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Abstract.  

In this paper, with the help of the Lucas Riccati method and a linear variable separation 

method, new variable separation solutions with arbitrary functions are derived for a (2+1)-

dimensional modified dispersive water-wave system. Next, we give a positive answer for the 

following question: Are there any localized excitations derived by the use of another 

functions? For this purpose, some attention will be paid to dromion, peakon, dromion lattice, 

multi dromion-solitoff excitations, regular fractal dromions, lumps with self-similar structures 

and chaotic dromions patterns based on the golden main and the symmetrical hyperbolic and 

triangular Lucas functions.  

Keywords: Lucas functions, localized excitations, variable separation solutions, modified 

dispersive water-wave system.  
 

 

1. Introduction 

Modern soliton theory is widely applied in many natural sciences such as chemistry, biology, 

mathematics, communication and particularly in almost all branches of physics such as fluid 

dynamics, plasma physics, field theory, nonlinear optics and condensed matter physics, etc. 

As one of the effective methods in linear physics, the variable separation approach (VSA) has 

been successfully extended to nonlinear models. The so-called multilinear VSA (MLVSA) 

has also been established for various (2+1)-dimensional models
1)

 since it was applied to the 

Davey–Stewartsen (DS) equation in 1996
2)

. Recently, along with the variable separation idea, 

Zheng et al realized variable separation for the Broer–Kaup–Kupershmidt (BKK) system
3)

 

and the dispersive long wave (DLW) equation
4)

 by the extended tanh-function method (ETM) 

based on the mapping method. In ref. 5, they extended the ETM to a selection of (2+1)-

dimensional nonlinear equations, including the (2+1)-dimensional generalized Nizhnik–

Novikov–Veselov (GNNV) system, the (2+1)-dimensional Burgers equation, the (2+1)-

dimensional breaking soliton model, and the (2+1)- dimensional integrable Kortweg-de-Vries 

(KdV) equation, and so on
6-36)

.  

There is well-known fact that two mathematical constants of Nature, the  - and e -

numbers, play a great role in mathematics and physics. Their importance consists in the fact 

that they ‘‘generate’’ the main classes of so-called ‘‘elementary functions’’: sin, cosine (the 

 -number), exponential, logarithmic and hyperbolic functions (the e -number). However, 
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there is the one more mathematical constant playing a great role in modeling of processes in 

living nature termed the Golden Section, Golden Proportion, Golden Ratio, Golden Mean
37-41)

. 

However, we should certify that a role of this mathematical constant is sometimes 

undeservedly humiliated in modern mathematics and mathematical education. There is the 

well-known fact that the basic symbols of esoteric (pentagram, pentagonal star, platonic solids 

etc.) are connected to the Golden Section closely. Moreover, the ‘‘materialistic’’ science 

together with it's ‘‘materialistic’’ education had decided to ‘‘throw out’’ the Golden Section. 

However, in modern science, an attitude towards the Golden Section and connected to its 

Fibonacci and Lucas numbers is changing very quickly. The outstanding discoveries of 

modern science based on the Golden Section have a revolutionary importance for 

development of modern science. These are enough convincing confirmation of the fact that 

human science approaches to uncovering one of the most complicated scientific notions, 

namely,  the notion of Harmony, which is based on the Golden Section, Harmony was 

opposed to Chaos and meant the organization of the Universe.  In Euclid’s The Elements we 

find a geometric problem called ‘‘the problem of division of a line segment in the extreme and 

middle ratio’’. Often this problem is called the golden section problem
38-41)

. Solution of the 

golden section problem reduces to the following algebraic equation 
2 1x x   this equation 

has two roots. We call the positive root,
1 5

2



 , the golden proportion, golden mean, or 

golden ratio. El Naschie’s works
39-43)

develop the Golden Mean applications into modern 

physics. In ref. 43, devoted to the role of the Golden Mean in quantum physics El Naschie 

concludes the following: "In our opinion it is very worthwhile enterprise to follow the idea of 

Cantorian space-time with all its mathematical and physical ramifications. The final version 

may well be a synthesis between the results of quantum topology, quantum geometry and may 

be also Rossler’s endorphysics, which like Nottale’s latest work makes extensive use of the 

ideas of Nelson’s stochastic mechanism". Thus, in the Shechtman’s, Butusov’s, Mauldin and 

Williams’, El- Naschie’s, Vladimirov’s works, the Golden Section occupied a firm place in 

modern physics and it is impossible to imagine the future progress in physical researches 

without the Golden Section. 

In our present paper, we review symmetrical Lucas functions
33-35)

 and we find new 

solutions of the Riccati equation by using these functions. Also, we devise an algorithm called 

Lucas Riccati method to obtain new exact solutions of NLPDEs.  

          For a given NPLDE with independent variables 0 1 2 3( , , , ,...., )nx x t x x x x   and dependent 

variable u , 

( , , , , ....) 0,
i i jt x x xP u u u u                                                (1) 

where P  is in general a polynomial function of its argument, and the subscripts denote the 

partial derivatives, in order to derive some new solutions with certain arbitrary functions, we 

assume that its solutions in the form, 

0

( ) ( ) ( ),
n

i

i

i

u x a x F x


                                                    (2) 

with 
2'F A B F                                                       (3) 

where 0 1 2 3( , , , ,...., ) and ,nx x t x x x x A B  are constants and the prime denotes 

differentiation with respect to  . To determine u  explicitly, one may take the following 

steps: First, similar to the usual mapping approach, determine n  by balancing the highest non-

linear terms and the highest-order partial terms in the given NLPDE. Second, substituting (2) 

and (3) into the given NLPDE and collecting coefficients of polynomials of F , then 

eliminating each coefficient to derive a set of partial differential equations of 
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( 0,1,2,....., )ia i n  and  . Third, solving the system of partial differential equations to obtain 

ia  and  . Substituting these results into (1), then a general formula of solutions of equation 

(1) can be obtained. Choose properly A  and B  in ODE (3) such that the corresponding 

solution ( )F   is one of the symmetrical Lucas function given bellow. Some definitions and 

properties of the symmetrical Lucas function are given in appendix A. 

Case 1: If lnA   and  lnB  , then (3) possesses solutions 

tLs( ), cotLs( )  . 

Case 2: If 
ln

2
A


  and   

ln

2
B


  , then (3) possesses a solution 

tLs( )

1 secLs( )




. 

Case 3: If lnA   and  4 lnB  , then (3) possesses a solution 

2

tLs( )

1 tLs ( )




. 

In §2, we apply the Lucas Riccati method to obtain new localized excitations. Also in §3, we 

pay our attention to dromion, peakon, dromion lattice, multi dromion-solitoff excitations, 

regular fractal dromions, lumps with self-similar structures and chaotic dromions patterns 

based on the golden main and the symmetrical hyperbolic and triangular Lucas functions. 

 

2. New variable separation solutions of the (2 + 1)-dimensional modified dispersive 

water-wave system 

We consider here the (2+1)-dimensional modified dispersive water-wave  (MDWW) 

system 
22 ( ) 0,

2 ( ) 0.

yt xxy xx xy

t xx x

u u v u

v v vu

   

  
                                          (4) 

The (2+1)-dimensional MDWW system was used to model nonlinear and dispersive long 

gravity waves travelling in two horizontal directions on shallow waters of uniform depth, and 

can also be derived from the well-known Kadomtsev-Petviashvili (KP) equation using the 

symmetry constraint
44,45)

. Abundant propagating localized excitations were derived by Tang et 

al
9)

 with the help of Painlevé-Bäcklund transformation and a multilinear variable separation 

approach. It is worth mentioning that this system has been widely applied in many branches of 

physics, such as plasma physics, fluid dynamics, nonlinear optics, etc. So, a good 

understanding of more solutions of the (2+1)-dimensional MDWW system (4) is very helpful, 

especially for coastal and civil engineers in applying the nonlinear water model in harbor and 

coastal design. Meanwhile, finding more types of solutions to system (4) is of fundamental 

interest in fluid dynamics. 

Now we apply the Lucas Riccati method to equations (4). First, let us make a 

transformation of the system (4): .yu v Substituting this transformation into system (4), 

yields 
2( ) 0.t y xxy xyu u u                                              (5) 

Balancing the highest order derivative term with the nonlinear term in equation (5), gives n = 

1, we have the ansätz 

0 1( , , ) ( , , ) ( , , ) ( ( , , )),u x y t a x y t a x y t F x y t                                  (6) 

where 0 0 1 1( , , ) , ( , , )a x y t a a x y t a  and ( , , )x y t   are arbitrary functions of , ,x y t  to be 

determined. Substituting (6) with (3) into (5), and equating each of the coefficients of ( )F   
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to zero, we obtain system of PDEs. Solving this system of PDEs, with the help of Maple, we 

obtain the following solution: 

0

( , , ) ( , , )
( , , )

2 ( , , )

xx t

x

x y t x y t
a x y t

x y t

 




                                                (7) 

1( , , ) ( , , )xa x y t B x y t                                                                (8) 

( , , ) ( , ) ( ),x y t f x t g y                                                                 (9) 

where ( , )f x t f  and ( )g y g  are two arbitrary functions of ,x t  and y , respectively. 

Now. based on the solutions of (3), one can obtain new types of localized excitations 

of the (2+1)-dimensional MDWW system. We obtain the general formulae of the solutions of 

the (2+1)-dimensional MDWW system 

( ),
2

xx t
x

x

f f
u Bf F f g

f


                                               (10) 

2 2( ).x y x yv ABf g B f g F f g                                       (11) 

By selecting the special values of the ,A B  and the corresponding function F  we have the 

following solutions of (2+1)-dimensional MDWW system: 

1 tLs( ) ln ,
2

xx t
x

x

f f
u f f g

f



                                                    (12) 

2 2 2

1 ln tLs ( )ln ,x y x yv f g f g f g                                           (13) 

2 cotLs( ) ln ,
2

xx t
x

x

f f
u f f g

f



                                             (14) 

2 2 2

2 ln cotLs ( )ln ,x y x yv f g f g f g                                      (15) 

3

tLs( ) ln
,

2 2[1 secLs( )]

xx t x

x

f f f f g
u

f f g

 
 

 
                                           (16) 

22 2

3

ln ln tLs( )

4 4 1 secLs( )

x y x yf g f g f g
v

f g

   
   

  
                             (17) 

4 2

4 tLs( ) ln
,

2 1 tLs ( )

xx t x

x

f f f f g
u

f f g

 
 

 
                                               (18) 

2

2 2

4 2

tLs( )
4 ln 16 ln

1+tLs ( )
x y x y

f g
v f g f g

f g
 

 
   

 
                            (19) 

where ( , )f x t  and ( )g y  are two arbitrary variable separation functions. Especially, for the 

potential 1yU u  has the following form 

2 24 secLs ( ) ln ,x yU f g f g                                           (20)         

 

3.  Novel localized structures of the (2+1)-dimensional MDWW system 
All rich localized coherent structures, such as non-propagating solitons, dromions, peakons, 

compactons, foldons, instantons, ghostons, ring solitons, and the interactions between these 

solitons
9-34)

, can be derived by the quantity U  expressed by (20) with the help of the 

hyperbolic and triangular functions. It is known that for the (2+1)-dimensional integrable 

models, there are many more abundant localized structures than in (1+1)-dimensional case 

because some types of arbitrary functions can be included in the explicit solution expression
9)

. 

Moreover, the periodic waves also have been studied by some authors. In this paper, we try to 

give an answer for the following question: Are there any localized excitations derived by the 

use of another functions? Fortunately, the answer is still positive due to some arbitrariness of 
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the functions ( , )f x t  and ( )g y in the potential U given by the equation (20). In order to 

answer this question, some attention will be paid to dromion, peakon, dromion lattice, multi 

dromion-solitoff excitations, regular fractal dromions, lumps with self-similar structures and 

chaotic dromions patterns based on the golden main and the symmetrical hyperbolic and 

triangular Lucas functions for the potential field U  in (2+1) dimensions. 

 

3.1  Dromion, Peakon and Dromion lattice excitations 

According to the solution U, we first discuss its dromion excitation which is one of the 

significant localized excitations localized exponentially in all directions are driven by multiple 

straight-line ghost solitons with some suitable dispersion relation. Also, multiple dromion 

solutions are driven by curved line and straight line solitons. When the simple selections of 

the functions ( , )f x t  and ( )g y  are given to be 

0 0

1 1

( , ) 1 tLs[ ( ) ], ( ) 1 tLs(K ),
M N

i i i i j j j

i j

f x t a k x c t x g y b y y
 

           (21) 

where 0 0, , , , , ,i i i j j i ja k c b K x y are arbitrary constants, M and N are integers, we can obtain 

a two-dromion excitation for the physical quantity U, as shown in Fig.1. and the parameter 

selections as   

    
2

1 2 1 1 01 01 02

1 2 1

2, 1, 0,
2

2 2 0.2

c
M N k k c K x y x

a a b

          

  

                  (22)   

   
Figure (1): Time evolutional plots of an interaction between two travilling dromions for  the 

 

 potential U with selections (21) and (22):  (a) when t=-5 (b) when t=0 (c) when t=5 

It is well-known that the interactions of solitons in (1 + 1)-dimensional nonlinear models are 

usually considered to be elastic. That means there is no exchange of any physical quantities 

like the energy and the momentum among interacting solitons. That is, the amplitude, velocity 

and wave shape of a soliton do not undergo any change after the nonlinear interaction. But in 

higher dimensional non-linear models the interactions between solitary waves may be 

completely elastic or non-completely elastic. From figure 1, we show that the interaction 

between a dromion-dromion is non-completely elastic since their shapes and amplitudes are 

not completely preserved after interaction.  

Along with the above lines, if taking 

( , ) 0.3tLs( 4 ), ( ) 0.3tLs( 4 ),
N M

n N m M

f x t x c t n g y y m
 

               (23) 

 

If M=N=2 and c=1 then we can obtain a 5 5  dromion lattice" excitation for the physical 

field U. The corresponding dromion lattice plot is presented in figure 2. 
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Figure 2: A dromion-lattice plot of the potential U with (23) when t=0  

Similarly, based on the field U we can obtain some important weak localized excitations such 

as peakons (weak continuous solution) which is discontinuous at its crest 
( | |)[ ( , ) , 0]x ctu x t k c e k     , was first found in the celebrated (1+1)-dimensional 

Camassa-Holm equation
46)

 

2 3 2 ,t x xxt x x xx xxxu ku u uu u u uu      

We find many (2+1)-dimensional nonlinear models also possess these soliton excitations
15-33)

. 

When selecting ( , )f x t  and ( )g y  to be some piecewise smooth functions 

1 1

( ) 0, ( ) 0,
( , ) 1 ( ) 1

( ) 0, ( ) 0,

M N
i i i i

i ii i i i

f x c t x c t g y y
f x t g y

f x c t x c t g y y 

    
    

        
   (24) 

where the functions ( )i if x c t and ( )ig y  are differentiable functions of the indicated 

arguments and possess boundary condition ( )i if C   ,i=1,2,…,M and  

( )i ig D  ,i=1,2,…,N with iC  and iD   being constants and /or even infinity. For 

instance, when choosing  
2

1 20.1 , 0.05 ( ) 0.1 , 2 2,x t x t yf f g y M N                 (25) 

We can derive a propagating two-peakon excitation for the potential field U.  The 

corresponding two-peakon excitation profile is depicted in figure 3. Also, a simple example of 

peaked solitary waves with periodic behavior is depicted in figure 4. with the selection 

function reads   

  
2 sTLs( )

1 20.1 , 0.05 ( ) ,x t x t yf f g y                         (26) 

where 
1

sTLs( ) ( ), ( 1)i y i yy i
i
      is the symmetrical triangular Luas sine 

function
33)

. 

 
Figure (3): Time evolutional plots of the two peaked solitary waves for the potential U with  
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the function selections (24) and (25): (a) when t=-5 (b) when t=0 (c) when t=5 

 
Figure (4): Time evolutional plots of the two peaked solitary waves with periodic behavior for 

the  

 

potential U with the function selections (24) and (26): (a) when t=-5 (b) when t=0 (c) when 

t=5 

From figure 3, we show that the interaction between a peakon-peakon is non-completely 

elastic since their shapes and amplitudes are not completely preserved after interaction. Also 

with the help of figure 4, one can easily say that the multi-peakon excitation possess periodic 

behavior.  

3.2  Multi Dromion-Solitoff Excitations 

According to potential U, we discuss its multi dromion-solitoff excitations. That can 

be expressed by means of Lucas functions in the form 

( , ) 0.2secLs( 5 ), ( ) 0.2secLs( 5 ),
N M

n N m M

f x t x n t g y y m
 

               (27) 

If m=n=2, we can obtain a multi dromion-solitoff excitation for the physical quantity U 

depicted in figure 5 with t=0. 

 
Figure 5: A plot of a special type of multi dromion-solitoff structure for 

the physical quantity U with the choice (27) and t = 0 

For instance, when ( , )f x t and ( )g y   are considered to be 
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( , ) [0.2secLs( 5 ) 0.2secLs( 5 )],

( ) 0.2secLs( 5 ),

N

n N

M

m M

f x t x n t x n t

g y y m





     

 




         (28) 

   
Figure (6): Time evolutional plots of an interaction between two multi dromion-solitoffs  

 

for  the potential U with the choice (28): (a) when t=-25 (b) when t=0 (c) when t=25 

We can obtain the interactions between two multi dromion-solitoffs. Figure 6 shows an 

evolutional profile corresponding to the physical quantity U. From figure 6 and through 

detailed analysis, we find that the shapes, amplitudes, and velocities of the two multi dromion-

solitoffs are completely conserved after their interactions. Consequently, the interaction 

between two multi dromion-solitoffs are completely elastic. Now we focus our attention on 

the intriguing evolution of a dromion in a background wave for the potential field U. For 

instance, if we choose ( , )f x t and ( )g y as 

( , ) 3 0.12 tLs(0.5 ) 0.02 sn(0.4 ,0.3),

( ) 3 0.12 tLs(0.5 ) 0.02 sn(0.4 ,0.3),

f x t x t x

g y y y

   

  
                   (29) 

where, sn is the Jacobi sine function, we can obtain an evolutional profile of single-dromion in 

the background wave for the physical quantity U presented in figure 7 at different times (a) 

when t = -10 (b) t=0 (c) t=10. 

  
Figure (7): Time evolutional plots of the single dromion in the background wave for  the 

 potential U with selection (29): (a) when t=-10 (b) when t=0 (c) when t=10 

 



     
 

 9 

From figure 7 and through detailed analysis, this figure shows the corresponding profile of the 

complex wave excitation presenting the propagation of a dromion moving on the determined 

double periodic wave background. However, its wave shape and wave velocity do not suffer 

any change, which is very close to many actual physical processes in the natural world. 

 

3.3  Regular Fractal Dromions 

Recently, it has been found that many lower-dimensional piecewise smooth functions 

with fractal structure can be used to construct exact localized solutions of the higher-

dimensional soliton system which also possesses fractal structures. If we appropriately select 

the arbitrary functions ( , )f x t  and ( )g y , we find that some special types of fractal dromions 

for the potential U can be revealed. For example, if we take 
2 2

2 2

|x-t|[x-t+cTLs(ln( ) ) sTLs(ln( ) )]

|y|[y+cTLs(ln( ) ) sTLs(ln( ) )]

( , ) 1 ,

( ) 1 ,

x t x t

y y

f x t

g y





  



 

 
                             (30) 

where cTLs( ) , ( 1)i y i yy i      is the symmetrical triangular Lucas cosine 

function
33)

, then we can obtain a simple fractal dromion. 

 
Figure 8: (a) Fractal dromion structure for the potential U with the choice (30):  at t=0,  

(b) Density of the fractal structure of the dromion in the region {x=[-0.002,0.002],y=[-

0.002,0.002]} 

 

From figure 8 and through detailed analysis, figure (8-a) shows a plot of this special type of 

fractal dromion structure for the potential U given by equation (20) with the selection 

functions (30) when t=0. Figure (8-b) shows the density of the fractal structure of the dromion 

in the region {x=[-0.002,0.002], y=[-0.002,0.002]}. To observe the self-similar structure of the 

fractal dromion clearly, one may enlarge a small region near the centre of figure (8-b). For 

instance, if we reduce the region of figure (8-b) to {x=[-0.0002,0.0002], y=[-0.0002,0.0002]}, 

{x=[-0.00001,0.00001], y=[-0.00001,0.00001]}, and so on, we find a totally similar structure 

to that presented in figure (8-b). 

 

3.4  Lumps with self-similar structures 

It is also known that in high dimensions, such as the KP equations and the (2+1)-

dimensional Korteweg-de Vries (KdV) equations, a special type of localized structure, which 

is called the lump solution (algebraically localized in all directions), has been formed by 

rational functions. This localized coherent soliton structure is another type of significant 

localized excitation. If we select the functions ( , )f x t and ( )g y of the potential U 

appropriately, we can find some types of lump solutions with fractal behavior. Figure (9-a) 

shows a fractal lump structure for the quantity U, where ( , )f x t and ( )g y are selected to be  
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2 2 2

4

2 2 2

4

|x-t|
( , ) 1 [cTLs(ln( ) ) sTLs(ln( ) )] ,

1+(x-t)

|y|
( ) 1 [cTLs(ln( )) sTLs(ln( ))] ,

1+y

f x t x t x t

g y y y

    

  

           (31) 

 
Figure 9: (a) Fractal lump structure for the potential U with conditions (31), (b) Density of the 

fractal lump related to (a) in the region {x = [-0.0001, 0.0001], y = [-0.0001, 0.0001]}. 

From figure (9-a), we can see that the solution is localized in all directions. Near the center 

there are infinitely many peaks which are distributed in a fractal manner. In order to 

investigate the fractal structure of the lump, we should look at the structure more carefully. 

Figure (9-b) presents a density plot of the structure of the fractal lump at the region {x = [-

0.0001, 0.0001], y = [-0.0001, 0.0001]}. More detailed studies will show us the self-similar 

structure of the lump. For example, if we reduce the region of figure (9-b) to {x = [-0.00066, 

0.00066], y = [-0.00066, 0.00066]}, {x = [-0.000028, 0.000028], y = [-0.000028, 0.000028]} 

and so on, we can find a totally similar structure to that plotted in figure (9-b). 

 

3.5  Chaotic Dromions patterns 

Now, if we select the functions ( , )f x t and ( )g y as 

( , ) 1 (100 ( )) , ( ) 1 ,x yf x t s t g y                           (32) 

 where s(t) is arbitrary function of time t. From the potential field U with the selections (32), 

one knows that the amplitude of the dromion is determined by the function s(t). If we select 

the function s(t) as a solution of a chaotic system, then we can obtain a type of chaotic 

dromion solution. In figure (10-a), we exhibit the shape of the dromion for the physical 

quantity U shown by equation (20) at a fixed time (for s(t) = 0) with the function selection 

(32). The amplitude A of the dromion is changed chaotically with s(t), where s(t) is a chaotic 

solution of the following nuclear spin generator system depicted in figure (10-b)
 47)

: 
2, (1 ), [ (1 ) ],t t ts b s g g s b g c h h b a h cg                   (33) 

where s, g and h are functions of t, a, b, c are model parameters. The nuclear spin generator 

system is a high-frequency oscillator which generates and controls the oscillations of a nuclear 

magnetization vector in a magnetic field. The nuclear spin generator system exhibits a large 

variety of chaotic attractors and displays rich structures. One of typical chaotic attractors for 

the nuclear spin generator system (33) is depicted in figure (10-b) when the model parameters 

and initial values set 

  0.2, 1.3, 3, (0) 2, (0) 1, (0) 0,a b c f g h                   (34) 
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Figure 10: (a) Single dromion structure for the physical quantity U  with the selections (32) 

and 

s(t) = 0. (b) A typical attractor plot of the nuclear spin generator system (33) with the 

condition (34). 

 

4.  Summary and Discussion 

In conclusion, the Lucas Riccati method is applied to obtain variable separation solutions of 

(2+1)-dimensional MDWW equation. With the help of the quantity (20), some localized 

excitations, such as dromion, peakon, dromion lattice, multi dromion-solitoff excitations, 

regular fractal dromions, lumps with self-similar structures and chaotic dromions patterns, are 

obtianed based on the golden main and the symmetrical hyperbolic and triangular Lucas 

functions. We hope that in future experimental studies these localized excitations obtained 

here can be realized in some fields. Actually, our present short paper is merely a beginning 

work; more application to other nonlinear physical systems should be conducted and deserve 

further investigation. In our future work, on the one hand, we devote to generalizing this 

method to other (2+1)-dimensional nonlinear systems such as the ANNV system and BKK 

system, Boiti-Leon-Pempinelle system etc. On the other hand, we will look for more 

interesting localized excitations.  

 

5.  Appendix A 

Stakhov and  Rozin in
37)

 introduced a new class of hyperbolic functions that unite the 

characteristics of the classical hyperbolic functions and the recurring Fibonacci and Lucas 

series. The hyperbolic Fibonacci and Lucas functions, which are the being extension of 

Binet’s formulas for the Fibonacci and Lucas numbers in continuous domain, transform the 

Fibonacci numbers theory into ‘‘continuous’’ theory because every identity for the hyperbolic 

Fibonacci and Lucas functions has its discrete analogy in the framework of the Fibonacci and 

Lucas numbers. Taking into consideration a great role played by the hyperbolic functions in 

geometry and physics, (‘‘Lobatchevski’s hyperbolic geometry’’, ‘‘Four-dimensional 

Minkowski’s world’’, etc.), it is possible to expect that the new theory of the hyperbolic 

functions will bring to new results and interpretations on mathematics, biology, physics, and 

cosmology. In particular, the result is vital for understanding the relation between 

transfinitness i.e. fractal geometry and the hyperbolic symmetrical character of the 

disintegration of the neural vacuum, as pointed out by El Naschie.  

 The definition and properties of the symmetrical Lucas functions The symmetrical 

Lucas sine function (sLs), the symmetrical Lucas cosine function (cLs) and the symmetrical 

Lucas tangent function (tLs) are defined
33-35, 37-40)

 as 
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 sLs( ) , cLs( ) , tLs( ) ,
x x

x x x x

x x
x x x

 
   

 


 




    


              (A.1) 

They are introduced to consider so-called symmetrical representation of the hyperbolic Lucas 

functions and they may present a certain interest for modern theoretical physics taking into 

consideration a great role played by the Golden Section, Golden Proportion, Golden ratio, 

Golden Mean in modern physical researches
37-39)

. The symmetrical Lucas cotangent function 

(cotLs) is 
1

cotLs( )
tLs( )

x
x

 , the symmetrical Lucas secant function (secLs) is 

1
secLs( )

cLs( )
x

x
 , the symmetrical Lucas cosecant function (cscLs) is 

1
cscLs( )

sLs( )
x

x
 . 

These functions satisfy the following relations
37-39)

 
2 2 2 2

2 2

cLs ( ) sLs ( ) 4, 1 tLs ( ) 4secLs ( )

cotLs ( ) 1 4cscLs ( )

x x x x

x x

   

 
                       (A.2) 

Also, from the above definition, we give the derivative formulas of the symmetrical Lucas 

functions as follows: 

2sLs( ) cLs( ) tLs( )
cLs( ) ln , sLs( ) ln , 4secLs ( ) ln ,

d x d x d x
x x x

dx dx dx
      (A.3)          

The above symmetrical hyperbolic Lucas functions are connected with the classical 

hyperbolic functions by the following simple correlations: 

sLs( ) 2sinh( ln ), cLs( ) 2cosh( ln ), tLs( ) tanh( ln ).x x x x x x         (A.4)   
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