
 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

 1 

SOLUTION of LINEAR SYSTEM of PARTIAL DIFFERENTIAL  

EQUATIONS WITH CONSTANT COEFFICIENTS 

By 

Hassan Mohamed El Hamouly
(*) 

 

ABSTRACT  

 
In this paper we adopt operator method for solution of linear system of partial differential 

equations with constant coefficients. We deal with operator L( Dx , Dy ),where Dx=/x , 

that need not be homogeneous, where we introduce three possible solutions of the 

homogeneous equation in terms of basic (or arbitrary) functions in addition to the solution 

of the nonhomogeneous equation. 
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1. Introduction 

 

Historically, the solution of a homogeneous linear partial differential equation with 

constant coefficients with homogeneous operator L( Dx , Dy ) u(x,y) = 0, where 

               L( Dx , Dy ) =  Dx
n
 + a1 Dx

n-1
 Dy + a2 Dx

n-2
 Dy

2
 + … + an Dy

n
  

was obtained by considering u(x,y)= F(y + λx), where λ is the solution of the auxiliary 

equation 

                                        λ
n
 + a1 λ

n-1
 + a2 λ

n-2
 + … + an =0, 

and F is an arbitrary function.  

Unfortunately, this is valid only for homogeneous operator. We generalize this solution for 

non homogeneous operator by assuming exponential forms. Our method also generalize the 

method of separation of variables for cases where there is a separable solution in 

multiplication form, but the method of separation of variables cannot obtain it, for example 

the solution of the partial differential equation  uxx (x,y) + uxy (x,y) +  uyy (x,y) = 0.   

 

The particular integral solution of a nonhomogeneous linear partial differential equation 

with constant coefficients with homogeneous operator L( Dx , Dy ) was obtained by formulas 

like those that will be given in section (3), except for an arbitrary function φ (other than 

polynomial, sine, cosine, sinh, cosh, exponential): 
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All formulas given in this paper are direct consequence of differentiation, so their proofs 

will be omitted.    

 

 

2.  Solution of homogeneous equation 

 

Consider the equation 

                                           L( Dx , Dy ) u(x,y) = 0 .                                  (2.1)  
We assume the solution of the form u(x,y) = )yxexp( 21   . Substituting in (2.1), we 

obtain  

                                           L(λ1 , λ2) )yxexp( 21  = 0 ,   )yxexp( 21  ≠ 0   

so that                                 L(λ1 , λ2) = 0.                                                  (2.2) 

Equation (2.2) is called auxiliary equation of equation (2.1).  

According to the roots λ1 (λ2) of (2.2), we have (for λ2 arbitrary complex number which can 

be adjusted or chosen according to initial or boundary conditions i. e. λ2 can take more than 

one value to generate different suitable solutions) the following cases: 

 

a) Real distinct roots: λ11 ( λ2 ) , λ12 ( λ2 ) , … , λ1n ( λ2 ) . 

 

    The solution (with respect to roots λ1 (λ2)) will have the form: 

 )yxexp( 
n

c ...)yxexp( 
2

c )yxexp( 
1

c  y)(x,
1

u 2n1212211  

     where c1, c2 , … , cn are arbitrary constants. 

 

Example 2.1 Solve the P.D.E. uxx (x,y) - uyy (x,y) = 0. 

 

Solution. Auxiliary equation:( λ1)
2
 = ( λ2 )

2
 , λ1 = ±  λ2 and the solution ( with respect to roots 

λ1 ( λ2 ) )  will be 

                y))x-(exp( 
2

cy))(xexp( 
1

c  y)(x,
1

u 22  

Note that on taking λ2 = i or – i, we obtain solutions of the form sin x cos y or cos x sin y or 

sinx siny and cosx cosy, and on taking λ2 =1+i, we obtain non separable solutions of the 

form exp(x+y) sin (x+y), exp(x+y) cos(x+y), exp(-x+y) sin (-x+y) and exp(-x+y) cos (-x+y). 

 

b) Real repeated roots: λ1 ( λ2 ) , λ1 ( λ2 ) , … , λ1 ( λ2 ) … k - times . 

 

    The solution (with respect to roots λ1 (λ2)) will have the form: 
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u1(x,y) =  )
1k

x
k

c...x
2

c
1

y))(c)x((exp( 221 , 

     where c1, c2 , … , ck are arbitrary constants. 

 

Example 2.2 Solve the P.D.E. uxx (x,y) – 2 uxy (x,y) + uyy (x,y) = 0. 

 

Solution. Auxiliary equation :( λ1)
2
 -2 λ1 λ2 + (λ2)

2
 = 0, λ1 = λ2, λ2 and the solution (with 

                respect to roots λ1 ( λ2 ) )  will be 

                                         .x)
2

c
1

(cy)))(x(exp( y)(x,u 21   

 

c) Complex conjugate roots:  λ1 = h1 (λ2) ± i h2 (λ2). 

 

    The solution ( with respect to roots λ1 ( λ2 ) ) will have the form: 

u1(x,y) = y)))x((exp(h 221   ( c1 cos(h2 ( λ2 ) x) + c2 sin(h2 ( λ2 ) x)), 

     where c1, c2 are arbitrary constants. 

 

Example 2.3 Solve the P.D.E. uxx (x,y) + uyy (x,y) = 0. 

 

Solution. Auxiliary equation :( λ1)
2
 = - (λ2)

2
, λ1 = ± i λ2   and the solution (with respect to  

                roots λ1 ( λ2 ) ) will be 

                                u1(x,y) = (exp(λ2 y)) (c1 cos(λ2 x) + c2 sin(λ2 x)).  

 

Example 2.4 Solve the P.D.E. 
8

8

x


u(x,y) + 

8

8

y


u(x,y) = 0. 

Solution. Auxiliary equation :( λ1)
8
 = - (λ2)

8
,  
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and the solution ( with respect to roots λ1 ( λ2 ) ) will be 
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Example 2.5 Solve the P.D.E. uxx (x,y) + uxy (x,y) + uyy (x,y) = 0, u(0,y) = u(1,y) = 0,  

u(x,0) = x
2
(1-x) and u(x,1) = x

 
(1-x). 

Solution. Auxiliary equation :( λ1)
2
 + λ1 λ2 + (λ2)

2
 =0, λ1 = λ2 (-1/2 ± i 3 /2) and the solution 

will be 

       u(x,y) = (exp(λ2 (y-x/2))) (c1 cos( 3 λ2 x /2) + c2 sin( 3 λ2 x /2)) +  

 (exp(λ1 (x-y/2))) (c3 cos( 3 λ1 y /2) + c4 sin( 3 λ1 y /2)).  

u(0,y)= c1 exp(λ2 (y))) + (exp((-λ1y/2))) (c3 cos( 3 λ1 y /2) + c4 sin( 3 λ1 y /2)) = 0,    

from which c1 = c3 = c4 = 0. 

u(1,y) = c2 (exp(λ2 (y-1/2))) sin( 3 λ2 /2)) = 0, from which λ2 = ± 2nπ / 3 , n = 1, 2, … 

and the n
th

 solution will be  

un(x,y) = (An (exp(2nπ (y-x/2)/ 3 )) + Bn (exp(-2nπ (y-x/2)/ 3 ))) sin(nπx)), n = 1, 2, …  

and the solution will be 







1n
 x)).sin(n ))) 3x/2)/-(y (exp(-2n Bn + ))3 x/2)/-(y (exp(2n (An)y,x(u  

.destablishecompletelyissolutiontheandneveryforfoundareBandAthatso

 x),-x(1x))sin(n ))) 3x/2)/-(1 (exp(-2n B + ))3 x/2)/-(1 (exp(2n (A)1,x(u

conditionsecondtheforsamethedoWe

(0,1).intervaltheonx)-(1xoftscoefficiensineFourierasx)sin(noftscoefficien

theobtainwe,lyrespective)01/(dx)3 /xnexp((and)01/(dx)3 /xn-exp((

valuesmeanheirtby)3 /xnexp(and)3 /xn-exp(replacingOn

 x).-(1xx))sin(n ))) 3/x n (exp( B + ))3 /xn-(exp( (A)0,x(u

nn

1n
nn

2
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nn
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

 

The solution with n=6 has an error (for the boundary conditions) of the order of 10
-3

 while 

with n=60 has an error of the order of 10
-6

.  

The graph of the solution with n=60 ( obtained by Maple 12) is 
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d) Repeated complex conjugate roots:  

 

    λ1 = h1 ( λ2 ) ± i h2 ( λ2 ) , h1 ( λ2 ) ± i h2 ( λ2 ) , … , h1 ( λ2 ) ± i h2 ( λ2 ) … k-times. 

    The solution (with respect to roots λ1 (λ2)) will have the form: 

u1(x,y) = y)))x((exp(h 221   ( (cos(h2 ( λ2 ) x)) ( c1 + c2 x + … + ck x
k-1

 )  

+ (sin(h2 ( λ2 ) x)) ( d1 + d2 x + … + dk x
k-1

 )), 

     where c1 , c2 , … , ck ,  d1 , d2 , … , dk are arbitrary constants. 

 

Example 2.6 Solve the P.D.E. (Dxx + Dyy)
2
 u(x,y) = 0. 

 

Solution. Auxiliary equation ((λ1)
2
 + (λ2)

2
)
2
 =0, λ1 = ± i λ2 , ± i λ2 and the solution ( with  

                respect to roots λ1 ( λ2 ) ) will be 

                             u1(x,y) = (exp(λ2 y)) ((c1+c2x ) cos(λ2 x) + (d1+d2x)  sin(λ2 x)). 

 

e) Real valued roots of λ1 (Auxiliary equation: L(λ1 , λ2) = L1(λ1)):  

 

    λ1 = k1 , k2 , … , kn. 

    The solution will have the form: 

u1(x,y) = φ1(y) exp (k1x) + φ2(y) exp (k2x)  + … + φ n(y) exp (knx),
 

     where φ1 , φ 2 , … , φ n are arbitrary functions of y. Also, this solution can be generalized  

     as before for repeated roots, complex roots and repeated complex roots. 

     The same can be done for L(λ1 , λ2) = L2(λ2). 

 

Example 2.7 Solve the P.D.E. (Dx - 3) (Dy + 5) u(x,y) = 0. 

Solution. Auxiliary equation (λ1 - 3) (λ2 + 5) =0, λ1 =3, λ2 = -5, and the solution will be 

               u(x,y) = φ(y) exp(3x) + ψ(x) exp(-5y). 
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Example 2.8 Solve the P.D.E. (Dx Dy) u(x,y) = 0. 

 

Solution. Auxiliary equation λ1 λ2 =0, λ1 =0, λ2 = 0, and the solution will be 

               u(x,y) = φ(x) + ψ(y) , where  φ(x) , ψ(y) are arbitrary functions of x and y  

               respectively. 

 

Note. In all previous cases, there are two other possible solutions: 

1) u2(x,y) which is the solution with respect to the roots λ2 ( λ1 ). 

2) u3(x,y) the Polynomial solution which can be obtained in the form 

      u3(x,y) = c1 + c2x + c3y + c4x
2
 + c5xy + c6y

2
 + … + cky

m
 ,  

      where m = max( order of Dx in the operator , order of Dy in the operator) 

      after canceling unnecessary constants by substituting u3(x,y) in the  

      partial differential equation. For example, for the partial differential equation   

      uxx (x,y) + uyy (x,y) = 0, m=2 so we suppose u3(x,y) = c1 + c2x + c3y + c4x
2
 + c5xy + 

      c6y
2
. Substituting in the equation, we obtain 2c4+2c6 = 0, that is  

      u3(x,y) = d1 + d2x + d3y + d4xy + d5(x
2
 – y

2
). 

 

We can select one or more (may be of the same type, u1(x,y) or u2(x,y) or u3(x,y)) of these 

possible solutions to form the solution of the homogenous equation according to conditions 

given in the problem. For example, the two components of the solution  

           u(x,y) = (exp(x)) (c1 cos(y) + c2 sin(y)) +(exp(-x)) (d1 cos(y) + d2 sin(y)) 

of the p.d.e. uxx (x,y) + uyy (x,y) = 0 are of the type u2(x,y) with λ1=1, λ
*

1= -1. 

 

Example 2.9 Solve the P.D.E. uxx (x,y) + uyy (x,y) = 0, 0 ≤ x  ≤ π/2, 0 ≤ y  ≤ π/2, u(0,y) =  

3 cos(y), u(π/2,y) = 4 sinh(π/2) sin(y), u(x,0) = -3sinh(x- π/2) /  sinh(π/2), u(x, π/2) = 4 sinh(x). 

Solution. Applying the boundary conditions on the solution 

                 u(x,y) = (exp(x)) (c1 cos(y) + c2 sin(y)) + (exp(-x)) (d1 cos(y) + d2 sin(y)), 

we obtain  

u(x,y) = (exp(x)) (
)2/sinh(2

)2/exp(3




 cos(y) + 2 sin(y)) + (exp(-x)) (

)2/sinh(2

)2/exp(3




 cos(y) -2 sin(y)). 

The graph of the solution is given by the following figure: 

 
2. Solution of nonhomogeneous equation 
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Having the equation L( Dx , Dy ) u(x,y) = f(x,y), the particular integral solution can be 

obtained by operator method in the form u(x,y) = (1/ L( Dx , Dy )) f(x,y). According to the 

type of the function f(x,y), we have the following cases: 
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Example 3.8    Solve the P.D.E. uxx (x,y) - uyy (x,y) = cosh(x+y), 0 ≤ x  ≤ 1, 0 ≤ y  ≤ 1, u(0,y) = 

4exp(y), u(1,y) = 2+3y+4exp(1+y)+(1/2)sinh(1+y), u(x,0) = 2x+4exp(x)+(x/2)sinh(x), u(x,1) = 

5x+4exp(1+x )+(x/2)sinh(1+x). 

Solution. Taking the general solution as the summation of u1(x,y), u3(x,y) and up.i.(x,y), we 

obtain  

u(x,y) = c1 + c2x + c3y + c4(x
2
 + y

2
) + c5xy + c6exp(a(x+y))+ c7exp(b(-x+y))+ (x/2) sinh(x+y). 

Choosing c1 = c3 = c4 = c7 = 0, a=1, we obtain  

u(x,y) = c2x + c5xy + c6exp(x+y) + (x/2) sinh(x+y). 

Applying the boundary conditions on the solution, we obtain  

u(x,y) = 2x + 3xy + 4 exp(x+y) + (x/2) sinh(x+y). 

The graph of the solution is given by the following figure: 

 
 

4. Solution of a system of partial differential equations with constant coefficients 

 

Consider the system 

 

       f1(Dx , Dy) u(x,y) + f2(Dx , Dy) v(x,y) = g1(x,y) ,     (4.1) 

       f3(Dx , Dy) u(x,y) + f4(Dx , Dy) v(x,y) = g2(x,y).      (4.2) 

 

The equations of u(x,y) , v(x,y) are: 
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The right hand sides of the first and second equations are  

(f4(Dx , Dy))g1(x,y) - (f2(Dx , Dy))g2(x,y) and (f1(Dx , Dy))g2(x,y) - (f3(Dx , Dy))g1(x,y) 

respectively. We can solve one of the equations to find u(x,y) or v(x,y) and substitute in the 

other equation to find the other function ( as in example 4.1 ) or solve each of them to find 

u(x,y) and v(x,y) and then substitute in one of the equations  ( 4.1 or 4.2 ) to eliminate the 

excess arbitrary constants. 

 

Example 4.1    Solve the system of partial differential equations 

                           (Dx+3) u(x,y) + Dy
2
v(x,y) = exp(x-2y),             (4.3) 

                             u(x,y)  - (Dx+ Dy)v(x,y) = 6x.                          (4.4) 

 

Solution. The equation of v(x,y) is 

).y2xexp(x186)y,x(v)DD3DDD3D(

,
x6

)y2xexp(

1

3D
)y,x(v

DD

D
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2
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2

x

x
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2

yx










 

Auxiliary equation: 

 

                               -λ1
2
-3 λ1- λ1 λ2-3 λ2- λ2

2
 = 0.   
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λ1, λ2 are real in the interval [-3, 1]. 
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From equation (4.4): 

     

   u(x,y)  = 6x +(Dx+ Dy)v(x,y)  
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For λ1= λ2=0 , the solution ( using u(x,y)=u1(x,y) + u2(x,y) + up.i.(x,y), v(x,y)=v1(x,y) 

+ v2(x,y) + vp.i.(x,y) ) is given by: 

).yx(kkformtheinconsideredbecan)y,x(vand)y,x(uwhile

,3x)y2xexp(
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Note. The method can be applied to ordinary differential equations as well (u=u(x)) when 

Dy is absent and in this case λ1k (λ2) will be constant and λ2=0.  
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