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Abstract 

    Rough sets theory was introduced by Pawlak in the early 80's and has reached a 

level of high visibility and maturity. In recent year's we have witness diverse as well 

as widespread research in rough sets theory and its applications worldwide. 

   In this paper, we introduce a new approximation space (biapproximation space) and 

define the lower and upper approximation based on two relations to take advantages 

of two relations in the same time. With this approximation and our definitions, we 

present two concepts to calculate the size of boundary region and discuss some of the 

basic properties of them. Examples are provided to illustrate the behavior of this new 

notion. Compared with Pawlak approximation space, our new approximation space is 

very efficient and settable when we have a lot of data for one case. 

AMS Subject Classification: 54A10, 54E55. 

Keywords and Phrases: Approximation space, rough set, bitopological spaces. 

1. Introduction 

   The topological structure of a set is now considered as mathematical model for 

getting information from data [1, 2, 7]. The modeling process is based on relations 

obtained from a given data by one expert. Using two topologies help in discovering 

information using two points of view in the same time. Basic concepts of rough sets 

depends on a special type of topologies, namely quasi discrete topology, thus the 

general structures are generalizations of the quasi discrete topologies. Rough sets have 

been initiated by Pawlak [8, 9] in order to describe approximation knowledge of 

subsets of a given universe. In some sense this theory can be considered as a 

generalization of classical set theory and made a great success in knowledge 

acquisition in recent years and it has been applied in many applications such as 

knowledge discovery and machine learning [5, 6, 11, 14]. Unfortunately, its based on 
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complete information systems, an approximation is pair ( , )U R , where U is a certain 

set called universe, and R U U   is an equivalence relation based on ability to 

classify objects (elements of U) and it takes the form as real things, states, abstract 

concepts, moment of time, …, etc and has equivalence classes and the set of all 

equivalence classes denoted by /U R , so the least (greatest) union of equivalence 

classes containing (contained in) set X is the upper (lower) approximation which 

denoted by ( )( ( ))H X L X . Now, any set in the approximation space is an exact or 

rough. By the use of two exact sets (lower and upper approximation), any rough set 

can be defined approximately in the approximation space. 

2. Biapproximation Space 

   The aim of this section is to introduce the concept of a biapproximation space based 

on Pawlak approximation space and give examples to illustrate the behavior of this 

new notion. 

   Suppose R is a binary relation on a universe U. Yao [14] defined a pair of 

approximation operations. ( ), ( ) : ( ) ( )L R H R P U P U  as follows: 

 ( )( ) { : , } { : ( ) }L R X x y xRy y X x RN x X      , 

 ( )( ) { : , s.t. } { : ( ) }H R X x y X xRy x RN x X      , 

where ( ) { : }RN X y U xRy  . They are called the lower approximation operation 

and the upper approximation operation, respectively. 

Definition 2.1. Let U be a finite set and 1 2, ,X U R R  be equivalence relations on 

U. Then  

(i)     1 2( , , )U R R   is called a biapproximation space. 

(ii) The bi-lower approximation of X on U is defined as ( )L X 
1

( )RL X   

2
( )RL X , where ( ) { / , }, {1, 2}Ri

L X Y U R Y X i    . 

(iii) The bi-upper approximation of X on U is defined as 
1

( )RH H X    

2
( )RH X , where ( ) { / , }, {1, 2}Ri

H X Y U R Y X i     . 

Proposition 2.1. Let 1 2( , , )U R R   be a biapproximation space. Then the space 

( , )U R  which given by / { : / , / }U R X Y X U R Y U R   , forms an expansion 

of both 1( , )U R  and 2( , )U R . 
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Proof. Since ( , )U R  is finer than 1( , )U R  and 2( , )U R , then the proof is obvious. 

Lemma 2.1. Let 1 2( , , )U R R   be a biapproximation space and ( , )U R  be the 

expansion of 1( , )U R  and 2( , )U R . Then the following hold: 

(i) ( ) ( )L X L X  , 

(ii) ( ) ( )H X H X , 

where ( )L X  and ( )H X  are the lower and upper approximation of X in the 

expansion ( , )U R . 

Proof. (i) Since ( , )U R  is finer than 1( , )U R  and 2( , )U R . Then 
1

( ) ( )RL X L X  

and 
2

( ) ( )RL X L X , then 
1 2

( ) ( ) ( )R RL X L X L X . Thus ( ) ( )L X L X  . 

(ii) Follows from Definition 2.1, and Proposition 2.1. 

Remark 2.1. ( ) ( ) ( )Ri
L X L X L X   and ( ) ( ) ( )Ri

H X H X H X  , 1, 2i  . 

Proposition 2.2. Let 1 2( , , )U R R   be a biapproximation space and ( , )U R  be the 

expansion. Then for X U  the accuracy of X with respect to the expansion which 

given by 
| ( ) |

| ( ) |

L X

H X
 is greater than the accuracy of X with respect to   which given 

by  
| ( ) |

| ( ) |

L X

H X





. 

Proof. The proof is directly derivable from  Lemma 2.1 and Remark 2.1. 

Example 2.1. Let 1 2( , , )U R R   be a biapproximation space where { , , ,U a b c  

, , , , }d e f g h , 1/ {{ , , }, { , }, { , , }}U R a b f c d e g h , 2/ {{ , , }, { , , },U R a b d c e h  

{ , }}f g  and / {{ , }, { }, { }, { , }, { }, { }}U R a b c d e h f g . Since { , , , }X a b d g , 

then ( ) { , , , }, ( ) { , , }, ( ) { , , , }L X a b d g L X a b d H X a b d g    and ( )H X   

{ , , , , }a b d f g . Mean that ( ) ( )L X L X   and ( ) ( )H X H X . 

   The boundary region of any subset is contracted if it measured with respect to the 

biapproximation space (expansion of biapproximation space) and thus the degree of 

accuracy of two Pawlak approximation space increases. Also, we have the best results 

when we use the expansion of biapproximation space (Proposition 2.2). 

3. Relative Biapproximation Space 



 
Military Technical College 

Kobry Elkobbah, 
Cairo, Egypt 

May 29-31,2012 

  
6th  International Conference 

on Mathematics and 
Engineering Physics 

(ICMEP-6) 
 

 4 

   The aim of this section is to define the concept of lower and upper approximation of 

one classification of biapproximation space with respect to another classification and 

introduce new definitions indicate the useful of the relative biapproximation space. 

Definition 3.1. Let 1 2( , , )U R R   be a biapproximation space and 1/ { }iU R X  

and 2/ { }jU R X , where , {1, 2, ..., }i j n . Then  

(i) the lower approximation of X on 1/U R  by using 2/U R  is  

21
( ) { / , }R i j j iL X X U R X X   , 

(ii) the upper approximation of X on 1/U R  by using 2/U R  is  

21
( ) { / , }R i j j iH X X U R X X     . 

Definition 3.2.  Let 1 2( , , )U R R   be a biapproximation space where / iU R   

1 2, , ..., }, {1, 2}nX X X i   and 1 2( ) { ( ), ( ), ..., ( )}R j R R R ji i i i
L X L X L X L X  be 

the lower approximation of members of / iU R  also the upper approximation of 

members of / iU R  given by 1 2( ) { ( ), ( ), ..., ( )}R j R R R ji i i i
H X H X H X H X , 

, {1, 2, ..., }i j n . Then, 

(i) the accuracy of 1/U R  by 2/U R  defined as 12

| ( ) |
( , )

| ( ) |

R ji
R

R ji

L X
U R

H X
 




, 

(ii) the quality of 1/U R  by 2/U R  defined by 12

| ( ) |
( , )

| |

R ji
R

L X
U R

U
 


, 

where {1, 2, ..., }j n . 

Remark 3.1. The accuracy of 1/U R  expresses the percentage of possible correct 

decision when classifying objects employing the relation 2R  while the quality of 

1/U R  expresses percentage of objects which can correctly classified to classes 

employing relation 2R . 

Example 3.1. let 1 2( , , )U R R   be a biapproximation space, where { , , ,U a b c  

, , , , }d e f g h , 1/ {{ , , }, { , }, { , , }}U R a c e b d f g h  and 2/ {{ , , }, { , , },U R a b d c e h  

{ , }}f g , then  
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 12

0 0 2 2 1
( , ) 14%

6 3 5 14 7
R U R

 
   

 
, 

 12

0 0 2 2 1
( , ) 25%

8 8 4
R U R

 
    , 

 21

2 0 0 2 1
( , ) 14%

5 6 3 14 7
R U R

 
   

 
, 

and 

 21

2 0 0 2 1
( , ) 25%

8 8 4
R U R

 
    . 

Example 3.2. Let 1 2( , , )U R R   be a biapproximation space, where { , , ,U a b c  

, , }d e f , 1/ {{ }, { }, { , }, { }, { }}U R a b c e d f  and 2/ { , }, { }, { },U R a b c d  

{ , }}e f , then  

 12

0 0 1 1 0 2 1
( , ) 20%

2 2 3 1 2 10 5
R U R

   
   

   
, 

 12

0 0 1 1 0 2 1
( , ) 33%

6 6 3
R U R

   
    , 

 21

2 0 1 1 4
( , ) 57%

2 2 1 3 7
R U R

  
  

  
, 

and 

 21

2 0 1 1 4 2
( , ) 66%

6 6 3
R U R

  
    . 

Proposition 3.1. Let 1 2( , , )U R R   be a biapproximation space and 1/ {iU R X , 

2 , ..., }, {1, 2}nX X i  . Then the following hold: 

(i) If there exists {1, 2, ..., }j n  such that 
1

( )R jL X   then for each k j  

and {1, 2, ..., }k n , 
1

( )R kH X U  (the opposite is not true, if 

( )R ji
L X   is not true 

1
( )R kH X U ). 

(ii) If there exists {1, 2, ..., }j n  such that 
1

( )R jH X U  then for each 

k j  and {1, 2, ..., }k n , 
1

( )R kL X   (the opposite is not true). 

(iii) If for each {1, 2, ..., }j n , 
1

( )R jL X   holds, then 
1

( )R jH X U  for 

each {1, 2, ..., }j n  (the opposite is not true). 
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(iv) If for each {1, 2, ..., }j n , 
1

( )R jH X   holds, then 
1

( )R jL X  , for 

each {1, 2, ..., }j n  (the opposite is not true). 

Proof. (i) If 
1

( )R jL X  , then there exists 1 2/X U R  (
1 21

( ) { / ,R jL X X U R   

1 }iX X ). For each k jX X , 21
( ) { / , }R k i i kH X X U R X X     , 

{1, 2, ..., }i n , then 11
( )R kH X X   and consequently 

1
( )R kH X U  for each 

j k . Or, if 
1

( )R jL X  , then there exists x X  such that jx X X   which 

implies 1 kX X   for each j k . These yields 
1

( )R R iH X X   and 

1
( )R kH X U , for each j k . 

(ii) If 
21 1

( ) ( ( ) { / , })R j R j i j iU X U H X X U R X X       that means 
j iX X   

for each 1 2/ , {1, 2, ..., }X U R i n  , then i kX X  doesn't hold or each 

, ( )kj k X   

 21
( ) { / , }R k kL X U R X    , then 

1
( )R kL X  . 

(iii) and (iv) Follows similarly as in (i) and (ii). 

Example 3.3. Let 1 2( , , )U R R   be a biapproximation space, where { , , ,U a b c  

, , , , }d e f g h , 1/ {{ , , }, { , }, { , , }}U R a c e b d f g h  and  2/ {{ , , }, { , , },U R a b d c e h  

{ , }}f g , then 
1

({ , , }) { , }RL a b d b d    and 
1

({ , , }) { , , , , }RH c e h a b d f g U   

and 
1

({ , }) { , , }RH f g f g h U  . 

Example 3.4. Let 1 2( , , )U R R   be a biapproximation space, where { , , ,U a b c  

, , , , }d e f g h , with 1/ {{ , , }, { , }, { , , }}U R a c e b d f g h  and  2/ {{ , , },U R a b f { , },c d  

{ , , }}e g h , then 
1

({ , , })RU a b f U , 
1

({ , })RL c d   and 
1

({ , , })RL e g h  . 

4. Bi-Equal and Bi-Inclusion 

   The aim of this section is to define the concept of bi-equal and bi-inclusion of one 

classification of biapproximation space with respect to another classification. 

Definition 4.1. Let 1 2( , , )U R R   be a biapproximation space and ,X Y U . 

Then the following hold: 

(i) X, Y are bottom equal on 2/U R  by 1/U R  if 
1 1

( ) ( )R RL X L Y . 
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(ii) X, Y are top equal 2/U R  by 1/U R  if 
1 1

( ) ( )R RH X H Y . 

(iii) X, Y are bi-equal on 2/U R  by 1/U R  if 
1 1

( ) ( )R RL X L Y  and 

1 1
( ) ( )R RH X H Y . 

(iv) X is bottom inclusion in Y on 2/U R  by 1/U R  if 
1 1

( ) ( )R RL X L Y . 

(v) X is top inclusion in Y on 2/U R  by 1/U R  if 
1 1

( ) ( )R RH X H Y . 

(vi) X is bi-inclusion in Y on 2/U R  by 1/U R  if 
1 1

( ) ( )R RL X L Y  and 

1 1
( ) ( )R RH X H Y . 

Definition 4.2. Let 1 2( , , )U R R   be a biapproximation space and 1R  and 2R  are 

equivalence relations. Then 1R  is a covering of 2R  if and only if 2R  depends on 1R  

and 1R  is minimal (or, 1R  is covering of 2R  if and only if 2R  depends on 1R  and no 

proper subset *

1R  of 1R  exists such that 2R  depends on *

1R ). 

   In other words, 1R  and 2R  are equivalence if 1 2/ /U R U R  (or, 1R  and 2R  have 

the same equivalence classes), and 1R  is finer than 2R  if 1 2/ /U R U R  or 2R  is 

coarser than 1R . 

Example 4.1. Let 1 2( , , )U R R   be a biapproximation space, where { , , ,U a b c  

, , }d e f  with 1/ {{ }, { }, { }, { }, { }, { }}U R a b c d e f  and 2/ {{ , }, { , , },U R a b c e f  

{ }}d , then 1R  is covering of 2R  because 1 2/ /U R U R . 

5. Uniqueness of Binary Relations to Generate Rough Sets 

Theorem 5.1. Let 1 2( , , )U R R   be a biapproximation space and X U . Then: 

(i) 1 2 1 2( )( ) ( )( ) ( )( )L R R X L R X L R X   and 

(ii) 1 2 1 2( )( ) ( )( ) ( )( )H R R X H R X H R X  . 

Proof. (i) For any X U , 1 2 1 2( )( ) { : , ( )L R R X x y U x R R y     

1 2} { : , or }y X x y U xR y xR y y X        1{ : ,x y U xR y    }y X  

2 1 2{ : , } ( )( ) ( )( )x y U xR y y X L R X L R X      . 

(ii) For any X U , 1 2 1 2( )( ) { : , ( ) } { : ,H R R X x y X x R R y x y X        

1 2or }xR y xR y  1 2{ : , } { : , }x y X xR y x y X xR y     1 2( ) ( ) ( ) ( )H R X H R X . 
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Proposition 5.1. Let 1 2( , , )U R R   be a biapproximation space. If 1 2R R  then 

2 1( ) ( )L R L R  and 1 2( ) ( )H R H R . Then we consider the situation for 1 2R R . 

Theorem 5.2. Let 1 2( , , )U R R   be a biapproximation space. Then: 

(i) 1 2 1 2( )( ) ( )( ) ( )( )L R X L R X L R R X   and  

(ii) 1 2 1 2( )( ) ( )( ) ( )( )H R R X H R X H R X  . 

Proof. It is easy to proof this theorem by Proposition 5.1. 

   The equalities in the above theorem is not hold generally as shown by the following 

example. 

Example 5.1. Let 1 2( , , )U R R   be a biapproximation space, where { , , }U a b c , 

1 {( , ), ( , ), ( , )}R a a a b b b , and. )}.,(),,(),,(),,(),,{(2 ccbcaccaaaR  Then we 

have      

1 1 1
({ }) { , }, ({ }) { }, ({ })R R RRN a a b RN b b RN c     

 
2 2 2

({ }) { , }, ({ }) , ({ }) { , , }R R RRN a a c RN b RN c a b c   . 

 1 2 {( , )}R R a a , and 

 
1 2 1 2 1 2

({ }) { }, ({ }) , ({ })R R R R R RRN a a RN b RN c      . 

For { }X a  and { }Y b , we have 1 1( )( ) { }, ( )( ) { , }L R X c H R Y a b  . 

 2 2( )( ) { }, ( )( ) { }L R X b H R Y c  , and 

 1 2 1 2( )( ) { , , }, ( )( )L R R X a b c H R R Y    . 

Thus, 1 2 1 2( )( ) ( )( ) ( )( )L R X L R X L R R X   and 

 1 2 1 2( )( ) ( )( ) ( )( )H R R Y H R Y H R Y  . 

Proposition 5.2. Let 1 2( , , )U R R   be a biapproximation space. If 1( )H R   

2( )H R , then 1 2R R . 

Proof. For each ,x y U , if 1 1
( , ) , ( )Rx y R y RN x  , 1 2( ){ } ( ){ }x H R y H R y  , 

so 
2

( ) { }RRN x y  , that means 2( , )x y R , thus 1 2R R . 

Corollary 5.1. Let 1 2( , , )U R R   be a biapproximation space. If 

1 2( ) ( )H R H R , then 1 2R R . 
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Theorem 5.3. Let 1 2( , , )U R R   be a biapproximation space. Then 1( )H R   

2( )H R  if and only if 1 2R R . 

Proof. It comes from Proposition 5.1 and Corollary 5.1. 

   By the duality between ( )H R  and ( )L R , we have the following result about 

( )L R . 

Proposition 5.3. Let 1 2( , , )U R R   be a biapproximation space. If 1( )L R   

2( )L R , then 2 1R R . 

Corollary 5.2. Let 1 2( , , )U R R   be a biapproximation space. If 1 2( ) ( )L R L R , 

then 1 2R R . 

Theorem 5.4. Let 1 2( , , )U R R   be a biapproximation space. Then 1( )L R   

2( )L R  if and only if 1 2R R . 

6. Conclusions 

   Pawlak approximation space is considered as mathematical model for getting 

information from data. The modeling process is based on equivalence relation 

obtained from a given data by one expand (view). Using two Pawlak approximation 

spaces (Biapproximation space) help in discovering information using two points of 

views in the same time and the new of views in the same and the new approximation 

focus on the expansion of the original model proposed by Pawlak. So the purpose of 

this paper is to extend the concept of lower and upper approximation. Pawlak 

approximation space introduced the diagnosis (solution) of some problems in Math., 

Chemistry, …, etc but when we have two (,any) diagnosis's for any problem we use 

biapproximation space to find the best diagnosis or study one of these diagnosis's by 

using another one. Compared with Pawlak approximation space, our new approxim-

ation space is very efficient and settable when we have a lot of data for one case. 

   We proved that two different binary relations will generate two different lower 

approximation operations and two different upper approximation operations. As far as 

the applications of binary relation based rough sets to knowledge discovery from 

database are concerned, the reader is referred to [3, 4, 10]. In this future, we will 

explore the relationships between binary relation based rough sets and covering based 
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rough sets [15]. Another future research topic is to apply binary relation based rough 

set theory to the computational theory of linguistic dynamic systems [12] and security 

[16, 17]. 
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