
 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

 

1 

 

 

EFFECT OF POROSITY ON THE FLOW OF A VISCOELASTIC FLUID 

OVER A STRETCHING SHEAT 

 

Hazem Ali Attia
1
 Karem Mahmoud Ewis  Ibrahim Hamdy Abd Elmaksoud 

 

Department of Engineering Mathematics and Physics, 

Faculty of Engineering, Fayoum University, 

El-Fayoum-63415, Egypt  

 

Abstract 

 The flow through a porous medium of a non-Newtonian viscoelastic fluid past a 

stretching sheet is examined where the porosity of the medium is assumed to obey 

Darcy's model.  An analytical solution of the governing non-linear boundary layer 

equation is obtained.  The effect of the porosity of the medium and the characteristics of 

the non-Newtonian fluid on the flow is investigated. 

 

1. Introduction 

The flow of a viscous incompressible fluid over a moving surface otherwise at rest has 

several engineering applications in polymer processing.  Crane [1] studied the steady 

two-dimensional boundary layer flow caused by a stretching sheet whose velocity varies 

linearly with the distance from a fixed point on the sheet.  The extension of the problem 

to the case of non-Newtonian fluids has been given by [2-10].  Chiam [2] and Anderson 

and Dandapat [3] have considered the motion of micropolar and power-law fluids, 

respectively whereas the analysis of viscoelastic fluids was given by others [4-10].  

Unlike the inelastic power-law model, the Rivlin-Ericksen fluid studied by Siddappa and 

Khapate [4] and Walters’ liquid B’ considered by Siddappa and Abel [6] both exhibit 

normal-stress differences in simple shear flows [10].  Rajagopal, Na and Gupta [5] 

studied the effects of viscoelasticity on the flow of a second-order fluid and obtained the 

same governing boundary layer equation as that in [6], [7] and [10].  The flow of 

electrically conducting viscoelastic fluid past a stretching sheet in the presence of an 

external uniform magnetic field was studied in [11]. 

 In the present paper, the effect of the porosity of the medium on the flow of a 

viscoelastic fluid past a stretching sheet is analyzed.  The flow through a porous medium 

deals with the analysis in which the differential equation governing the fluid motion is 

based on the Darcy’s law which accounts for the drag exerted by the porous medium [12-

14].  An analytical solution of the governing non-linear boundary layer equation is 

obtained, showing that the porous medium has the same effect on the flow as the 

characteristics of the non-Newtonian viscoelastic fluid. 
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2. Formulation of the Problem 

 The flow through a porous medium of an incompressible viscoelastic fluid over a 

flat and impermeable elastic sheet is studied.  The fluid (Walters’liquid B’), which is 

confined to the half space y>0 above the sheet, obeys the rheological equations of state 

due to Walters [15-16].  The sheet is stretched with a velocity which varies linearly with 

the distance from the fixed origin x=0 by applying two equal and opposite forces along 

the x-axis.  The resulting motion of the otherwise fluid at rest is thus caused solely by the 

moving sheet.  The steady two-dimensional boundary layer equations for Walters’liquid 

B’ were derived by Beard and Walters [17] to first order in elasticity which means for 

short memory fluids with short relaxation times.  Following [16] the equations governing 

the viscoelastic  boundary layer flow along a stretching sheet take the form 
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with the boundary conditions 

,0,0,:0  xvcxuy                                                                                         (3a)  

,0,0:  xuy                                                                                                (3b)  

where u and v are the velocity components in the x and y directions, respectively,   is 

the density,   is the limiting viscosity at small rates of shear,   is the first moment of  

the distribution function of relaxation times, and K is the Darcy permeability [12-14]. 

 

3. Analytical Solution 

 

Following the procedure discussed in [11], we introduce the new dimensionless variables  

f and  such that  

 

)()/( 2/1  xfc                                                                                                (4a) 

 

yc 2/1)/(                                                                                                          (4b) 

 

The velocity components u and v are then related to the physical stream function   by 

 

)(/  fcxyu                                                                                                (5a) 

 

)()/(/ 2/1  fcxv  .                                                                            (5b) 

 

Substituting Eq. (5) in Eqs. (1)-(3) we get the fourth-order ordinary differential equation 
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)2( 22 fffffkfNffff  ,                                                (6)  

 

with the transformed boundary conditions 

 

0,1:0  ff                                                                                                (7a) 

 

0:  f .                                                                                                    (7b) 

 

The terms on the right side of Eq. (6) represent the porosity and viscoelastic forces where 

)/(cKN   and  /ck  are the porosity and elastic parameters, respectively.  The 

latter represents a measure of the relative importance of elastic and viscous effects and 

can thus be identified with the Weissenberg number [10].  Recently in a similar 

formulation but in the non-porous case, Dandapat and Gupta [9] found that a function of 

the form 

0),1(
1

)(   


 ef                                                                                     (8) 

satisfies the complete set of boundary conditions in Eq. (7).  It can shown checked that 

Eq. (8) is a solution of the highly non-linear differential equation (6) if 
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Therefore, the solutions for the velocity components become 

  /)1()/(, 2/1   ecvcxeu                                                            (10) 

                                                                            

This analytical solution includes the combined effects of viscoelastic and porosity forces.  

The analytical solution derived independently in [6] and [9] is obtained for N=0. 

 

4. Discussion 

Following the procedure discussed in [11], far away from the stretching sheet the velocity 

field in Eq. (10) acts as 

As  /)/(,0: 2/1cvu                                                                (11a) 

Therefore, the flow outside the boundary layer becomes uniform and is directed 

perpendicularly to the sheet.  The boundary layer thickness   defined as the distance 

from the sheet at which the velocity component u has been reduced to one percent of the 

velocity cx of the stretching surface, and is expressed as [11] 

 

 /)/(100ln 2/1c .                                                                                 (12) 
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Thus,   is constant and independent of x for any combination of the parameters N and k.   

 

The dimensionless wall friction coefficient fc  can be given as 

2/12/1
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                                                   (13) 

where  /Re 2cxx   is a local Reynolds number based on the velocity cx of the 

stretching sheet. 

 

 An essential feature of the above analytical results is that the viscoelastic and 

porosity effects are combined into the single parameter 1  defined in Eq. (9).  Since 

0N  and 10  k  it can be concluded that an increase of the porosity has the same 

influence on the flow field as increased viscoelasticity [11].  According to Eqs. (10)-(13) 

the main effects of elasticity and a porous medium are to reduce the velocity within the 

boundary layer and the external velocity normal to the sheet and also to reduce the 

boundary layer thickness while increasing the skin friction.                                            
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