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Abstract 
 

 We consider non-linear singular perturbation problems of the form 

( ) ( ( )) ( ) ( , ( )) ( )y x p y x y x q x y x r x     , (0)y  , (1)y  with a boundary layer at one end point. 

The method is distinguished by the following fact: The original problem is reduced to an 

asymptotically equivalent first order initial value problem (IVP). Then, an initial-value 

algorithm is applied to solve this IVP. The algorithm is based on the locally exact integration 

of a linearized problem on a non-uniform mesh. Two terms recurrence relation with 

controlled step size is obtained. Several problems are solved to demonstrate the applicability 

and efficiency of the algorithm. It is observed that the present method approximates the exact 

solution very well.  

Keywords: Two-point boundary value problems; Singular perturbation problems; Boundary 

layer; Initial-value problems; Non-  

                     uniform  mesh 
 

 

1. Introduction 

  

Singularly perturbed boundary-value problems (SPBVPs) are of common occurrence in many 

branches of applied mathematics such as fluid dynamics, elasticity, chemical reactor theory, 

etc. Solutions of such problems depend on a small positive parameter in such a way that the 

solution varies rapidly in some parts and varies slowly in some other parts. So, typically there 

are thin transition layers where the solutions can jump abruptly, while away from the layers 

the solution behaves regularly and vary slowly. So the numerical treatment of singular 

perturbation problems represents a major computational challenge. In general, the numerical 

solution of a boundary-value problem will be more difficult matter than the numerical solution 

of the corresponding initial-value problems. Hence, we prefer to convert the second-order 

problem into first-order problems. In fact, some numerical techniques employed for solving 

SPBVPs are based on the idea of replacing a two-point boundary value problem by two 

suitable initial-value problems. For example, Kadabajoo and Reddy [1] presented a novel 

initial-value technique for a class of nonlinear SPBVPs .In their method, the original problem 

is replaced by an asymptotically equivalent first-order initial-value problem which is then 

solved by the Runge-Kutta method. Gasparo and Macconi [2] considered a semilinear SPBVP 

which was integrated to obtain two first-order initial-value problems, and considered both the 
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inner and outer solutions. The integration of these initial-value problems goes in opposite 

direction, and the first problem can be solved only if the solution of the second one is known. 

A similar matching idea combining the reduced problem and a WKB approximation for the 

full problem has also been employed by Gasparo and Macconi [3] for linear and semilinear 

SPBVPs. These matching ideas are based on the method of asymptotic expansions and on the 

work of Roberts [4] who considered the matching between inner and outer solutions at an 

unknown location which was determined iteratively. Robert’s idea has been extended by 

Valanarasu and Ramanujam [5] for boundary value problems of singularly-perturbed systems 

of odes; these authors used exponentially-fitted methods for solving the singularly-perturbed 

initial value problem. Reddy and Chakravarthy [6] presented a method of reduction of order 

for solving linear and a class of nonlinear SPBVPs. In their method, the original problem is 

replaced by two first-order initial-value problems, which are then solved by the Runge-Kutta 

method in opposite directions. They later [7], introduced three initial-value problems which 

are independent of perturbation parameter for linear SPBVPs. In this paper, an initial-value 

method which is simple to use and easy to implement is presented for solving non-linear 

singular perturbation problems of the form ( ) ( ( )) ( ) ( , ( )) ( )y x p y x y x q x y x r x     , [ , ]x a b , 

( ) ,y a   ( )y b  with a boundary layer at one end point. The original problem is reduced to 

an asymptotically equivalent first-order initial-value problem (IVP). Then, a variable step size 

initial-value algorithm is applied to solve this IVP in the inner region. The algorithm is 

derived based on the locally exact integration of a linearized problem over a non-uniform 

mesh. Two-term recurrence relation with controlled step size is obtained. Some numerical 

examples are given to illustrate the validity of the given method. It is observed that the present 

method approximates the exact solution if exists to great extent. 

 

2. Description of the method: 
Consider the non-linear singularly perturbed two-point boundary-value problem 

 

;( ) ( ( )) ( ) ( , ( )) ( ) [ , ]y x p y x y x q x y x r x x a b      ,                                 (1.a) 

 

with the boundary conditions 

 

   ( )y a  and  ( )y b  ,                                                                          (1.b) 

 

where   is a small positive parameter (0 1)  , , , ,a b    are given constants, ( ( ))p y x , 

( , ( ) )q x y x  and ( )r x are assumed to be sufficiently continuously differentiable functions. 

Furthermore, we assume that the problem (1) has a solution which displays a boundary layer 

in the neighborhood of x a . 

 

Equation (1.a) could be rewritten as 

 

;( ) ( ( )) ( , ( )) [ , ]y x f y x g x y x x a b      ,                                                   (3) 
 

where      

                                     

   ( ( )) ( ( ))yf y x f y x y   , ( ( )) ( ( ))yf y x p y x and  ( , ( )) ( ) ( , ( ))g x y x r x q x y x   . (4) 

 

Now, let ( )u x  be the solution of the reduced problem 

 

( ( )) ( , ( ))f u x g x u x    with  ( )u b       .                                                      (5) 
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Then an asymptotically approximation to the given Eq.(3) as follows: 

 

( ) ( ( )) ( , ( ))y x f y x g x u x      .                                                                   (6) 

 

Integrating Eq.(6) yeilds 

 

( ) ( ( )) ( , ( ))y x f y x g x u x dx     ,                                                                  (7) 

 

Using Eq.(5) , we get     

   

( ) ( ( )) ( ( ))y x f y x f u x K      ,                                                                     (8) 

 

where k is an integration constant. In order to determine k , we introduce the condition that the 

reduced equation of (8) should satisfy the boundary condition at x b . Thus, we get 0K  . 

Hence, a first-order equation which is asymptotically equivalent to the second-order Eq. (1) 

was obtained. 

 

( ) ( ( )) ( ( ))y x f y x f u x    ,                                                                            (9) 

 

with initial condition  

                ( )y a   . 

 

Remark1. If we obtain the analytical solutions of the IVPs (5) and (9), then we have an 

asymptotic analytical solution of the original singularly perturbed two-point boundary-value 

problem (1). 

 

Equation(9) will be solved based on a locally exact integration of a linearized problem on a 

non-uniform mesh as follows.  

Consider the interval [ , ]a b and divide it into 1N  non-overlapping subintervals 1[ , ]i iI x x  , 

1 : 1i N  ,  such that 1x a  and Nx b , where N denotes the number of grid points. Eq. (9) 

may be approximated by  

 

( ) ( ) ( ( ) ( ));i iy x A B x x C y x y x x I         ,                                 (10) 

where         ( ( )) ( ( )) ( ) ( ) ( ), ,i i i i if u f y
df df

A x x B u x C y x p y x
dx dy

      , whose  

analytical solution may be readily obtained. 

For example, if 0C  , and an initial condition ( )i iy x   

 

( ) ( , , )i iy x x x    ,                          x I  ,                                             (11) 

 

where 

                
( )

2

( )
( , , ) ( )

iC x x

i i i i

A B B AC B
x x x x e

C C C


 
  


 

     .  

                     

Equation (11) represent the analytical solution of Eq.(10) and a piecewise analytical solution of 

Eq. (9). Starting with initial condition 1( )y a     , we can obtain ( )y x for 2[ , ]x a x ,and 
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then obtain a new initial condition 2 2( )y x   to obtain the solution ( )y x for 2 3[ , ]x x x  , 

and so on. 
 

1 1( ) ( , , ) , ( ), 1: 1.i i i i i iy x x x y x i N                           (12) 

 

The two-term recurrence relation, Eq.(12) is explicit, so that Eq.(9) can be easily solved 

directly by forward substitution.  

 

Remark 2. If 0C  , then        ( , , ) ( ) 2 ( ) / 2i i i i ix x x x A B x x        . 

 

3. Mesh selection strategy 

A non-uniform grid is formed in such a way that one wants to get more information about the 

solution of the IVP (9) in the boundary layer region and obtain solution at fewer number of 

points in the outer region . This is quite natural because one would like to portray the behavior 

of the solution inside the boundary layer region. The required step size can be determined 

directly according to the variation of the solution within a x-step as follows [8,9]: 

If we stand at a point ix and we want to determine a point 1ix  , which verifies 

1( ) ( )i iy x y x    , where  is a user's specified (constant) factor, then  

 

1 / ( )i i ix x y x
    ,                                                                               (13) 

 

where 

( ) ( , )i i iy x x   .                                                                                     (14)                                                                                   

 

Remark 3. The approximated first derivative in Eq. (14) can be obtained directly from Eq. (9), 

where   

   

                 ( ) ( ( )) ( ( )) / /i i iy x f u x f y x A     .  

 

These details will be combined in the following algorithm: 

 

 

3.1. Algorithm steps 

 

Step I:     Compute the solution of the reduced problem (5) by one of those  

                 A) Analytical integration 

                 B) Numerical integration method, where ( )u x can be considered as a linear    

                     piecewise continuous function.  

Step II:   Input  , ,    ;  Set  1 1index 1, Y(1) , x a     . 

Step III:  While 1x  , compute 

            (i)       1 1 1 1( ( )) ( ( )) ( ) ( ), ,f u f y
df df

A x x B u x C y x
dx dy

    ;   

            (ii)   
2 1 / /x x A    

            (iii)   2 2 1 1( ) = ( , , )y x x x  , from Eq. (11) 

            (iv)   
2 2( ) ( ) 5 ,if y x u x    Stop 

            (v)   2 2 1 2 2 2Y(index 1) ( ), X(index 1) , ; ( )y x x x x y x      ; index index 1   
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Step IV: Plot the solution 

               (i) Plot (X, verses Y) 

 

   The algorithm is easily adaptable on computer; we present it in MATLAB environment as 

shown in Appendix A. 

 

4. Numerical examples 

To demonstrate the applicability of the method we applied it to three non-linear test problems. 

These problems are discussed in the literature and their approximate solutions are available 

for comparison.  

 

 

Example 4.1. Consider the following non-linear example from O'Malley [10] 
 

( ) ( ) ( ) 0; [ 1,1]y x y x y x x      ,                                                     (15) 

 

with ( 1) 0y   and (1) 1y   . The problem (15) has a uniformly valid approximation [10] for 

comparison, 
 
 

 

                ( ) [1 exp( ( 1) / ] / [1 exp( ( 1) / ]y x x x         . 
 
 

The reduced problem solution is ( ) 1u x    . Hence; the corresponding initial-value problem 

is given by 

 

                 
2

( ) ( ) / 2 1/ 2y x y x        with ( 1) 0y   ,  

                  

which has a piecewise analytical solution given by 

 

                ( )/2 2

( ) / 2 , 0,

( ) 1
(1 ( 1) ), 0.

2
i i

i i

x x

i i i

i

x x

y x
e 

 

  




  


 
   




 

 

The piecewise solution error is shown in Fig. 1. 

 

Example 4.2. Consider the following non-linear example from Kevorkian and Cole [11] 

 

( ) ( ) ( ) ( ) 0; [0,1]y x y x y x y x x      ,                                             (16) 

 

with  (0) 1y    and (1) 3.9995y  . The problem (16) has a uniformly valid approximation 

[11] for comparison, 

 

                1 1 2( ) tanh( ( / ) / 2)y x x c c x c   , 

 

where 1 2.9995c   and  2 1 1 1(1 / ) ln ( 1) / ( 1)c c c c   .   
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The reduced problem solution is ( ) 2.9995u x x  , and the corresponding initial-value 

 problem is  given by 

 

                  
2 2

( ) 0.5 ( ) 0.5 2.9995y x y x x       with (0) 1y   , 

 

which has a piecewise analytical solution given by 

 

                ( )/3 3 2

2

( )( 2.9995) / 2 , 0,

( ) 1
( ( ( 2( )) ( 2 ) ), 0.

2
i i

i i i

x x

i i i i i i i i i i

i

u x x x

y x
u u x x u u e  

 

      




  


 
       




 

The piecewise solution error is shown in Fig. 2. 

 

Example 4.3. Consider the non-linear example from O'Malley [10] given by 
 

( ) 2 ( )
( ) ( ) sin( / 2) 0, [0,1]

2

y x y x
y x e y x x e x


       ,                           (17) 

 
 

with (0) 0y  and (1) 0y   .The problem has a uniformly valid approximation for comparison   
 

               
/2

( ) ln (1 cos( / 2))( )1 0.5 x
y x x e 




     . 

 

The reduced problem solution is (1 cos( / 2))( ) ln xu x    and the corresponding initial-

value problem is given by 

 

               
1( )

( ) , (0) 0
1 cos( / 2)

y x
y x e y

x



   


. 

 

 

which has a piecewise analytical solution given by 

 

         ( )/ ( )/ ( )/0.5 sin(0.5 )
( ) 1 1 (1 )

1 cos(0.5 )
i i i i i i i i iu x x x x x xi

i i

i

x
y x e x x e e e e

x

        
 



     
         

 
. 

 

By considering the given problems solutions as our exact solution, the maximum numerical 

solutions errors are given in tables. Tables 1 and 2 present the maximum error for the 

numerical solution obtained for each previous example over an approximated layer region 

, px a x    ,where ( ) ( ) 5p py x u x   ,  the required number of grid points inN over this 

region to achieve the specified factor  at different values of   , and the maximum error over 

the outer region [ , ]px x b  using the reduced problem.  

 

  The results indicate that the number of grid points required over the inner region is 

independent on the perturbation parameter  , while it depends on the specified factor  and 

can be approximated by 
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(0) (0)
1in

y u
N




   .                                                                              (18) 

 

Moreover, the numerical solutions errors over the inner region depend on both the 

perturbation parameter  and the specified factor  , while, at very small value of  , ( 2  ), 

we have a second order of convergence as shown in fig.4. 

 

Table 1. Maximum error and number of grid points inN required over the inner region , pa x    at 0.1  . 

   310
 

510
 

710
 

910
 

1110
 

 

Max error 

(Example 4.1) 

 

1, px x     

 

1.8454e-03 

 

1.8453e-03 

 

1.8453e-03 

 

1.8453e-03 

 

1.8453e-03 

,0px x     
 

4.9110e-08 
 

 3.3811e-10 
 

 3.3802e-10 
 

 3.3802e-10 
 

3.3802e-10 

inN  
 

11 
 

12 
 

12 
 

12 
 

12 

       

 

Max error 

(Example 4.2) 

0, px x     
 

6.9728e-004 
 

8.3172e-004 

 

8.3306e-004 
 

8.3308e-004 
 

8.3308e-004 

,1px x      

4.4402e-16 

 

 4.4400e-16 

 

 0 

 

 0 

 

 0 

inN  
 

42 
 

42 
 

43 
 

43 
 

43 

       

 

Max error 

(Example 4.3) 

0, px x     
 

1.2000e-003 
 

1.2000e-003 
 

1.2000e-003 
 

1.2000e-003 
 

1.2000e-003 

,1px x     
 

2.3635e-04 
 

1.6421e-05 
 

0 
 

0 

 

0 

inN  
 

8 
 

9 
 

10 
 

10 
 

10 

 

 

 

 

Table 2. Maximum error and number of grid points inN required over the inner region , pa x    at 0.01  . 

  310

 
510

 
710

 
910

 
1110

 

 

Max error 

(Example 4.1) 

 

0, px x     

 

1.9764e-005 

 

1.9764e-005 

 

1.9764e-005 

 

1.9764e-005 

 

1.9764e-005 

,1px x     
 

2.0000e-08 
 

 1.8101e-10 
 

 1.8101e-10 
 

 1.8101e-10 
 

 0 

inN  
 

101 
 

103 
 

103 
 

103 

 

104 

       

 

Max error 

(Example 4.2) 

1, px x     
 

3.2438e-004 
 

7.0530e-006 
 

8.3937e-006 
 

8.4072e-006 
 

8.4073e-006 

,0px x     
 

 4.4414e-16 
 

 0 
 

 0 

 

 0 
 

 0 

inN  
 

402 
 

403 
 

404 

 

404 

 

404 

       

 

Max error 

(Example 4.3) 

0, px x     
 

1.7297e-005 
 

1.5045e-005 
 

1.5045e-005 
 

1.5045e-005 
 

1.5045e-005 

,1px x     
 

 4.4011e-05 
 

 9.7102e-06 
 

 9.9700e-09 
 

 9.9700e-09 
 

9.9700e-09 

inN  
 

71 
 

72 
 

72 
 

73 
 

73 
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Fig. 1. The numerical solution error of Example 4.1 using the present algorithm at 

710  . 
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Fig. 2. The numerical solution error of Example 4.2 using the present algorithm at 
710  . 



     
 

 9 

10
-6

10
-4

10
-2

10
0

0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

x

E
 r 

r 
o 

r

 
Fig.3. The numerical solution error of Example 4.3 using the present algorithm at 710  . 
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Fig.4. The computed order of convergence of the present method. 

 

5. Conclusions 

An initial-value algorithm with variable step size is presented for solving a class of non-linear 

singularly perturbed two-point boundary value problems with a boundary layer at one end 

point. The solution of the given problem is computed numerically by solving two initial-value 

problems. Two-term recurrence relation with controlled step size is obtained based on the 

locally exact integration of the linearized problem over a non-uniform mesh. The method is 

very easy to implement on any computer with minimum problem preparation. We have 

implemented it on three non-linear examples by taking different values of  and . Piecewise 

approximations are presented for each example and numerical results are presented in tables 

and figures. The accuracy of the present method depends on both the perturbation parameter 

 and the specified factor  and has a second order of convergence at very small values of  . 

Moreover, the deduced equivalent initial- value problem enables us from obtaining an 

approximate value of the first derivative at the boundary layer point, which can be used in 
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shooting techniques dealing with this type of problems. It can be observed that the present 

method approximates the exact solution very well. 
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Appendix A 
 

clear all; close all;format long e 

epsp=1e-7;delta=.1;hmax=100*epsp;tp=100*epsp;n=1;d=epsp x0=-1; 

x00=x0;x=x0;;y0=0;i=0;while x<x00+tp 

i=i+1;if i>500;break;end 

y1=(-1/2+y0^2/2)/epsp;h=abs(delta/(y1+eps)); x=x0+h;if y0==0;y=-(x-x0)/2/epsp;end 

if y0~=0;y=1/2/y0*((y0^2+1)+(y0^2-1)*exp(y0*(x-x0)/epsp));u=-1;end  

Yexact=-(1-exp(-(x+1)/epsp))/(1+exp(-(x+1)/epsp)); 

er(i)=abs(Yexact-y);xx(i)=x;yy(i)=y;u=-1;if abs(y-u)<5*epsp;break;end; 

x0=x;y0=y;end;xxx=xx(end-n)+d:.1:1;uuu=0*xxx-1; 

yyy=-(1-exp(-(xxx+1)/epsp))/(1+exp(-(xxx+1)/epsp)); 

err=abs(yyy-uuu);semilogx([xx(1:end-n)+1,xxx+1],[er(1:end-n),err],'.:') 

hold on; semilogx(xx(end-n)+1,er(end-n),'o');length(xx) 

end 
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