been 

developed by Hwang and Yoon (1981). They provided a new approach, TOPSIS, for solving a 

multiple attribute decision-making (MADM) problems. It is based upon the principle that the 

chosen alternative should have the shortest distance from the positive ideal solution (PIS) and the 

farthest form the negative ideal solution (NIS). Hwang and Yoon used both PIS (
*F ) and NIS 

( F 
) to normalize the distance family and obtain the form of distance family of equation (3). Lia 

et. al. (1994) extended the concept of TOPSIS to develop a methodology for solving multiple 

objective decision making (MODM) problems. In this paper, we further extended the concept of 

TOPSIS (Lai et al., 1994) for MLN-MODM problems. 

 
4-1 The TOPSIS approach for the upper MODM problems         

 

The TOPSIS approach of Lia et. al. (1994)  is considered, in this paper, to solve the 

single-level MODM problems of the MLN-MODM problem (1) that has the following general 

form for the -levelthk  MODM problem, 1,2,..., 1k q   :  

 

 1  2  mMax ( ) Max ( ( ), ( ),..., ( ))
k

k k

k k k k
x x

F f f fx x x x   

subject to    
n={ R | ( ) 0, 1,2,..., }ig i s     x G x x

                   
        (7)  

 

The TOPSIS model formulation of Lia et. al. approach can be briefly stated as following, 

(for more details see: Lai et al., 1994) :  

 

Min ( )
kPIS

pd x
 

Max ( )
kNIS

pd x
  

Subject to 
n={ R | ( ) 0, 1,2,..., }ig i s     x G x x                                       (8) 
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where  

     

1/
*

*
1

( )
( )

k
k

p
p

m
kj kjPIS p

p kj

j kj kj

f f x
d

f f





   
   

    

x  and   

1/

*
1

( )
( )

k
k

p
p

m
kj kjNIS p

p kj

j kj kj

f x f
d

f f







   
   

    

x              (9)  

 

and where *

kjf , kjf   and , j = 1,2,..., mkj k  (the individual positive ideal solutions, the individual 

negative ideal solutions and  the relative importance (weights) of objectives functions in 

-levelthk  MODM problem, respectively) are defined as in section 3. Let * * *

1 2( , ,..., )
k

k

k k kmF f f f
*

 

and 1 2( , ,..., )
k

k

k k kmF f f f  
 . Assume that the membership functions ( ( )k1 x  and ( )k2 x ) of 

the two objective functions in (9) are linear between  
*k

pd  and  
k

pd


 which are: 

  

 
*

G
min ( )

k kPIS PIS

p p
x

d d


 x  and  the solution is kP
x ,                       (10) 

 
*

G
max ( )

k kNIS NIS

p p
x

d d


 x  and  the solution is kN
x ,                                 (11) 

  ( )
k kPIS PIS kN

p pd d


x  and   ( )
k kNIS NIS kP

p pd d


x .               (12) 

 

Also, we propose, in this paper, that   
kPIS

pd


 and  
*kNIS

pd  can be taken as 

 
G

max ( )
k kPIS PIS

p p
x

d d





x  and  
*

G
min ( )

k kNIS NIS

p p
x

d d


 x , respectively. Let 

   
* *

*d = ,
k kk PIS NIS

p p pd d
 
 
 

 and    d = ,
k kk PIS NIS

p p pd d
 
 
 

 

. Thus ( ) ( )kPIS
p

k1 d
 x x   and  

2
( ) ( )kNIS

p
k d

 x x  cab be obtained as (see: figure 1):  

 

 

 

   
   

 

*

*

*

*

1 if ( )

( )
( ) 1 if ( )

0 if ( )

k k

k k

k k k

k k

k k

PIS PIS

p p

PIS PIS

p p
PIS PIS PIS

p p p
PIS PIS

p p

PIS PIS

p p

k1

d d

d d
d d d

d d

d d








 


   
 





x

x

x x

x







                (13) 
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 

 

   
   

 

*

*

*

*

1 if ( )

( )
( ) 1 if ( )

0 if ( )

k k

k k

k k k

k k

k k

NIS NIS

p p

NIS NIS

p p
NIS NIS NIS

p p p
NIS NIS

p p

NIS NIS

p p

k2

d d

d d
d d d

d d

d d








 


   
 





x

x

x x

x







             (14) 

 
Applying the max-min decision model, which is proposed by Bellman and Zadeh (1970) and 

extended by Zimmermann (Zimmermann, 1978; Zimmermann, 1987), we can resolve (8) and 

obtaining the satisfying decision of the -levelthk  MOLP problem, ( , ,..., )x x x* * * *k k k k

1 2 q
x , by 

solving the following problem: 

       

  ( ) max min ( ), ( )
G

D
k

k1 k2
  




x
x x x                                                       (15)  

 

where * * *

1 2( , ,..., )
j

k k k

j j jnx = x x x*k

j
, 1,2,...,j q . 

  

If  min ( ), ( )k1 k2   x x , model (8) is equivalent to the form of Tchebycheff model (see: Lai 

and Hwang, 1992; Lai et al., 1994), which is equivalent to the following model: 

 

max         

 subject to  

( )k1 x     ,     ( )k2 x ,    [0,1]  and  
n={ R | ( ) 0, 1,2,..., }ig i s     x G x x                              (16) 

 

where   is the satisfactory level for both criteria of the shortest distance from the PIS and the 

farthest distance from the NIS.  It is well known that if the optimal solution of (16) is the vector 

( , ) *k
x , then  *k

x  is the maximizing solution of model (8) and a satisfactory solution of the 

-levelthk  MODM problem (Lai et al., 1994). 

 

As discussed previously, the basic concept of the multi-level programming technique 

states that the first-level decision maker (FLDM) defines his/her objective functions and 

decisions with possible tolerances, which are described by membership functions of fuzzy set 

theory (Osman et al., 2003; Osman et al., 2004; Baky, 2010).  This information is delivered to the 

second-level decision maker (SLDM) who solves his/her problem and defines its  objective 

functions and decisions with possible tolerances in view of the FLDM. Then, the third-level 

decision maker (TLDM) solves his/her problem under restrictions of the FLDMs and SLDMs 

requirements. Afterwards, the TLDM presents his/her solution to the FLDM. If the FLDMs 

rejects this proposal, the FLDM must update and change former goals and decisions as well as 
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their corresponding tolerances, also the SLDM must do the same until a satisfactory solution is 

reached. The process continues until the last level of the MLN-MODM problem (Osman et al., 

2003; Osman et al., 2004; Baky, 2010).  
 

According to this concept, let L
k

jt  and R
k

jt , 1,2,..., kj n  be the maximum acceptable 

negative and positive tolerances (relaxations) values on the decision vector controlled by 

-levelthk  MOLP problem,  * * *

1 2( , ,..., )
k

k k k

k k knx = x x x*k

k . The tolerances L
k

jt  and R
k

jt  are not 

necessarily the same. The tolerances give the lower level decision makers an extended feasible 

region to search for the satisfactory solution. If the feasible region is empty, the negative and 

positive tolerances must be increased to give the lower level decision makers an extended 

feasible region to search for the satisfactory solution (Sinha, 2003; Osman et al ., 2004; Pramanik 

and  Roy, 2006).   

 

The linear membership functions (Figure 2) for each of the kn  components of 

* * *

1 2( , ,..., )
k

k k k

k k knx = x x x*k

k  can be formulated as:   

 

            

*

* *

*

* *

( )

( )
( )

0 otherwise

k
kj

L

L

L

R

R

R

kk k
kkj kj j k k k

kj j kj kjk

j

kk k
kkj j kjk k k k

kj kj kj kj jkx

j

x x t
if x t x x

t

x t x
x if x x x t

t

if



  
  




 
   






, 1,2,..., kj n                     (17) 

It may be noted that, the decision maker may desire to shift the range of k

kjx . Following 

Pramanik and  Roy, 2006 and Sinha, 2003, this shift can be achieved. 
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1

( )k

pd x

max min solution

 
*kNIS

pd 
kNIS

pd


 
*kPIS

pd  
kPIS

pd


2
( ) , ( )k1 k x x

 
 

1

( )k
kj

k

kjx
x

*k

kjx* L
kk

kj jx t * R
kk

kj jx t k

kjx
 

Figure 1. The membership functions of 

( )k1 x  and 
2
( )k x  (Lai et al., 1994) 

Figure 2. The Membership function of the decision 

variable 
k

kjx  

 
The TOPSIS Algorithm for the upper MODM problems 

 

The algorithmic steps of the TOPSIS  approach  of  Lia et. al. (1994)  for solving a  

single-level MODM problems (in level l  of MLN-MODM problems, 1,2,..., 1q l ) following 

Lia et. al. (1994) can be proposed, in this paper, as follows:  

 

Alg A: 
 

Step 1. Construct the PIS payoff table of the -th
l level MODM problem (7) and obtain 

* * *

1 2( , ,..., )mF f f f
*

l

l

l l l , the individual positive ideal solutions.   
 

Step 2. Construct the NIS payoff table of the -th
l level MODM problem (7) and obtain 

1 2( , ,..., )mF f f f  


l

l

l l l , the individual negative ideal solutions.   

Step 3. Use Eq. (9) to construct ( )PIS

pd x
l

 and ( )NIS

pd x
l

. 
 

 

Step 4. Ask the DM to select  p , { 1,2,..., }p   . 
 

Step 5. Construct the payoff table of problem (8) and obtain *

pd l and pd l . 

Step 6. Elicit the membership functions ( )uPIS
pd

 x   and  ( )uPIS
pd

 x . 

 

Step 7. Formulate the Model (16) for the -th
l level MODM problem.  

Step 8. Solve Model (16) to get ( , ,..., )x x x* * * *

1 2 q
x

l l l l , * * *

1 2( , ,..., )nx = x x x*l

l

l l l

l l l l
. 

Step 9. Set the maximum negative and positive tolerances values on the decision vector 
* * *

1 2( , ,..., )nx = x x x*l

l

l l l

l l l l
, L

jt
l

 and R
jt
l

, 1,2,...,j n
l . 

Step 10. Return. 
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4-2 The Proposed TOPSIS approach for MLN-MODM problems  

 

In order to obtain a compromise solution (satisfactory solution) to the MLN-MODM 

problems using the TOPSIS approach, the distance family (3) to represent the distance function 

from the positive ideal solution (
MPIS

pd ) and the distance function from the negative ideal solution 

(
MNIS

pd ) can be proposed, in this paper, as the following new modified formulas of Hwang and 

Yoon (1981) and Lia et. al. (1994) for the objective functions of all levels of the MLN-MODM 

problems:    
 

1/
*

*
1 1

( )
( )M

i

p
p

PIS

p

mq
ij ijp

ij
i j ij ij

d
f f

f f



 

        
      




 x

x
            (18) 

1/

*
1 1

( )
( )M

i

p
p

NIS

p

mq
ij ijp

ij
i j ij ij

d
f f

f f





 

        
      




 x

x
            (19) 

     

where ij , 1,2,...,i q ,  =1,2,..., ij m  are the relative importance (weights) of  objectives of all 

levels, *

G
max ( )ij ij
x

f f


 x , 
G

min ( ),ij ij
x

f f


 x  1,2,...,i q ,  =1,2,..., ij m , and 1,2,...,p   . Let 

1 2

* * * * * *

11 1 21 2 1( ,..., , ,..., ,..., ,..., )
qm m q qmF f f f f f f*  and 

1 211 1 21 2 1( ,..., , ,..., , ,..., )
qm m q qmF f f f f f f        the 

individual positive ideal solutions and individual negative ideal solutions for all levels, 

respectively . Similarly, for the special case of p  , see (Lai and Hwang, 1992; Lia et. al., 

1994) for the general form of the distance functions that can be applied to the  proposed TOPSIS 

approach for solving  MLN-MODM problems.  
 

In order to obtain a compromise solution of the MLN-MODM problem, we transfer  

problem (1) into the following bi-objective problem with two commensurable (but often 

conflicting) objectives (Lia et. al., 1994; Abo-Sinna and Amer, 2000; Abo-Sinna, 2001; Abo-

Sinna et al., 2008):  
 

Min ( )
MPIS

pd x   

Max ( )
MNIS

pd x   

subject to 
n={ R | ( ) 0, 1,2,..., }ig i s     x G x x              (20) 

 

where 1,2,...,p   . 
 

Since these two objectives are usual conflicting to each other, it is possible to simultaneously 

obtain their individual optima. Thus, we can use membership functions to represent these 
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individual optima. Assume that the membership functions ( 3( ) x  and 4( ) x )  of two objective 

functions are linear between  
*

M

pd and  M

pd


  , they take the following form: 
 

 
*

G
min ( )

M MPIS PIS

p p
x

d d


 x  and  the solution is PIS
x ,                                                  (21) 

 
*

G
max ( )

M MNIS NIS

p p
x

d d


 x  and  the solution is NIS
x ,                                             (22)  

  ( )
M MPIS PIS NIS

p pd d


x  or   
G

max ( )
M MPIS PIS

p p
x

d d





x  and                             (23) 

  ( )
M MNIS NIS PIS

p pd d


x  or  
*

G
min ( )

M MNIS NIS

p p
x

d d


 x .                                                  (24) 

 

And also, assume that    
* *

*d = ,
M MM PIS NIS

p p pd d
 
 
 

 and    d = ,
M MM PIS NIS

p p pd d
 
 
 

 

. Then, 

based on the preference concept, we assign a larger degree to the one with shorter distance from 

the PIS for 3( ) ( )MPIS
pd

 x x  and assign a larger degree to the one with farther distance from 

NIS for 4( ) ( )MNIS
pd

 x x . Therefore, as shown in Figure 1, 3( ) x   and  4( ) x  can be 

obtained as follows (Lia et. al., 1994; Abo-Sinna and Amer, 2000; Abo-Sinna, 2001; Abo-Sinna 

et al., 2008):  
 

 

 

   
   

 

*

*

*

*3

1 if ( )

( )
( ) 1 if ( )

0 if ( )

M M

M M

M M M

M M

M M

PIS PIS

p p

PIS PIS

p p
PIS PIS PIS

p p p
PIS PIS

p p

PIS PIS

p p

d d

d d
d d d

d d

d d








 


   
 





x

x

x x

x







                (25) 

 

 

   
   

 

*

*

*

*4

1 if ( )

( )
( ) 1 if ( )

0 if ( )

M M

M M

M B M

M M

M M

NIS NIS

p p

NIS NIS

p p
NIS NIS NIS

p p p
NIS NIS

p p

NIS NIS

p p

d d

d d
d d d

d d

d d








 


   
 





x

x

x x

x







             (26) 

 

By applying the max-min decision model, which is proposed by Bellman and Zadeh (1970) and 

extended by Zimmermann (1978) and Zimmermann (1987), we can resolve (20) and obtaining 

the maximizing solution of model (20), ( , ,..., )x x x* * * *

1 2 q
x , by solving the following problem: 
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          3 4( ) max min ( ), ( )D
G

  



x

x x x                                                                     (27)  

 

where * * *

1 2( , ,..., )
jj j jnx = x x x*

j
, 1,2,...,j q . 

 

If  3 4min ( ), ( )   x x , the model (20) is equivalent to the form of Tchebycheff model 

(Bellman and Zadeh, 1970; Zimmermann, 1987; Lai and Hwang, 1992; Lia et. al., 1994; Abo-

Sinna and Amer, 2000; Abo-Sinna, 2001; Abo-Sinna et al., 2008), which is equivalent to the 

following model: 
 

max         

 subject to  

3( ) x     ,     4( ) 4 x ,    [0,1]   and  
n={ R | ( ) 0, 1,2,..., }ig i s     x G x x                                 (28) 

 

where   is the satisfactory level for both criteria of the shortest distance from the PIS and the 

farthest distance from the NIS.  It is well known that if the optimal solution of (28) is the vector 

( , ) *
x , then *

x  is the maximizing solution of model (20). 

 

Finally, as discussed in section (4-1), in order to generate the satisfactory solution of the 

MLN-MODM problem, *
x , the final proposed model that includes the membership functions 

(17) for the upper levels decision variables vectors controlled by 1q   upper levels, 
* * *

1 2( , ,..., )
k

k k k

k k knx = x x x*k

k , 1,2,..., 1k q  , is presented in this paper as:   

  

max         

 subject to  

 

   

*

*

( )
1

M M

M M

PIS PIS

p p

PIS PIS

p p

d d

d d




 



x


,  

 

   

*

*

( )
1

M M

M M

NIS NIS

p p

NIS NIS

p p

d d

d d




 



x


, 

*( )L

L

kk k

kj kj j

k

j

x x t

t


 
 , 1,2,..., 1k q  , 1,2,..., kj n ,  

*( )R

R

kk k

kj j kj

k

j

x t x

t


 
 , 1,2,..., 1k q  , 1,2,..., kj n ,                                  

n={ R | ( ) 0, 1,2,..., }ig i s     x G x x  and           

[0,1]  .                                          (29) 
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5. The TOPSIS Algorithms for MLN-MODM Problems  
 

The TOPSIS model (29) provides a satisfactory decision for all decision-makers of the 

MLN-MODM problem. Following the above discussion, this paper presents two interactive 

TOPSIS algorithms to the proposed TOPSIS approach for solving MLN-MODM problems.  

 

5.1 The First TOPSIS Algorithm to MLN-MOLP problems  
 

The first interactive TOPSIS algorithm, proposed in this paper, includes all satisfactory 

decisions for all q-1 upper levels MODM problems, with possible tolerances, which are described 

by membership functions of fuzzy set theory. These satisfactory decisions are evaluated 

separately by solving the corresponding single-level MODM problems. Following the above 

discussion, the first proposed interactive TOPSIS algorithm for solving MLN-MODM problems 

is given as follows:  

 
TOPSIS Alg I: 

Step 1. Calculate the individual minimum and maximum values of all the objective 

functions in all levels under the given constraints.   
Step 2. Set =1k  
 

Step 3. Solve the -levelthk  MODM problem using Alg A, = kl , and return with 

* * *

1 2( , ,..., )k k k k

k k k knk
x = x x x* , L

k

jt  and R
k

jt , 1,2,..., kj n . 
 

Step 4. = +1k k . 
Step 5. If > -1k q , then go to Step 6 ; otherwise go to Step 3. 
 

Step 6. Construct the PIS payoff table of the MLN-MODM problem and obtain 

1 2

* * * * * *

11 1 21 2 1( ,..., , ,..., ,..., ,..., )
qm m q qmF f f f f f f* , the individual positive ideal solutions 

for all levels.   
 

Step 7. Construct the NIS payoff table of the MLN-MODM problem and obtain 

1 211 1 21 2 1( ,..., , ,..., , ,..., )
qm m q qmF f f f f f f       , the individual negative ideal solutions for 

all levels.   
Step 8. Use Eq. (18) and Eq. (19)  to construct ( )

MPIS

pd x  and ( )
MNIS

pd x , respectively. 

Step 9. Construct the payoff table of problem (20) and obtain 
*d M

p  and d M

p . 

Step 10. Elicit the membership functions ( )MPIS
pd

 x   and  ( )MNIS
pd

 x  , Eq. (25) and Eq. (26). 

Step 11. Elicit the membership functions ( )k
kj

k

kjx
x , 1,2,..., 1k q  , 1,2,..., kj n  in Eq.(17) 

for the decision vectors * * *

1 2( , ,..., )k k k k

k k k knk
x = x x x* , 1,2,..., 1k q  , 1,2,..., kj n . 

Step 12. Formulate the Model (29) for the MLN-MODM problem.  
 

Step 13. Solve Model (29) to get *
x . 
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Step 14. If the DMs are satisfied with the candidate solution in Step 13, then go to Step 15, 

else go to Step 16. 
 

Step 15. Stop with a satisfactory solution, *
x , to the MLN-MODM problem. 

Step 16. Modify the maximum negative and positive tolerances values on the decision 

vectors * * *

1 2( , ,..., )k k k k

k k k knk
x = x x x* , L

k

jt  and R
k

jt , 1,2,..., 1k q  , 1,2,..., kj n , go to 

Step 11. 

 
5.2The Second TOPSIS Algorithm to TLN-MOLP problems  

 

In Alg I, the final model (29) contains the membership functions of the decision variables 

controlled by q-1 upper levels, which separately solved for the -levelthl  MOLP problem, 

1,2,..., 1p l . The second proposed algorithm lexicographically (level by level) solves p 

MODM problems that take into consideration the satisfactory decisions of the upper levels 

(Baky, 2010). The solution procedure starts with the MODM problem of DM1 obtaining the 

satisfactory solution. A relaxation of the DM1 decisions is considered to avoid decision deadlock. 

These decisions of DM1 are modeled by membership functions of fuzzy set theory and passed to 

the DM2 as additional constrains. Then, the distance function from the positive ideal solution, 
PIS

pd ,  and the distance function from the negative ideal solution, NIS

pd ,  are modelled to include 

both the objective functions of the first and  the second levels. . Thereafter, the attained solution 

is sent to the DM3 who seeks the solution in a similar manner. The process is repeated until the 

last level of the MLN-MODM problem is reached. In other words, the distance function 

formulation of  PIS

pd  and NIS

pd  while solving the -levelthl  MODM problem, 2,3,...,ql ,  take 

the following form: 
 

1/
*

*
1 1

( )
( )M

i

p
p

PIS

p

m
ij ijp

ij
i j ij ij

d
f f

f f



 

        
      




 x

xl

              (30)  

1/

*
1 1

( )
( )M

i

p
p

NIS

p

m
ij ijp

ij
i j ij ij

d
f f

f f





 

        
      




 x

xl

            (31) 

 

And the model formulation (29) for -levelthl  MODM problem, 2,3,...,ql , is modified to get  

the satisfactory solution of  the upper -levelsthl  MODM problems as:  

 

max         

 subject to  

 

   

*

*

( )
1

M M

M M

PIS PIS

p p

PIS PIS

p p

d d

d d




 



x


,  

 

   

*

*

( )
1

M M

M M

NIS NIS

p p

NIS NIS

p p

d d

d d




 



x


, 
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*( )L

L

kk k

kj kj j

k

j

x x t

t


 
 , 1,2,..., 1k  l , 1,2,..., kj n ,  

*( )R

R

kk k

kj j kj

k

j

x t x

t


 
 , 1,2,..., 1k  l , 1,2,..., kj n ,                                  

n={ R | ( ) 0, 1,2,..., }ig i s     x G x x  and       

[0,1]  .                                          (32) 

      

Following this discussion, we are now in a position to introduce the second proposed 

interactive TOPSIS algorithm for solving ML-MOLP problems:  
 

TOPSIS Alg II: 
 

Step 1. Calculate the individual minimum and maximum values of all the objective 

functions in  all levels under the given constraints.   
Step 2. Set =1l  
 

Step 3. Solve the -levelthl  MODM using Alg A and return with * * *

1 2( , ,..., )nx = x x x*l

l

l l l

l l l l
, 

L
jt
l

 and R
jt
l

, 1,2,...,j n
l
. 

 

Step 4. = +1l l . 
Step 5. Construct the PIS payoff table until the -levelthl MODM problem and obtain 

1 2

* * * * * *

11 1 21 2 1( ,..., , ,..., ,..., ,..., )m m mF f f f f f f*

ll l , the individual positive ideal solutions 

for levelsl .   
 

Step 6. Construct the NIS payoff table of the until the -levelthl MODM problem and obtain 

1 211 1 21 2 1( ,..., , ,..., ,..., ,..., )m m mF f f f f f f      
ll l , the individual negative ideal solutions 

for levelsl .   
 

Step 7. Use Eq. (30) and Eq. (31)  to construct ( )
MPIS

pd x  and ( )
MNIS

pd x , respectively. 

Step 8. Construct the payoff table of problem (20) and obtain 
*dM

p  and dM

p . 

Step 9. Elicit the membership functions ( )MPIS
pd

 x   and  ( )MNIS
pd

 x , Eq. (25) and Eq. (26). 

Step 10. Elicit the membership functions ( )k
kj

k

kjx
x , 1,2,..., 1k - l , 1,2,..., kj n  in Eq.(17) 

for the decision vectors * * *

1 2( , ,..., )k k k k

k k k knk
x = x x x* , 1,2,..., 1k - l , 1,2,..., kj n . 

Step 11. Formulate the Model (31) for the upper -levelsthl  MODM problems.  

Step 12. Solve Model (31) to get  ( , ,..., )x x x* * * *

1 2 q
x

l l l l
, * * *

1 2( , ,..., )nx = x x x*l l l l

l l l l l
. 

 

Step 13. If the upper DMs are satisfied with the candidate solution in Step 12, then go to Step 

14, else go to Step 15. 
 

Step 14. 
If = ql , then stop with a satisfactory solution, ( , ,..., )x x x * * * * *

1 2 q
x x

l l l l
, to the 



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

  

MLN-MODM problem; otherwise go to Step 4. 
 

Step 15. Modify the maximum negative and positive tolerances values on the decision 

vectors * * *

1 2( , ,..., )k k k k

k k k knk
x = x x x* , L

k

jt  and R
k

jt , 1,2,..., 1k - l , 1,2,..., kj n . Go to 

Step 10. 
 

6. Illustrative Numerical example 
 

The following numerical example studied by Osman et al. (2003) is considered to illustrate the 

proposed TOPSIS approach and proposed TOPSIS algorithms for solving MLN-MODM problems: 

 

[1
st
 Level]     

1
1 2 31 1 1 2 3 1 2

Max ,
x

2 2 2
f x x x f x x x    

                                                                  
         

      
where x2 and  x3 solve  

[2
nd 

Level]     
2

1 1 22 1 2 3 2 2

2

3Max , ( 1)
x

2 2 2
f x x x f x x x                                                                

where x3 solves  

[3
rd

 Level]     
3

1 2 1 2 33 1 3 3 2

2 2 2
Max , ( ( (1) 1) 1)

x

2 2
f x x x f x x x        

                                      
      

 
subject to 

       1 2 3( , , ) G= x x x x = 1 2 3 1 2 3 1 2 3 1 2 3{ | 2 8, 7, 5, , 0}x x x 2x x x x x x x , x x         x    

 
Table 1 summarizes minimum and maximum individual optimal solutions, of all objectives 

functions for the two levels of the BL-MODM problem, subjected to given constraints, G. 
 

Table 1 

minimum and maximum individual optimal solutions 

 1 1f  1 2f  2 1f  2 2f  3 1f  3 2f  

ij
min

G

f  0 0 0 0 0 1 

ij
max

G

f  5 25 12.25 26 16 27 

 

The first Algorithm, Alg I, can be explained through the solution procedure of the second 

algorithm, Alg II. Then, following Alg II, the proposed TOPSIS approach to MLN-MODM problems 

proceeds as:  

 

The satisfactory solution of first-level MODM problem: 
 

Firstly, Table 2 and Table 3 show the PIS and NIS payoff tables for the first-level MODM problem:  

 

 
1

1 2 31 1 1 2 3 1 2
Max ,

x

2 2 2
f x x x f x x x                                       (33) 

 subject to 1 2 3( , , ) G= x x x x
 
                          (34) 

 

Table  2 

PIS payoff table of problem (33) and (34) 
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1 * *

11 12( , ) (5,25)F f f 
*

 

Table  3 

NIS payoff table of problem (33) and (34)  

 11f  21f  1x  2x  3x  

11
min

G

f  0


 0 0 0 0 

12
min

G

f  0 


0
 

0 0 0 

1

11 12( , ) (0,0)F f f 
   

 

Assume that 1 2 0.5   , the equations for  
1

( )PIS

pd x  and 
1

( )NIS

pd x  when 2p   are: 

1
1 2 3

2
2

1 2 21 2 3
1 2

255
( ) 0.5 0.5

5 0 25 0

2 2 2

PIS
F

x x xx x x
d

      
          

x  

 
1

1 2 3

221

1 2 1 2 3( ) 0.01 5 0.0004 25PIS 2 2 2
F d x x x x x x          x , 

 
1

1 2 3

221

2 2 1 2 3( ) 0.01 0.0004NIS 2 2 2
F d x x x x x x        x . 

 

Next, To formulate model (16) the payoff table of (8) is shown in Table 4: 
 

Table 4 

The payoff table of (8) when p = 2 

 
1

1F  1

2F  1x  2x  3x  

1

1Min F
 
 0

*
 0.707


 0 0 5 

1

2Max F  0


 0.707
*
 0 0 5 

 

Also, 1

1Max 0.707F   at (0,0,0) and 1

2Min 0F   at (0,0,5). Thus, we have 1*

2d =(0,0.707)  and 

1

2d =(0.707,0)  (as proposed in this paper). Therefore, the membership functions 1( ) x  and  2( ) x  can 

be obtained as: 

 

1
1

1
11

1

0
( ) 1 1 1.414

0.707 0F

F
F


   


x  

1
2

1
12

2

0.707
( ) 1

0.707 0F

F
F


  


x  

 11f  21f  1x  2x  3x  

11
max

G

f  5
*
  25 0 0 5 

12
max

G

f  5 25
* 

0 0 5 
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And then, the equivalent TOPSIS formulation for the first-level MODM problem is obtained as: 
 

max         

 subject to  
1

11 1.414F   , 

1

2F  , 

[0,1] , and 1 2 3( , , ) G= x x x x   

 

The maximum satisfactory level 0.9985 1    is achieved for the solution 
1* 1* 1*

1 2 3( , , ) (0,0,5)x x x 1*
x  and  

1 1 12( , ) (5,25)f f  . Let the upper level DM decide 
1

1 0*x   with 

positive tolerance 
1 1Rt   (one sided membership function (Sinha, 2003; Pramanik and  Roy, 2006).  

 

The satisfactory solution of the first-level and second-level MODM problems: 
 

Table 5 and Table 6 show the PIS and NIS payoff tables for the second-level MODM problem:  

 

 
2

1 1 22 1 2 3 2 2

2

3Max , ( 1)
x

2 2 2
f x x x f x x x                         (35)

 subject to 1 2 3( , , ) G= x x x x                             (36) 

 

Assume that 0.25, 1,2,3,4i i   , the equations for  
2

( )PIS

pd x  and 
2

( )NIS

pd x   when 2p   are: 

1 2 3

2

1 2 31

1/ 2
2

2

2 21 2 3

2

1 2 22
2

2 32 2

0.25 0.25

0.25 0.25

5 0 25 0

12.25 0 26 0

255

( )

26 ( 1)12.25

2 2 2

PIS

2 22

P

x x xx x x

d

x x xx x x

 

 

                  
   

        
    

        

x  

 
2 1 2 3

1 1 2 3

1/ 2
22

1 2 3
2

1 2 22
2

2 3

0.0025 0.0001

0.00042 0.000093

5 25
( )

12.25 26 ( 1)

2 2 2

PIS

2 2 2

P
x x x x x x

d

x x x x x x

            
   

              

x  

 
2 1 2 3

1 1 2 3

1/ 2
22

1 2 3
2

2 2 22
2

2 3

0.0025 0.0001

0.00042 0.000093

( )

( 1)

2 2 2

NIS

2 2 2

P
x x x x x x

d

x x x x x x

          
   

            

x  

 

Table  5 

PIS payoff table of  problem (35) and (36)  

 21f  22f  
1x  2x  3x  

21
max

G

f  12.25* 6.25 3.5 0 0 
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22
max

G

f  5 26
* 

0 0 5 

* *

21 22( , ) (12.25,26)LF f f 
*

 

 

Table  6 

NIS payoff table of problem (35) and (36) 
 

 21f  
22f  

1x  2x  3x  

21
min

G

f  0


 1 0 0 0 

22
min

G

f  1 0


 
1 0 0 

21 22( , ) (0,0)LF f f 
   

Next, To formulate model (29) the payoff table of (20) is shown in Table 7: 

Table 7 

The payoff table of (20),when  

 
2

1P  2

2P  1x  2x  3x  

2

1Min P  0.1486
*
 0.445


 0 0 5 

2

2Max P  0.1486


 0.445
*
 0 0 5 

 

Also, 2

1Max 0.496P   at (0,0,0) and 2

2Min 0.009P   at (0,0,0.0614). Thus, we have 

2*

2d =(0.1486,0.445)  and 2d =(0.496,0.009)p
 (as proposed in this paper). Similar to the TOPSIS 

formulation of the first-level MODM problem, the equivalent TOPSIS formulation for the first-level and 

second-level MODM problems is obtained as: 
 

max         

 subject to  
2

12.89 1.43P     

22.294 0.021BP    

11 x    

[0,1]   , and  1 2 3( , , ) G= x x x x   

 

The maximum overall satisfactory level 1   is achieved for the solution 

2* 2* 2*

1 2 3( , , ) (0,0.00282,4.997)x x x 2*
x . Let the second-level DM decide 

2*

2 0.00282x    with positive 

tolerance 2 0.5Rt   and negative tolerance 
2 0.00282Lt  .  

 

 

The TL-MODM problem: 
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Similarly, in the same way, the equivalent TOPSIS formulation for the TL-MODM problem is: 
 

max         

 subject to  
3

13.876 1.548G     

3

23.296 0.042G    

11 x    

0.00282
2 (0.00282 0.00282)x


 

  

0.00282
2(0.00282+0.5) x




  

[0,1]   , and  1 2 3( , , ) G= x x x x   

 

where: 1
6
, 1,2,...,6i i    and 

   

   

   

1 2 3

3
1 2 31

1 2 31 2

2
2

2 21 2 31 1
6 6

22
2

2 22 33 1 1
1 2 6 6

2
2 2 2

2 231 1
6 6

255

5 0 25 0

2612.25

12.25 0 26 0

2716

16 0 27

( 1)
( )

( 1) ( 1) ( 1)

2 2 2

2 22

PIS

2 2

x x xx x x

x x xx x x
G d

x x xx x - x

 

 



      
   

    

        
     

      

        
 

  

x

1/ 2

2

1

 
 
 
 
  
 
 
 

  
  
    

 

 
1 2 3

3

1 1 2 3

1 2 1 2 3

22

1 2 3

22
3 2

1 2 2 3

22
2 2 2

3

5 25

12.25 26

16 27

0.00111 0.000044

( ) 0.000178 0.00004 ( 1)

0.00012 0.000038 ( 1) ( 1) ( 1)

2 2 2

PIS 2 2 2

2 2

x x x x x x

G d x x x x x x

x x - x x x x

           
 

                
 
               

x

1/ 2

 

 
1 2 3

3

1 1 2 3

1 2 1 2 3

1/ 2
22

1 2 3

22
3 2

2 2 2 3

22
2 2 2

3

0.00111 0.000044

( ) 0.000178 0.00004 ( 1)

0.00012 0.000038 ( 1) ( 1) ( 1) 1

2 2 2

NIS 2 2 2

2 2

x x x x x x

G d x x x x x x

x x x x x x

         
 

              
 
               

x

 

The maximum overall satisfactory level for the TL-MODM problem 0.91   is achieved for the solution 
3* 3* 3*

1 2 3( , , ) (0,0.0026,4.997)x x x * 3*
x = x , with objective function values 11 4.9996f  , 12 24.97f  , 

21 4.9996f  , 22 25.97f  , 31 4.997f   and 32 17.98f   and with membership function values 

11 0.9999  , 12 0.999  , 21 0.408  , 22 0.999  , 31 0.31   and 32 0.69  , respectively . 

 



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

  

A comparison given in Table 8 between the proposed TOPSIS algorithms, Alg I and Alg II, and 

that were given in  Osman et al. (2003) by Osman et al. clearly shows that the two compromise solutions 

of Alg I and the interactive algorithm of  Osman et al. (2003) are close to one another. Also, it shows 

that the compromise solution of the proposed TOPSIS Alg II is more preferred than the compromise 

solution of the interactive algorithm of  Osman et al. (2003). 
 

Table 8 
Comparison of optimal solutions and satisfactory solutions of the illustrative example based on the proposed 

TOPSIS algorithms  and the interactive algorithm of  Osman et al. (2003) 
 

The proposed TOPSIS Alg II The proposed TOPSIS Alg I 
The interactive algorithm of  

Osman et al. (2003) 

The optimal 

solutions 

11 0.9999   11 4.9996f   11 0.958   11 4.93f   11 0.998   11 4.99f   11 5f   

12 0.999   12 24.97f   12 0.52   12 12.88f   12 0.498   12 12.45f   12 25f   

21 0.408   21 4.9996f   21 0.4   21 4.93f   21 0.547   21 6.7f   21 12.25f   

22 0.999   22 25.97f   22 0.534   22 13.88f   22 0.37   22 9.65f   22 26f   

31 0.31     31 4.997f   31 0.71   31 11.3f   31 0.78   31 12.55f   31 16f   

32 0.69   32 17.98f   32 0.71   32 18.34f   32 0.67   32 17.35f   32 27f   

0.91  ,  

(0,0.0026, 4.997)
*

x  
1 1Rt  , 2 0.5Rt  , 2 0.5Lt  , 

0.85  , and (0,3.08,1.85)
*

x  

(1.9, 2.97,0.12)
*

x   

 

 

7. Conclusion 
 

Considering the advantages of the TOPSIS approach for MODM problems, this paper 

develops a TOPSIS approach for solving multi-level non-linear multi-objective decision-making 

problems. In order to obtain a compromise solution (satisfactory solution) to the MLN-MODM 

problems using proposed TOPSIS approach, modified formulas for the distance function from the 

positive ideal solution and the distance function from the negative ideal solution are proposed and 

modelled to include all objective functions in all levels of the MLN-MODM problems Two 

interactive TOPSIS algorithms for solving these problems are also proposed.  The first proposed 

interactive TOPSIS algorithm includes the membership functions of the decision variables for 

each level except the lower level of the multi-level problem. These satisfactory decisions are 

evaluated separately by solving the corresponding single-level MODM problems. The second 

proposed interactive TOPSIS algorithm lexicographically solves the MODM problems of the 

MLN-MOLP problem by taking into consideration the decisions of the MODM problems for the 

upper levels. This paper also presents the algorithmic steps of the TOPSIS approach for solving 

single-level MODM problems of Lia et al. (1994). 

 

An illustrative numerical example is given to demonstrate the proposed TOPSIS approach 

and the interactive algorithms for MLN-MODM problems. A comparison between the two 

proposed TOPSIS algorithms and the interactive algorithm of Osman et al. (2003) shows that the 

compromise solutions of first proposed algorithm and the interactive algorithm of Osman et al. 
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(2003) are close to one another. However, it shows that the compromise solution of the second 

proposed algorithm is more preferred than the compromise solution of the interactive algorithm 

of Osman et al. (2003). 
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