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Abstract 
 

 In this paper we deal with a multi cycle machine time scheduling problem (MTSP) to find the 

best starting time for each machine in each cycle. We introduce an algorithm by using the 

particle SWARM optimization (PSO) and Genetic algorithm to solve the MTSP. A 

comparison between PSO, GA and max-separable technique will be introduced to find the 

best solution which is the best starting time respect to its time window for each machine in 

each cycle and respect to the set of precedence machines to minimize the penalty cost.  

 

KEYWORDS: Machine Time Scheduling, Particle SWARM optimization, Genetic 

Algorithm, Max-separable, Time Window. 
 

 

1- Introduction 

A great deal of research has been focused on solving scheduling problems. One of the most 

important scheduling problems is the Machine Time Scheduling Problem (MTSP). This 

problem was investigated in [12] as a parameterized version of the MTSP, which was defined 

in [7], with penalized earliness in starting and lateness in the completion of the operation. The 

authors in [12] applied the optimal choice concept which is given in [10] and some theoretical 

results from [11] to obtain the optimal values of the given parameters.  

In [3] the authors investigated two cycles MTSP and introduced an algorithm to find the 

optimal choice of parameters, which represent the earliest possible starting time for the second 

cycle. In [2] an algorithm was developed (MTSP Algorithm (MTSPA)) for multi-cycles 

MTSP which found the starting time for each machine in each cycle by using the max-

separable technique. The processing times in the previous researches were deterministic. In 

[8] discusses how to solve the MTSP when the processing time for each machine is stochastic. 

To solve this problem, the Monte Carlo simulation is suggested to handle the given stochastic 

processing times. A generalization was introduced in [1] to overstep the cases at which an 

empty feasible set of solutions is described by the system. In this paper we will introduce an 

algorithm by using the PSO and GA to solve MTSP. Then, we will compare between PSO, 

GA and MTSPA (using numerical example) to find the best solution of starting time for each 

machine in each cycle that minimize the penalty cost.  
 

2- Problem Formulation 
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In machine time scheduling problem there are n machines, each machine carries out one 

operation j with processing time pj for },...,1{ nNj  and the machines work in k cycles. Let xjr 

represent starting time of the j
th

 machine in cycle r for all Nj , 
},...,1{ kKr 

(k number of 

cycles). Machine j can start its work in cycle r only after the machines in a given set  

)()( , jj NN N (
)( jN is the set of precedence machines) had finished their work in the (r-1)

th
 

cycle, so we can define the starting time in the (r-1)
th

 cycle as follows: 

KrNipxx jrjr
i

Nj
ir 



 ,)(max
)(1

 

Assuming that the starting time xjr is constrained by a time interval [ljr, Ljr] for each Nj , 

Kr  and, then the set of feasible starting times xjr is described by the following system for 

each Kr : 

      
)(

,)(max 1)(

INjLxl

Nixpx

jrjrjr

irjrjr
Nj i



 


 
Assume also that for some echological reasons there are a given recommended time interval 

[ajr, bjr], Ni , Kr  so: 

       
(*)],,[],[ jrjrjjrjr bapxx 

 
The violation of the (*) will be penalized by the following penalty function  

                     
Krxfxf jrjr

Nj



min)(max)(

 
Where the penalty function in a certain cycle r is given by:   

Njpxfxfxf jrjrjrjrjrjrjr  }0),(),({max)( )2()1(

  

Where
)1(

jrf
: R R is decreased continuous function such that 

)()1(

jrjr af
=0,  

And

)2(

jrf
: R R is increasing continuous function such that 

)()2(

jrjr bf
=0  

To minimize the maximum penalty in each cycle r, we should solve the following problem: 

   
NjLxl

Nixpx

tosubject

xf

jrjrjr

irjrjr

Nj

P
i











)()(max

:

min)(

1
)(

 
3- Max-separable Technique: 

The authors in [2] used the max-separable technique for solving a multi-cycles MTSP 

problem (P) and the introduced algorithm can summarized as follows: 

Step 1:    Boundaries Reformulation; the new boundaries will be h, H. 

Step 2:    Put r = 1. 

Step 3:    Find the feasible set of starting times for the first cycle.  

Step 4:    Find the optimal set of starting times. 

Step 5:   Find the optimal starting times in the r
th

 Cycle based on (r + 1)
th

 Cycle 

Intervals.  

Step 6:    Decrease the distance between boundaries in the (r + 1)
th

 Cycle. 

Step 7:    Let r = r + 1, if r  k -1 then returns to Step 3. Otherwise continue. 

Step8:  Find the feasible set of starting times for the k
th

 Cycle using the calculated values in 

the (k-1)
th

 Cycle. 
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Step9:    Find the optimal starting times in the k
th

 Cycle then Stop. 

 

Now we will introduce a numerical example that explains the how the max-separable 

technique solves the MTSP as follows: 

 

The example: 

Consider a problem with the following values of parameters n = 5 so  N = {1,2,3,4,5},  p = 

{2,4.5,6.25,4,5}, 

 

Table (1) Machine Boundaries 

Cycle (r) r = 1 r = 2 r = 3 

lir i=1,2,…,5 {1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5} 

Lir i=1,2,…,5 {5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14} 

 

Table (2) Machine Relations 

i 1 2 3 4 5 

N
(i)

 {1,2,3} {2} {2,3} {1,4,5} {1,3,5} 

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5} 

 

Assume further that 
Njbpxxaxf jrjrjrjrjrjrjr  )0,,(max)(

 

Where aj, bj are for all 
Nj 

given constants so that we have in our case for all
Nj 

 

jrjrjrjrjrjrjrjrjrjr bpxpxfxaxf  )()( )2()1(

 
Input values of air and bir for each cycle 

  

Table (3) Machines Penalty Boundaries 

Cycle (r) R=1 r=2 R=3 

air 

i=1,2,…,5 
{1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13} 

bir 

i=1,2,…,5 
{4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14} 

 

By solving this example by max-separable technique, the results show that, the value of f 

equal 35.75, and the starting time for each machine in each cycle as follows: 

 M1 M2 M3 M4 M5 

C1 [1,2] [1,1.5] 0.25 3 1.5 

C2 6.5 6 6.5 7 6.5 

C3 12.75 12 12.75 11.5 13 

 
 

 

4- Particle Swarm Optimization (PSO) 

The PSO method is a member of wide category of Swarm Intelligence methods for solving the 

optimization problems. It is a population based search algorithm where each individual is 

referred to as particle and represents a candidate solution. Each particle in PSO flies through 

the search space with an adaptable velocity that is dynamically modified according to its own 
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flying experience and also the flying experience of the other particles. Further, each particle 

has a memory and hence it is capable of remembering the best position in the search space 

ever visited by it. The position corresponding to the best fitness is known as pbest and the 

overall best out of all the particles in the population is called gbest [9].  

The modified velocity and position of each particle can be calculated using the current 

velocity and the distance from the pbestj to gbest as shown in the following formulas: 

)(**)(*** )(

,,22

)(

,,11

)(

,

)1(

,

t

gjgj

t

gjgj

t

gj

t

gj xgbestrcxpbestrcvwv 

 
)1(

,

)(

,

)1(

,

  t

gj

t

gj

t

gj vxx
 

With j=1, 2, …,n and g=1, 2, …, m 

n =number of particles in a group; 

m = number of members in a particle; 

t = number of iterations (generations); 
)(

,

t

gjv
=velocity of particle j at iteration t, 

w = inertia weight factor; 

c1 , c2 = cognitive and social acceleration factors, respectively; 

r1 , r2 = random numbers uniformly distributed in the range (0, 1); 
)(

,

t

gjx
= current position of j at iteration t; 

pbestj = pbest of particle j; 

gbest = gbest of the group. 

 

The index of best particle among all of the particles in the group is represented by the gbest. 

In PSO, each particle moves in the search space with a velocity according to its own previous 

best solution and its group’s previous best solution. The velocity update in a PSO consists of 

three parts; namely momentum, cognitive and social parts. The balance among these parts 

determines the performance of a PSO algorithm. The parameters c1 & c2 determine the 

relative pull of pbest and gbest and the parameters r1 & r2 help in stochastically varying these 

pulls [9]. 

In [4] PSO combined with the Lagrangian Relaxation (LR) framework to solve a power-

generator scheduling problem known as the unit commitment problem (UCP). In terms of the 

solution quality, the PSO-LR provided a “best solution” with a lower cost than GA for 

problem sizes larger than 20 units, and than LR for problem sizes 20 and 80 units. PSO-LR 

also provided a “best solution”, for the problem size of 10 units, with a much lower cost than 

using PSO alone. 

A novel approach based on Particle Swarm Optimization (PSO) for scheduling jobs on 

computational grids introduced in [5]. The proposed approach is to dynamically generate an 

optimal schedule so as to complete the tasks within a minimum period of time as well as 

utilizing the resources in an efficient way. When compared to genetic algorithm (GA) and 

simulating Annealing (SA), an important advantage of the PSO algorithm is its speed of 

convergence and the ability to obtain faster and feasible schedules. 

 

Application and performance comparison of PSO and GA optimization techniques were 

presented in [9], for Thyristor Controlled Series Compensator (TCSC)-based controller 

design. Results indicate that in terms of computational time, the GA approach is faster. The 

computational time increases linearly with the number of generations for GA, whereas for 

PSO the computational time increases almost exponentially with the number of generations. 

The higher computational time for PSO is due to the communication between the particles 

after each generation. However, the PSO seems to arrive at its final parameter values in fewer 

generations than the GA. 
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PSO Algorithm for solving MTSP 

The main steps of the algorithm that solves MTSP by PSO as follows: 

1- Reformulation: 

Each machine boundaries will be reformulate (calculate the new boundaries) based on its' 

successors machines boundaries. For each machine the new lower boundary called h and the 

new upper boundary called H.  

2- Initial iteration: 

 First, the particle defines as a set of starting times for the machines in all cycles. The 

particle is represented by D-dimensional, where D equal to N multiplies by K (where N 

number of machine and K number of cycles). The xirpt is the starting time for machine i in 

cycle r in particle p, Qp ,..,2,1  in iteration t, Tt ,..,2,1  (where Q is number of particles in the 

SWARM and T is number of iterations) which satisfy the constraints in (P). The value of xirpt 

generated randomly where irir Hxh irpt 
. The xirpt  must satisfy the second constrain which 

is

)(max
)1()(

j
ptrji

Nj
irpt pxx 


 . Determine the pbestp which is the best position of particle p that 

make the best value of the objective function. Then determine the gbest which is the best 

particle that make the best value of the objective function in all iterations. 

3- Other generation: 

 The next iteration created by modifying the velocity of each particle by the following 

equation: 

)(**)(*** 2211)1( irptirirptirpirpttirp xgbestrcxpbestrcvwv   
Then the particle position will be update by the following equation: 

 )1()1(   tirpirpttirp vxx
 

The new iteration has been created with new position of SWARM. Calculate the objective 

function then find the pbestp and gbest. Repeat this step until last iterations. The solution is the 

gbest in the last iteration. 
 

PSO-MTSP Algorithm:  

A1: Reformulate the boundaries for each machine in each cycle as follows:   

N
ikik

iLH Put
, 

Nj
jr

jr lh 

,  

))min(,(min
1

j
irjUi

jrjr pHLH 


 Where 
1,2,...,1}:{

)(
 krNjNiU

i
j  

A2: Put t = 1. 

A3: Put p = 1.   

A4: Put r = 1. 

A5: Put i = 1. 

A6: If 1r  then

)(max
)1()(

j
ptrji

Nj
ir pxh 

 . 

A7: Generate random number for xircp where irir Hxh ircp 
. 

A8: If i < n then i = i + 1 go to A6. 

A9: If r < k then r = r + 1 go to A5. 

A10: pbestp = f(xirpt) pt 
KrNi ,..,1,,..,1  . 

A11: If p < Q then p = p + 1 go to A4. 

A12: find max(f(pbestp) pt) 
.,..,1 Qp   

A13: maxppbestgbest 
 

A14: t = t + 1. 
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A15: Put p = 1. 

A16: 
)(**)(*** )1(22)1(11)1(   tirptirpptirpirpt xgbestrcxpbestrcvwv
. 

A17: irpttirpirpt vxx   )1( . 

A18: if xirpt is not feasible then go to A20. 

A19: if f(xirpt) pt > f(xirpt) p(t-1) then pbestp = xirpt 

A20: maxppbestgbest 
. 

A21: If p < Q then p = p + 1 go to A16. 

A22: If t < T then go to A15. 

A23: The solution is gbest.  
 

The example:  

The PSO-MTSP algorithm has been applied on the previous example. We run the program 

100 trials. We found that, the best swarm size equal 40 after we test the size by 5, 20, 40 and 

50 particle in the swarm as show in figure (1-a). After testing the w value by 0.1, 0.5, 0.9 and 

0.9-> 0.1 (decreasing value) we found that the best value of w equal 0.5 as show in figure (1-

b). The last parameters, we need to determine, are c1, c2. After tries the c1, c2 values by 0.5, 1, 

1.5, 1.7, 1.9 and 2, we found that the best value for c1, c2 equal 1.7 as show in the figure (1-c). 

Finally, the swarm parameters have been determined that gives the best value for the objective 

function f (equal 32.96286) and the best starting times is: 

 

 M1 M2 M3 M4 M5 

C1 1.947919 1.248375 0.007237 3 1.259541 

C2 6.259338 6.000145 6.257239 7.000042 6.259552 

C3 12.50724 11.25001 12.50725 11.25957 12.50724 

    
MTSP by PSO
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Iteration

A
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e
ra

g
e

 F size(5)

size(20)

size(40)

size(5)

 
a) swarm size 

PSO-MTSP

SWARM 40

32

32.5
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33.5

34

34.5

35

35.5
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1 501 1001 1501

Iteration

A
v

e
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g
e

 F W=0.9-0.1

W=0.9

W=0.5

W=0.1

 
b) w value 

PSO-MTSP

I= 40, W=0.5

32
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Iteration

A
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ra
g

e 
F
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C=1

C=1.5

C=1.7

C=1.9

C=2
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c) c1, c2 value 

Figure (1): Determine the swarm parameters  
 

5- Genetic Algorithm (GA): 

GA maintains a set of candidate solutions called population and repeatedly modifies them. At 

each step, the GA selects individuals from the current population to be parents and uses them 

produce the children for the next generation. Candidate solutions are usually represented as 

strings of fixed length, called chromosomes. A fitness or objective function is used to reflect 

the goodness of each member of population [9]. The principle of genetic algorithms is simple 

[6]: 

1. Encoding of the problem in a binary string. 

2. Random generation of a population. This one includes a genetic pool representing a 

group of possible solutions. 

3. Reckoning of a fitness value for each subject. It will directly depend on the distance to 

the optimum. 

4. Selection of the subjects that will mate according to their share in the population 

global fitness. 

5. Genomes crossover and mutations. 

6. And then start again from point 3. 

This is repeated until some condition (for example number of populations or improvement of 

the best solution) is satisfied. 
 

GA Algorithm for solving MTSP: 

The main steps of the algorithm that solves MTSP by PSO as follows: 

1- Initial population: 

First, the chromosome defines as a set of starting times for the machines in all cycles. So, S is 

the size of the chromosome equal to n multiply by k (where n number of machine and k 

number of cycles). The gene xircp is the starting times for machine i in cycle r in chromosome 

c in population p (where number of chromosomes Q and number of population W) which 

satisfy the constraint in (Pr). The value of xircp generated randomly where irir Hxh ircp 
. 

2- Other generation: 

 The value of fitness for each chromosome in the previous population had been 

calculated. The next generation created by selection the best chromosomes which have 

greatest value in the objective function. T is a percent of the previous population which 

determine the number of best chromosomes that transfer to the next generation.  

3- Crossover: 

 The remaining chromosomes divided as a pair. Each chromosome in each pair divided 

in certain cycle v then swap between v to k cycle in first chromosome and v to k cycles in the 

second chromosome.   

4- Mutation: 

 The symbol E is the number of genes that will be mutated. For each chromosome, the 

selection of gene which mutated generated randomly. Then the value of these genes will be 

generated randomly based on the gene boundaries. 

 

The steps form 2 to 4 will be repeated until the last number of population. The solution is the 

first chromosome of the last population. 

 

GA-MTSP Algorithm:  

A1: Reformulate the boundaries for each machine in each cycle as follows:   

N
ikik

iLH Put
, 

Nj
jr

jr lh 

,  
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))min(,(min
1

j
irjUi

jrjr pHLH 


 Where, 
1,2,...,1}:{

)(
 krNjNiU

i
j  

GA2: Put p = 1. 

GA3: Put c = 1.   

GA4: Put r = 1. 

GA5: Put i = 1. 

GA6: If 1r then 

Nipxh jr
ircpi

Nj
ir 


 )(max

)(1

  

GA7: Generate random number for xircp where irir Hxh ircp 
. 

GA8: If i < n then i = i + 1 go to GA6. 

GA9: If r < k then r = r + 1 go to GA5. 

GA10: If c < Q then c = c + 1 go to GA4. 

GA11: 
.,,)1( Qckrnixircppircx     

GA12: Sort descending
)( cpxcpf

 if p = W then go to GA26. 

GA13: Put c = Q – (T*Q). 

GA14: Put r = v. 

GA15: Put i = 1. 

GA16: Swap between xircp and xir(c+1)p. 

GA17: If i < n then i = i + 1 go to GA16. 

GA18: If r < k then r = r + 1 go to GA15. 

GA19: If c < Q then c = c + 2 go to GA14. 

GA20: Put c = Q – (T*Q). 

GA21: Put e = 1. 

GA22: Generate random number m between 1 and S.  

GA23: Generate random number for xmrcp where irir Hxh mrcp 
. 

GA24: if e < E then e = e + 1 go to GA22. 

GA25: If p < W then p = p + 1 go to GA3. 

GA36: The solution is 
.,1 krnix pir 
 

 

Example: 

The previous example solved by GA-MTSP algorithm. The population size has been tested by 

40, 60, 80 and 100 chromosomes. The result shows that, the best population size equal 80 

chromosome as shown in the figure (2-a). The number of chromosomes that will be kept in 

the next population has been tested by 30%, 20%, 10%, 5%, 2.5% and 1.25% of population 

size, we found that, the best number of chromosomes that will be kept in the next population 

equal to 1.25% from population size as shown in figure (2-b). When we test the value of 

crossover probability by 20%, 33% and 50% from the chromosome size, we found that the 

best value of crossover probability is 33% of the chromosome size as shown in figure (2-c). 

We found that mutation probability that gives best solution is 10% of chromosome size after 

try 5%, 10% and 20% of chromosome size. Finally, the Genetic algorithm parameters have 

been determined that gives the best value for the objective function f (equal 35.32834) and the 

best starting times is: 

 

 M1 M2 M3 M4 M5 

C1 1.175617 0.861839 0.068779 3.108429 1.357962 

C2 6.487444 6.065244 6.674041 7.203728 6.48237 

C3 12.99107 11.268875 13.112708 11.497321 13.295105 
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a) Population size 
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b) No. of chromosomes keeps in next 

generation 
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c) Crossover probability 

GA-MTSP

34.5

34.75

35

35.25

35.5

35.75

36

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

A
v

e
ra

g
e

 F

10%

5%

20%

 
d) Mutation probability 

Figure (2): Determine the Genetic algorithm parameters 

 

From previous experimental results we found that, when MTSP solved by particle swarm 

optimization algorithm, the best value of f equal 32.96286, which reached in iteration 400 that 

take 11 second. But when MTSP solved by genetic algorithm, the best value of f equal 

35.32834, which reached in generation 41 that take 2 second. But when MTSP solved by 

max-separable algorithm, the value of f equal to 35.75 that take <0.5 (figure (3)). 

MTSP problem

31

32

33

34
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36

37

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

Iterations

P
e

n
a

li
ty SWARM

GA

MAX-Seprable

 
Figure (3): The result of solving MTSP problem by SWARM, GA and Max-separable 
 

6- Conclusion: 

The machine time scheduling problem had been solved by particle SWARM optimization, 

max-separable technique and Genetic algorithm. We founded that, particle SWARM 

optimization gives best starting time for each machine in each cycle, which gives the lower 

penalty of the MTSP problem that take more time than other two algorithms. But the Genetic 

algorithm and max-separable algorithm give high penalty value of the MTSP problem than 

SWARM algorithm but these two algorithms take low time than SWARM algorithm. That 

mean, the SWARM gives best objective function than GA and Max-separable but its take 
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more time than other two algorithms. The cost deference between the cost of objective 

function and time cost leads the decision maker chooses the best algorithm in this study.  
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