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Abstract 

Very few researchers have tackled the characterization problem of the skew nor- mal distribution 

due perhaps to its mathematical  tractability.  In this article,  some new characterization results for 

the skew normal distribution based on conditional moments have been obtained.  The results 

specialized to the standard normal distri- bution.  Some consequences and discussions are, also 

given in this context. 

1- Introduction 

The skew-normal distribution was first introduced by O’Hagan and Leonard (1976) as a prior 

distribution for estimating a normal location parameter. 

The skew-normal distribution and its variations have been discussed by several au- thors 

including Azzalini (1985, 1986), Henze (1986), Azzalini and Dalla Valle (1996), Branco and Dey 

(2001), Loperfido (2001), Arnold and Beaver (2002), Balakrishnan (2002), and Azzalini and 

Chiogna (2004) and others for a comprehensive survey of de- velopments on skew-normal 

distribution and its multivariate form see Azzalini (2005). 

A random variable X is said to have a standard skew-normal distribution with parameter , 

denoted by X ~SN(λ), if its probability density function (pdf ) is: 

                              (1.1) 

The cumulative distribution function (cdf ) of SN( ) is given by: 
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                                               (1.2) 

where (.)  and (.) denote the standard normal pdf and cdf, respectively. 

Now, we shall give some definitions that are needed in the sequel. 

Definition 1 Let    X1,X2 , . . . , Xn    be  independent  random  variables  having  skew normal  pdf   

 and cdf . Let   denote  the corresponding order 

statistics.  Then the pdf of ,    and the joint pdf of ( )  can be written as   

( Arnold et al. (2008)): 

                             (1.3) 

                                                                                                                    

                       (1.4) 

where      ,       

 

Definition 2 Let   ,    ,   , ,  , 

and let  . The pdf of the rth 

generalized order statistics (gos) (Kamps 1995) is given by: 

   (1.5) 

and the joint pdf of the r
th
 and the s

th
 gos as: 

 

 ,             (1.6) 

 

where   
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Let us denote the k
th
 single moment  of  by  and the product moment  

of  and  by  . 

2- The Results. 

We shall state the main results concerning characterization of the  distribution. 

Theorem 1 

Let X be a continuous random variable with cdf   , survival function  , pdf  , failure 

rate  , finite mean µ. Then X has a skew normal distribution  with mean µ if and only 

if. 

 

 

 

with k = 1.2.3…,                                                                                                                          (2.1) 

or 

 

 

 

with k =0,1.2.3…,               (2.2) 

where  

Remarks 

(1) From Theorem 1, for k=0, (2.2) reduces to: 
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     (2.3) 

The “ only if ” part of (2.3) in this case can be proved simply as follows: 

If (2.4) is true, then: 

 

Then we have: 

 

Differentiating both sides with respect to  , we obtain: 

 

Or,  

Or,  

Or,  

which is the pdf of the skew normal distribution . 

(2) Theorem 1 reducedto the case of the standard normal distribution by putting . 

Theorem 2 

Let X be a random variable having pdf  and cdf . Then X have a skew normal 

distribution  if and only if 

         (2.4) 

where: 
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and 

 

 

Remarks: 

(1) From Theorem 2, at , we have: 

 

k = 1, 2, 3, ….                                                                                                                              (2.5) 

where   

(2) The result (2.4) reduces to the standard normal distribution case if λ = 0. 

i.e. 

 

(2.6) 

where 
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and 

 

Theorem 3 

Let X be a random variable having pdf  and cdf . Then X have a skew normal 

distribution SN(λ) if and only if 

 

 

                                                                                                                             (2.7) 

where 

 

and 

 

Remarks. 

(1) At s = r + 1, (2.7), reduces to 
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where         

(2) Also (2.7) reduces to the standard normal distribution case if λ = 0. 

i.e. 

 

 

                                                                                                                             (2.9) 

where 

 

and 

 

3- The proofs 

proof of theorem 1 

Necessity. 

We have 
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(3.1) 

Integrating by parts we get 

 

 

(3.2) 

 

Let 

 

Put  we get 

 

For  , we have 

 

Integrating by parts we get 
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Hence 

. 

Now for , we have 

 

Integrating by parts we get 

 

Therefore, 

 

Hence the result.. 

Sufficiently: 

First when  , 

we have 

 

Or, after some maniposition 
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Differentiating both sides with respect to y, we obtain 

 

 

 

which reduces to 

 

Second when  , 

we have  

 

Or, 

 

Differentiating both sides with respect to y, we obtain 
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Which reduces to 

 

Or,  

 

Proof of theorem 2 

Necessity 

we have 

 

 

 

 

(3.4) 

Integrating by parts we get 
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where 

 

and 

 

which complete the proof. 

Sufficiently: 

Assume that  

 

 

Multiplying both sides by , we obtain 



 

Military Technical College 
Kobry Elkobbah, 

Cairo, Egypt 
May 29-31,2012 

  

6th  International Conference on 

Mathematics and Engineering 

Physics (ICMEP-6) 

 

13 
 

 

 

Differentiating both sides with respect to , we obtain 

 

 

 

 

 

Where  
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Now, let  

Integrating by parts, gives 

 

 

 

 

 

 

Where  

Or,  

 



 

Military Technical College 
Kobry Elkobbah, 

Cairo, Egypt 
May 29-31,2012 

  

6th  International Conference on 

Mathematics and Engineering 

Physics (ICMEP-6) 

 

15 
 

Where  

Finally, this implies that 

 

Which is the cdf of the skew normal distribution with parameter    

Proof. Theorem 3 

Necessity. 

We have 

 

 

Integrating by parts we get 
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where 

 

and 

 

 

which proves necessity. 

Sufficiently: 

Assume that 

 

 

 

 

Multiplying both sides by , we obtain 
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Now, differentiating both sides with respect to , we get 

 

 

 

 

 

 

 

Now let 

 

Integrating by parts, we get 
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Which is the cdf of the skew normal distribution with parameter . 

This completes the proof theorem 3.  
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