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Abstract 

In the present study, a mathematical model of unsteady blood flow 
through parallel plate channel under the action of an applied constant 
transverse magnetic field is proposed. The model is subjected to heat source. 
Analytical expressions are obtained by choosing the axial velocity; 
temperature distribution and the normal velocity of the blood depend on y 
and t only to convert the system of partial differential equations into system 
of ordinary differential equations under the conditions defined in our model. 
The model has been analyzed to find the effects of various parameters such 
as, Hartmann number, heat source parameter and prandtl number on the 
axial velocity, temperature distribution and the normal velocity. The 
numerical solutions of axial velocity, temperature distributions and normal 
velocity are shown graphically for better understanding of the problem. 
Hence, the present mathematical model gives a simple form of axial velocity, 
temperature distribution and normal velocity of the blood flow so that it will 
help not only people working in the field of Physiological fluid dynamics but 
also to the medical practitioners. 

 

Key words: Blood flow, Parallel plate Channel, Boundary layer, Heat source,      

Magnetic field. 

 

Nomenclature 

   Density of blood 

   Dynamic viscosity of the blood (constant) 

p   Pressure of blood 

   Electrical conductivity of the blood 

oB   Intensity of the magnetic field 
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 g   Gravitational acceleration 

   Coefficient of volume expansion due to temperature 

T    Temperature of blood 

oT  Temperature of the wall (fixed temperature) 

K    Coefficient of the thermal conductivity 

pC  Specific heat at constant pressure 

Q  Quantity of heat 

  Temperature distribution   OT T    

  Decay parameter 

  Kinematic viscosity





 
 

 
 

rP  Prandtl number p

r

C
P

K

 
 

 
 

  Heat source parameter
2Q b

K

 
 

 
  

Ha  Hartmann number
2 2

o
o

B b
Ha B b

 

 

 
  

 
 

 

 

1. Introduction 

 The study of blood flow has been carried out by several authors. During 
the last decades extensive research work has been done on the fluid dynamics 
of biological fluids in the presence of magnetic field. For multiple reasons, 
applications of magnetohydrodynamics in physiological flow problems are of 
growing interest.  Many researchers have reported that the blood is an 
electrically conducting fluid [1-4]. The electromagnetic force (Lorentz force) 
acts on the blood and this force opposes the motion of blood and there by 
flow of blood is impeded, so that the external magnetic field can be used in 
the treatment of some kinds of diseases like cardiovascular diseases and in 
the diseases with accelerated blood circulation such as hemorrhages and 
hypertension.   

In general, biological systems are affected by an application of external 
magnetic field on blood flow through human arterial system. Many 
mathematical models have already been investigated by several research 
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workers to explore the nature of blood flow under the influence of an external 
magnetic field. Tzirtzilakis [5] studied a mathematical model of biomagnetic 
fluid dynamics (BFD), suitable for the description of the Newtonian blood flow 
under the action of magnetic field. This model is consistent with the principles 
of ferrodynamics and magnetohydrodynamics and takes into account both 
magnetization and electrical conductivity of blood. Ramamurthy and shanker 
[6] studied magnetohydrodynamic effects on blood flow through a porous 
channel. They considered the blood a Newtonian fluid and conducting fluid.  

Arterial MHD pulsatile flow of blood under periodic body acceleration 
has been studied by Das and Saha [7]. The blood flow in very narrow 
capillaries under the effect of transverse magnetic field has been investigated 
by Madhu et al [8]. In this investigation; it is assumed that there is a 
lubricating layer between red blood cells and tube wall. A pulsatile flow of 
blood which is considered as a couple stress fluid through a porous medium 
under the influence of periodic body acceleration in the presence of magnetic 
field has been investigated by Rathod and Tanveer [9]. Singh and Rathee [10] 
gave an analytical solution of two-dimensional model of blood flow with 
variable viscosity through an indented artery due to low density lipoprotein 
effect in the presence of magnetic field. The investigation shows that 
hypertensive patients are more adequate to have heart circulatory problems. 
The effect of uniform transverse magnetic field on its pulsatile motion through 
an axi-symmetric tube is analyzed by Dulal and Ananda [11]. Zamir and Roach 
[12] studied Blood flow downstream of a two-dimensional bifurcation with a 
symmetrical steady flow.  

Heat transfer in biological systems is relevant in many diagnostic and 
therapeutic applications that involve changes in temperature. As we know, 
the cardiovascular system is sensitive to changes in the environment, and flow 
characteristics of blood are modified to satisfy changing demands of the 
orgasm. In addition to transporting of oxygen, metabolites and other 
dissolved substances to and from the tissues, blood flow alters heat transfer 
within the body. Adhikary and Misra [13] presented an exact solution of the 
problem of oscillatory flow of a fluid and heat transfer along a porous 
oscillating channel in presence of an external magnetic field. The influence of 
blood flow in large vessels on the temperature distribution in hyperthermia 
has been developed by Lagendijk [14]. The blood flow in a small tube was 
modeled by the two-fluid model by Wang [15]. The flow is fully developed, 
constant heat flux convective heat transfer.  
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In the present investigation, a mathematical model for the unsteady 
blood flow through a very narrow parallel plate channel with heat source and 
external transverse magnetic field is presented. This work is an extensive study 
of Madhu et al [8] with heat transfer under the conditions defined in our 
model. The main aim of this work is to obtain analytical expressions for axial 
velocity, temperature distribution and normal velocity using new boundary 
conditions and with converting the system of partial differential equations 
into system of ordinary differential equations. Also to study the effect of 
magnetic field (Hartmann number (Ha)), heat source parameter (  ) and 
Prandtl number (Pr) on the axial velocity, temperature distribution and 
normal velocity. Hence, the present mathematical model gives a simple form 
of axial velocity, temperature distribution and normal velocity of the blood 
flow so that it will help not only people working in the field of Physiological 
fluid dynamics but also to the medical practitioners. 

 

2. Formulation of the problem 

Consider flow between non-conducting two parallel plates as shown in Fig. 1.  

 

Fig. 1  Geometry of the model. 

 

Here blood is supposed to be Newtonian, incompressible, homogenous and 
viscous fluid. Also, the viscosity of blood is considered to be constant. The 
effect of magnetic field is considered in this model which is applied in a 
direction perpendicular to the flow of blood. 
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Considering u and v as velocity components in the directions of x and y 
respectively (axial and normal respectively) at time t in the flow field, we may 
write the two dimensional boundary layer equations in presence of transverse 
magnetic field as 

 
22

2

1 o
O

B uu dp u
g T T

t dx y




  

 
    

 
                                                                (1) 

0
u v

x y

 
 

 
                                                                                                                  (2) 

 
2

2 O

p p

T K T Q
T T

t C y C 

 
  

 
                                                                                 (3) 

Introduce the following non-dimensional variables 

   

   
 

* * * *

2 3

* * *

2 2 3

, , , ,
/ 2 / 2

2/
, ( , ) ,

/ / 2

x y u v
x y u v

b b m b m b

bt dp dx
t h x t

mb m b

 

 


   

   

  

                  (4) 

Substituting from equation (4) into the equations (1)-(3) we may write these 
equations after dropping the stars as 

2
2

2

u u
h Ha u g

t y


 
   

 
                                                                                        (5) 

0
u v

x y

 
 

                                                                                                                    (6) 
2

2

1

r rt P y P

 


 

 
 

 


                                                                                                 (7)  

From equation (7) we can observe that the temperature distribution   

has 1st derivative with respect to time t. From this observation and with the 

help of solution of partial differential equation by separation of variables 

technique we can get the following equation 

 21
1 1/ ( )


  

 
  

 

d
where t

dt
 

It is observed that the solution of this equation will be on the form
2

1

  te .  
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Similarly, the axial velocity u has the same concept, and then the solution of 
the problem will take the form mentioned in section 3 and the boundary 
conditions are taken as: 

2 2

, 1

0, 0 1

t te u e at y

u at y

 



    

  
                                                                        (8) 

 

3. Solution of the problem 

With the help of discussion in the previous section, let us choose the solutions 
of the equations (5)-(7) respectively as 

2

( ) ,tu F y e                                                                                                                (9) 

2

( ) ,tv G y e                                                                                                              (10) 

2

( ) ,tH y e                                                                                                              (11) 

Substituting from equations (9)-(11) into equations (5)-(8) we obtain the 
following equations respectively 

2
2

2

d F
F g H

dy
                                                                                                 (12)  

where 
22 2 / tHa and h e       

G C  (A constant)                                                                                                   (13) 

  
2

2

2
0r

d H
P H

dy
                                                                                          (14) 

 The boundary conditions become: 

1, 1 1

0, 0 1

H F at y

H F at y

   

  
                                                                               (15) 

Solution of equation (14) is as follows 

1 2( ) cos( ) cos( )H y C y C y                                                                            (16) 

Where 2

rP    . 
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Using the boundary conditions equation (15) we obtain 

1 2

1 1

2cos 2sin
C and C


 

 
 

Then the final form of H(y) is 

1 1
( ) cos( ) cos( )

2cos 2sin
H y y y   

 
                                                        (17) 

From equation (11) and (17) then the temperature distribution is given by 

21 1
cos( ) cos( )

2cos 2sin

ty y e   
    

  
                                                   (18) 

Substituting from equation (17) into equation (12) we get 

2
2

2

1 1
cos( ) cos( )

2cos 2sin

d F
F g y y

dy
 

 
      

  
  

Solving the last equation to obtain F using the equation (15) as follows 

The Homogenous solution: 

3 4cos( ) cos( )hF C y C y    

Substitute from equation (15) to calculate the constants 3 4C and C  

 2 2 2

3

1 2 2 cos( )
2cos( )

2cos( )

g

C



 



  
           



 

 2 2

4

1 2 sin( )
2sin( )

2sin( )

g

C







 
  
  
    

The particular solution is: 

   2 2 2 2 2
cos( ) sin( )

2cos( ) 2sin( )
P

g g
F y y

 

  
    

   


 

The general solution of F is 
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   

 

 

2 2 2 2 2

2 2 2

2 2

( ) cos( ) sin( )
2cos( ) 2sin( )

1 2 2 cos( )
2cos( )

cos( )
2cos( )

1 2 sin( )
2sin( )

sin( )
2sin( )

g g
F y y y

g

y

g

y

 

  



 











    
   

  
           

 
  
  
 





              (19) 

From equation (9) and equation (19) the axial velocity of blood is given by 

   

 

 

2

2 2 2 2 2

2 2 2

2 2

cos( ) sin( )
2cos( ) 2sin( )

1 2 2 cos( )
2cos( )

( , ) cos( )
2cos( )

1 2 sin( )
2sin( )

sin( )
2sin( )

t

g g
y y

g

u y t y e

g

y



 

  



 













 
    

   
 
                 
 
 

  
   
      

 





   

                                                                                                                                      (20) 

Also, from equation (10) and (13) the normal velocity is given by 

2tv C e                                                                                                                    (21) 

Where C is an arbitrary constant (C=1). 

Equations (18), (20) and (21) show the temperature distribution, the axial 
velocity and normal velocity respectively. 

 

4. Numerical results and discussion 

The flow investigation has been carried out by studying the effect of 
individual factors like heat source and magnetic field.  The main objective of 
the study is to find the role of heat source parameter, magnetic field 
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(Hartmann number), Prandtl number and decay parameter on temperature 
distribution, axial velocity and normal velocity. To observe these effects, 
numerical codes are developed for the numerical evaluations of the analytic 
results obtained. 

 In Fig. 2 we study the variation of temperature distribution versus y at 
t 1.0, 0.5, 0.5 and Pr 1.0     with different values of the heat source 

parameter ( 1.00,1.25,1.50,1.75,2.00 ). We observe that for the same value 

of y the temperature field increases with increasing the value of heat source 
parameter  . Also, the temperature field increases to reach at its maximum 
value at y=0 then decreases.  

 

Fig. 2 Temperature distribution for diffrerent values of heat source at 

t 1.00, 0.50, 0.50 and Pr 1.00      

1.00
1.25
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  f
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Fig. 3  Temperature distribution for diffrerent values of Prandtl number at 

t 1.00, 0.50, 0.50 and 1.00      
 

Fig. 3 gives the temperature field distribution for different values of Prandtl 
number ( Pr 0.50,1.00,3.00,5.00,7.00 ) at t 1.00, 0.50, 0.50 and 1.00     . 

It is observed that the temperature field increases with increasing the value of 
Prandtl number Pr. The effect of Prandtl number is the same as heat source 
parameter. The effect of decay parameter on the temperature field 
distribution at t 1.00, 1.00, 0.50 and Pr 1.00     is shown in Fig. 4. It is 

shown that the temperature field decreases with increasing the decay 
parameter. The maximum effect of the decay parameter on the temperature 
field is at y=-1 and there is no effect approximately of the decay parameter on 
the temperature distribution at y=1.  
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Fig. 4  Temperature distribution for diffrerent values of decay parameter at 

t 1.00, Pr 1.00, 0.50 and 1.00     

 

 

Fig. 5   Axial velocity distribution for diffrerent values of heat source at 
t 1.00, Pr 1.00, 0.50, 0.50,

h 0.50, 0.50,g 9.81 and Ha 1.00

 



   

     

Fig. 5 gives the axial velocity distribution for different values of heat 
source parameter ( 0.50, 0.75, 1.00,1.25,1.50 ) at t 1.0, 0.5,  0.5,   

0.50,  g 9.81, h 0.50, Ha 1.00  and Pr 1.00 . It is observed that the axial 

velocity increases with increasing the heat source parameter  .  
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Fig. 6   Axial velocity distribution for diffrerent values of Hartmann number at 
t 1.00, Pr 1.00, 0.50, 0.50,

h 0.50, 0.50,g 9.81 and 1.50

 



   

     

 

 

Fig. 7   Axial velocity distribution for diffrerent values of Prandtl number at 
t 1.00, Ha 1.00, 0.50, 0.50,

h 0.50, 0.50,g 9.81 and 1.00

 



   
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The effect of magnetic field on the axial velocity for different values of 
Hartmann number  ( Ha 1.00,2.00,3.00,4.00,6.00 ) is shown in Fig. 6 at 

t 1.00, 0.50,  0.50,   0.50,  g 9.81, h 0.50, 1.50  and Pr 1.00 . It is 
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shown that the magnetic field decreases the axial velocity. We can observe 
that the axial velocity at Ha 1.00  increases from y=-1 and attains maximum 
at y=0 then decreases until y=1. While at Ha 6.00 we observe that the axial 
velocity decreases along y.  

 

Fig. 8  Axial velocity distribution for diffrerent values of decay parameter at 
t 1.00, Ha 3.00, 0.50,Pr 1.00,h 0.50,

0.50,g 9.81 and 1.00





    

    

 

Fig. 9 normal velocity distribution for diffrerent values of decay parameter  

 

A
xi

al
 v

el
o

ci
ty

 
N

o
rm

al
 v

el
o

ci
ty

 

0.50 

1.00

1.50

2.00

2.50  

0.50 

0.75

1.00

1.25

1.50  



 

Military Technical College 
Kobry Elkobbah, 

Cairo, Egypt 
May 29-31,2012 

  

6th  International Conference on 

Mathematics and Engineering 

Physics (ICMEP-6) 

 

14 
 

Fig. 7 shows the effect of Prandtl number on the distribution of the 
axial velocity at t 1.00,  0.50,   0.50,   0.50,  g 9.81, h 0.50, 1.00  

and Ha 1.00 . It is shown that the axial velocity increases with increasing the 
prandtl number. The effect of decay parameter is indicated in Fig. 8 at 
t 1.00,  Pr 1.00,  0.50,   0.50,  g 9.81, h 0.50, 1.00  and Ha 3.00 . 

The axial velocity decreases with increasing the decay parameter. The 
maximum effect of the decay parameter on the axial velocity is at y=-1 and 
the axial velocity approximately not affected by the decay parameter at y=1. 

 Fig. 9 indicates the effect of decay parameter on the normal velocity 
distribution. It is shown that the normal velocity decreases with increasing the 
decay parameter. The normal velocity is decreases slowly at low values of the 
decay parameter ( 0.50  ) while it is decreases very fast and tends to zero at 
high values of decay parameter ( 2.50  ). 

 

Conclusion 

In the present investigation, a mathematical model for the unsteady 
blood flow through a very narrow parallel plate channel with heat source and 
external transverse magnetic field is presented. This work is an extensive study 
of Madhu et al [8] with heat transfer under the conditions defined in our 
model. The effect of magnetic field, heat source seems to be significant. 

The main conclusions of the present paper may be summarized as follows: 

 The present mathematical model gives a simple form of axial 
velocity, temperature distribution and normal velocity of the 
blood flow. Analytical expressions are obtained by choosing the 
axial velocity; temperature distribution and the normal velocity 
of blood depend on y and t only along with corresponding 
boundary conditions to convert the system of partial 
differential equations into system of ordinary differential 
equations.  

 The temperature field increases with increasing the heat source 
parameter and Prandtl number while decreases with increasing 
the decay parameter.  

 The axial velocity increases with increasing heat source 
parameter and Prandtl number while decreases with increasing 
the Hartmann number and decay parameter.  
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 The normal velocity decreases with increasing the decay 
parameter and tending to zero very fast for higher values of the 
decay parameter.  

Hence, the present mathematical model gives a simple form of axial velocity, 
temperature distribution and normal velocity of the blood flow so that it will 
help not only people working in the field of Physiological fluid dynamics but 
also to the medical practitioners. 
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