

 1

Military Technical College

Kobry Elkobbah,

Cairo, Egypt

May 25-27,2010

5
th

International Conference on

Mathematics and Engineering

Physics (ICMEP-5)

EM-30

Comparison of Particle SWARM Optimization, Genetic Algorithm and

Max separable Technique for Machine Time Scheduling Problem

A. A. El-sawy A. A. Tharwat

Abstract

 In this paper we deal with a multi cycle machine time scheduling problem (MTSP) to find the

best starting time for each machine in each cycle. We introduce an algorithm by using the

particle SWARM optimization (PSO) and Genetic algorithm to solve the MTSP. A

comparison between PSO, GA and max-separable technique will be introduced to find the

best solution which is the best starting time respect to its time window for each machine in

each cycle and respect to the set of precedence machines to minimize the penalty cost.

KEYWORDS: Machine Time Scheduling, Particle SWARM optimization, Genetic

Algorithm, Max-separable, Time Window.

1- Introduction

A great deal of research has been focused on solving scheduling problems. One of the most

important scheduling problems is the Machine Time Scheduling Problem (MTSP). This

problem was investigated in [12] as a parameterized version of the MTSP, which was defined

in [7], with penalized earliness in starting and lateness in the completion of the operation. The

authors in [12] applied the optimal choice concept which is given in [10] and some theoretical

results from [11] to obtain the optimal values of the given parameters.

In [3] the authors investigated two cycles MTSP and introduced an algorithm to find the

optimal choice of parameters, which represent the earliest possible starting time for the second

cycle. In [2] an algorithm was developed (MTSP Algorithm (MTSPA)) for multi-cycles

MTSP which found the starting time for each machine in each cycle by using the max-

separable technique. The processing times in the previous researches were deterministic. In

[8] discusses how to solve the MTSP when the processing time for each machine is stochastic.

To solve this problem, the Monte Carlo simulation is suggested to handle the given stochastic

processing times. A generalization was introduced in [1] to overstep the cases at which an

empty feasible set of solutions is described by the system. In this paper we will introduce an

algorithm by using the PSO and GA to solve MTSP. Then, we will compare between PSO,

GA and MTSPA (using numerical example) to find the best solution of starting time for each

machine in each cycle that minimize the penalty cost.

2- Problem Formulation

EM-30.doc
EM-30.doc
EM-30.doc
EM-30.doc
EM-30.doc

 2

In machine time scheduling problem there are n machines, each machine carries out one

operation j with processing time pj for },...,1{ nNj  and the machines work in k cycles. Let xjr

represent starting time of the j
th

 machine in cycle r for all Nj ,
},...,1{ kKr 

(k number of

cycles). Machine j can start its work in cycle r only after the machines in a given set

)()(, jj NN N (
)(jN is the set of precedence machines) had finished their work in the (r-1)

th

cycle, so we can define the starting time in the (r-1)
th

 cycle as follows:

KrNipxx jrjr
i

Nj
ir 



 ,)(max
)(1

Assuming that the starting time xjr is constrained by a time interval [ljr, Ljr] for each Nj ,

Kr and, then the set of feasible starting times xjr is described by the following system for

each Kr :

)(

,)(max 1)(

INjLxl

Nixpx

jrjrjr

irjrjr
Nj i



 


Assume also that for some echological reasons there are a given recommended time interval

[ajr, bjr], Ni , Kr so:

(*)],,[],[jrjrjjrjr bapxx 

The violation of the (*) will be penalized by the following penalty function

Krxfxf jrjr

Nj



min)(max)(

Where the penalty function in a certain cycle r is given by:

Njpxfxfxf jrjrjrjrjrjrjr  }0),(),({max)()2()1(

Where
)1(

jrf
: R R is decreased continuous function such that

)()1(

jrjr af
=0,

And

)2(

jrf
: R R is increasing continuous function such that

)()2(

jrjr bf
=0

To minimize the maximum penalty in each cycle r, we should solve the following problem:

NjLxl

Nixpx

tosubject

xf

jrjrjr

irjrjr

Nj

P
i











)()(max

:

min)(

1
)(

3- Max-separable Technique:

The authors in [2] used the max-separable technique for solving a multi-cycles MTSP

problem (P) and the introduced algorithm can summarized as follows:

Step 1: Boundaries Reformulation; the new boundaries will be h, H.

Step 2: Put r = 1.

Step 3: Find the feasible set of starting times for the first cycle.

Step 4: Find the optimal set of starting times.

Step 5: Find the optimal starting times in the r
th

 Cycle based on (r + 1)
th

 Cycle

Intervals.

Step 6: Decrease the distance between boundaries in the (r + 1)
th

 Cycle.

Step 7: Let r = r + 1, if r  k -1 then returns to Step 3. Otherwise continue.

Step8: Find the feasible set of starting times for the k
th

 Cycle using the calculated values in

the (k-1)
th

 Cycle.

 3

Step9: Find the optimal starting times in the k
th

 Cycle then Stop.

Now we will introduce a numerical example that explains the how the max-separable

technique solves the MTSP as follows:

The example:

Consider a problem with the following values of parameters n = 5 so N = {1,2,3,4,5}, p =

{2,4.5,6.25,4,5},

Table (1) Machine Boundaries

Cycle (r) r = 1 r = 2 r = 3

lir i=1,2,…,5 {1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5}

Lir i=1,2,…,5 {5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14}

Table (2) Machine Relations

i 1 2 3 4 5

N
(i)

 {1,2,3} {2} {2,3} {1,4,5} {1,3,5}

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5}

Assume further that
Njbpxxaxf jrjrjrjrjrjrjr )0,,(max)(

Where aj, bj are for all
Nj 

given constants so that we have in our case for all
Nj 

jrjrjrjrjrjrjrjrjrjr bpxpxfxaxf )()()2()1(

Input values of air and bir for each cycle

Table (3) Machines Penalty Boundaries

Cycle (r) R=1 r=2 R=3

air

i=1,2,…,5
{1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13}

bir

i=1,2,…,5
{4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14}

By solving this example by max-separable technique, the results show that, the value of f

equal 35.75, and the starting time for each machine in each cycle as follows:

 M1 M2 M3 M4 M5

C1 [1,2] [1,1.5] 0.25 3 1.5

C2 6.5 6 6.5 7 6.5

C3 12.75 12 12.75 11.5 13

4- Particle Swarm Optimization (PSO)

The PSO method is a member of wide category of Swarm Intelligence methods for solving the

optimization problems. It is a population based search algorithm where each individual is

referred to as particle and represents a candidate solution. Each particle in PSO flies through

the search space with an adaptable velocity that is dynamically modified according to its own

 4

flying experience and also the flying experience of the other particles. Further, each particle

has a memory and hence it is capable of remembering the best position in the search space

ever visited by it. The position corresponding to the best fitness is known as pbest and the

overall best out of all the particles in the population is called gbest [9].

The modified velocity and position of each particle can be calculated using the current

velocity and the distance from the pbestj to gbest as shown in the following formulas:

)(**)(***)(

,,22

)(

,,11

)(

,

)1(

,

t

gjgj

t

gjgj

t

gj

t

gj xgbestrcxpbestrcvwv 

)1(

,

)(

,

)1(

,

  t

gj

t

gj

t

gj vxx

With j=1, 2, …,n and g=1, 2, …, m

n =number of particles in a group;

m = number of members in a particle;

t = number of iterations (generations);
)(

,

t

gjv
=velocity of particle j at iteration t,

w = inertia weight factor;

c1 , c2 = cognitive and social acceleration factors, respectively;

r1 , r2 = random numbers uniformly distributed in the range (0, 1);
)(

,

t

gjx
= current position of j at iteration t;

pbestj = pbest of particle j;

gbest = gbest of the group.

The index of best particle among all of the particles in the group is represented by the gbest.

In PSO, each particle moves in the search space with a velocity according to its own previous

best solution and its group’s previous best solution. The velocity update in a PSO consists of

three parts; namely momentum, cognitive and social parts. The balance among these parts

determines the performance of a PSO algorithm. The parameters c1 & c2 determine the

relative pull of pbest and gbest and the parameters r1 & r2 help in stochastically varying these

pulls [9].

In [4] PSO combined with the Lagrangian Relaxation (LR) framework to solve a power-

generator scheduling problem known as the unit commitment problem (UCP). In terms of the

solution quality, the PSO-LR provided a “best solution” with a lower cost than GA for

problem sizes larger than 20 units, and than LR for problem sizes 20 and 80 units. PSO-LR

also provided a “best solution”, for the problem size of 10 units, with a much lower cost than

using PSO alone.

A novel approach based on Particle Swarm Optimization (PSO) for scheduling jobs on

computational grids introduced in [5]. The proposed approach is to dynamically generate an

optimal schedule so as to complete the tasks within a minimum period of time as well as

utilizing the resources in an efficient way. When compared to genetic algorithm (GA) and

simulating Annealing (SA), an important advantage of the PSO algorithm is its speed of

convergence and the ability to obtain faster and feasible schedules.

Application and performance comparison of PSO and GA optimization techniques were

presented in [9], for Thyristor Controlled Series Compensator (TCSC)-based controller

design. Results indicate that in terms of computational time, the GA approach is faster. The

computational time increases linearly with the number of generations for GA, whereas for

PSO the computational time increases almost exponentially with the number of generations.

The higher computational time for PSO is due to the communication between the particles

after each generation. However, the PSO seems to arrive at its final parameter values in fewer

generations than the GA.

 5

PSO Algorithm for solving MTSP

The main steps of the algorithm that solves MTSP by PSO as follows:

1- Reformulation:

Each machine boundaries will be reformulate (calculate the new boundaries) based on its'

successors machines boundaries. For each machine the new lower boundary called h and the

new upper boundary called H.

2- Initial iteration:

 First, the particle defines as a set of starting times for the machines in all cycles. The

particle is represented by D-dimensional, where D equal to N multiplies by K (where N

number of machine and K number of cycles). The xirpt is the starting time for machine i in

cycle r in particle p, Qp ,..,2,1 in iteration t, Tt ,..,2,1 (where Q is number of particles in the

SWARM and T is number of iterations) which satisfy the constraints in (P). The value of xirpt

generated randomly where irir Hxh irpt 
. The xirpt must satisfy the second constrain which

is

)(max
)1()(

j
ptrji

Nj
irpt pxx 


 . Determine the pbestp which is the best position of particle p that

make the best value of the objective function. Then determine the gbest which is the best

particle that make the best value of the objective function in all iterations.

3- Other generation:

 The next iteration created by modifying the velocity of each particle by the following

equation:

)(**)(*** 2211)1(irptirirptirpirpttirp xgbestrcxpbestrcvwv 
Then the particle position will be update by the following equation:

)1()1(  tirpirpttirp vxx

The new iteration has been created with new position of SWARM. Calculate the objective

function then find the pbestp and gbest. Repeat this step until last iterations. The solution is the

gbest in the last iteration.

PSO-MTSP Algorithm:

A1: Reformulate the boundaries for each machine in each cycle as follows:

N
ikik

iLH Put
,

Nj
jr

jr lh 

,

))min(,(min
1

j
irjUi

jrjr pHLH 


 Where
1,2,...,1}:{

)(
 krNjNiU

i
j

A2: Put t = 1.

A3: Put p = 1.

A4: Put r = 1.

A5: Put i = 1.

A6: If 1r then

)(max
)1()(

j
ptrji

Nj
ir pxh 

 .

A7: Generate random number for xircp where irir Hxh ircp 
.

A8: If i < n then i = i + 1 go to A6.

A9: If r < k then r = r + 1 go to A5.

A10: pbestp = f(xirpt) pt
KrNi ,..,1,,..,1  .

A11: If p < Q then p = p + 1 go to A4.

A12: find max(f(pbestp) pt)
.,..,1 Qp 

A13: maxppbestgbest 

A14: t = t + 1.

 6

A15: Put p = 1.

A16:
)(**)(***)1(22)1(11)1(  tirptirpptirpirpt xgbestrcxpbestrcvwv
.

A17: irpttirpirpt vxx  )1(.

A18: if xirpt is not feasible then go to A20.

A19: if f(xirpt) pt > f(xirpt) p(t-1) then pbestp = xirpt

A20: maxppbestgbest 
.

A21: If p < Q then p = p + 1 go to A16.

A22: If t < T then go to A15.

A23: The solution is gbest.

The example:

The PSO-MTSP algorithm has been applied on the previous example. We run the program

100 trials. We found that, the best swarm size equal 40 after we test the size by 5, 20, 40 and

50 particle in the swarm as show in figure (1-a). After testing the w value by 0.1, 0.5, 0.9 and

0.9-> 0.1 (decreasing value) we found that the best value of w equal 0.5 as show in figure (1-

b). The last parameters, we need to determine, are c1, c2. After tries the c1, c2 values by 0.5, 1,

1.5, 1.7, 1.9 and 2, we found that the best value for c1, c2 equal 1.7 as show in the figure (1-c).

Finally, the swarm parameters have been determined that gives the best value for the objective

function f (equal 32.96286) and the best starting times is:

 M1 M2 M3 M4 M5

C1 1.947919 1.248375 0.007237 3 1.259541

C2 6.259338 6.000145 6.257239 7.000042 6.259552

C3 12.50724 11.25001 12.50725 11.25957 12.50724

MTSP by PSO

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

1 201 401 601 801 1001 1201 1401 1601 1801

Iteration

A
v

e
ra

g
e

 F size(5)

size(20)

size(40)

size(5)

a) swarm size

PSO-MTSP

SWARM 40

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

1 501 1001 1501

Iteration

A
v

e
ra

g
e

 F W=0.9-0.1

W=0.9

W=0.5

W=0.1

b) w value

PSO-MTSP

I= 40, W=0.5

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

1 51 101 151 201 251 301 351 401 451

Iteration

A
ve

ra
g

e
F

C=0.5

C=1

C=1.5

C=1.7

C=1.9

C=2

 7

c) c1, c2 value

Figure (1): Determine the swarm parameters

5- Genetic Algorithm (GA):

GA maintains a set of candidate solutions called population and repeatedly modifies them. At

each step, the GA selects individuals from the current population to be parents and uses them

produce the children for the next generation. Candidate solutions are usually represented as

strings of fixed length, called chromosomes. A fitness or objective function is used to reflect

the goodness of each member of population [9]. The principle of genetic algorithms is simple

[6]:

1. Encoding of the problem in a binary string.

2. Random generation of a population. This one includes a genetic pool representing a

group of possible solutions.

3. Reckoning of a fitness value for each subject. It will directly depend on the distance to

the optimum.

4. Selection of the subjects that will mate according to their share in the population

global fitness.

5. Genomes crossover and mutations.

6. And then start again from point 3.

This is repeated until some condition (for example number of populations or improvement of

the best solution) is satisfied.

GA Algorithm for solving MTSP:

The main steps of the algorithm that solves MTSP by PSO as follows:

1- Initial population:

First, the chromosome defines as a set of starting times for the machines in all cycles. So, S is

the size of the chromosome equal to n multiply by k (where n number of machine and k

number of cycles). The gene xircp is the starting times for machine i in cycle r in chromosome

c in population p (where number of chromosomes Q and number of population W) which

satisfy the constraint in (Pr). The value of xircp generated randomly where irir Hxh ircp 
.

2- Other generation:

 The value of fitness for each chromosome in the previous population had been

calculated. The next generation created by selection the best chromosomes which have

greatest value in the objective function. T is a percent of the previous population which

determine the number of best chromosomes that transfer to the next generation.

3- Crossover:

 The remaining chromosomes divided as a pair. Each chromosome in each pair divided

in certain cycle v then swap between v to k cycle in first chromosome and v to k cycles in the

second chromosome.

4- Mutation:

 The symbol E is the number of genes that will be mutated. For each chromosome, the

selection of gene which mutated generated randomly. Then the value of these genes will be

generated randomly based on the gene boundaries.

The steps form 2 to 4 will be repeated until the last number of population. The solution is the

first chromosome of the last population.

GA-MTSP Algorithm:

A1: Reformulate the boundaries for each machine in each cycle as follows:

N
ikik

iLH Put
,

Nj
jr

jr lh 

,

 8

))min(,(min
1

j
irjUi

jrjr pHLH 


 Where,
1,2,...,1}:{

)(
 krNjNiU

i
j

GA2: Put p = 1.

GA3: Put c = 1.

GA4: Put r = 1.

GA5: Put i = 1.

GA6: If 1r then

Nipxh jr
ircpi

Nj
ir 


)(max

)(1

GA7: Generate random number for xircp where irir Hxh ircp 
.

GA8: If i < n then i = i + 1 go to GA6.

GA9: If r < k then r = r + 1 go to GA5.

GA10: If c < Q then c = c + 1 go to GA4.

GA11:
.,,)1(Qckrnixircppircx 

GA12: Sort descending
)(cpxcpf

 if p = W then go to GA26.

GA13: Put c = Q – (T*Q).

GA14: Put r = v.

GA15: Put i = 1.

GA16: Swap between xircp and xir(c+1)p.

GA17: If i < n then i = i + 1 go to GA16.

GA18: If r < k then r = r + 1 go to GA15.

GA19: If c < Q then c = c + 2 go to GA14.

GA20: Put c = Q – (T*Q).

GA21: Put e = 1.

GA22: Generate random number m between 1 and S.

GA23: Generate random number for xmrcp where irir Hxh mrcp 
.

GA24: if e < E then e = e + 1 go to GA22.

GA25: If p < W then p = p + 1 go to GA3.

GA36: The solution is
.,1 krnix pir 

Example:

The previous example solved by GA-MTSP algorithm. The population size has been tested by

40, 60, 80 and 100 chromosomes. The result shows that, the best population size equal 80

chromosome as shown in the figure (2-a). The number of chromosomes that will be kept in

the next population has been tested by 30%, 20%, 10%, 5%, 2.5% and 1.25% of population

size, we found that, the best number of chromosomes that will be kept in the next population

equal to 1.25% from population size as shown in figure (2-b). When we test the value of

crossover probability by 20%, 33% and 50% from the chromosome size, we found that the

best value of crossover probability is 33% of the chromosome size as shown in figure (2-c).

We found that mutation probability that gives best solution is 10% of chromosome size after

try 5%, 10% and 20% of chromosome size. Finally, the Genetic algorithm parameters have

been determined that gives the best value for the objective function f (equal 35.32834) and the

best starting times is:

 M1 M2 M3 M4 M5

C1 1.175617 0.861839 0.068779 3.108429 1.357962

C2 6.487444 6.065244 6.674041 7.203728 6.48237

C3 12.99107 11.268875 13.112708 11.497321 13.295105

 9

GA-MTSP

34.5

34.75

35

35.25

35.5

35.75

36

36.25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

A
v

e
ra

g
e

 F size(40)

size(60)

size(80)

size(100)

a) Population size

GA-MTSP

34.5

34.75

35

35.25

35.5

35.75

36

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

A
v

e
ra

g
e

 F

30%

20%

10%

5%

2.5%

1.25%

b) No. of chromosomes keeps in next

generation
GA-MTSP

34.5

34.75

35

35.25

35.5

35.75

36

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

A
v

e
ra

g
e

 F

20%

50%

33%

c) Crossover probability

GA-MTSP

34.5

34.75

35

35.25

35.5

35.75

36

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

A
v

e
ra

g
e

 F

10%

5%

20%

d) Mutation probability

Figure (2): Determine the Genetic algorithm parameters

From previous experimental results we found that, when MTSP solved by particle swarm

optimization algorithm, the best value of f equal 32.96286, which reached in iteration 400 that

take 11 second. But when MTSP solved by genetic algorithm, the best value of f equal

35.32834, which reached in generation 41 that take 2 second. But when MTSP solved by

max-separable algorithm, the value of f equal to 35.75 that take <0.5 (figure (3)).

MTSP problem

31

32

33

34

35

36

37

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

Iterations

P
e

n
a

li
ty SWARM

GA

MAX-Seprable

Figure (3): The result of solving MTSP problem by SWARM, GA and Max-separable

6- Conclusion:

The machine time scheduling problem had been solved by particle SWARM optimization,

max-separable technique and Genetic algorithm. We founded that, particle SWARM

optimization gives best starting time for each machine in each cycle, which gives the lower

penalty of the MTSP problem that take more time than other two algorithms. But the Genetic

algorithm and max-separable algorithm give high penalty value of the MTSP problem than

SWARM algorithm but these two algorithms take low time than SWARM algorithm. That

mean, the SWARM gives best objective function than GA and Max-separable but its take

 10

more time than other two algorithms. The cost deference between the cost of objective

function and time cost leads the decision maker chooses the best algorithm in this study.

 References:

1- A. Tharwat and A. Abuel-Yazid: "Generalized Algorithm For Muulti-Cycle

Machine Time Scheduling", Proceeding of Meatip3 Conference, Assuit, Egypt,

2002.

2- A. Tharwat and A. Abuel-Yazid: “Multi-Cycles Machine Time Scheduling

Problem”, First International Conference on Informatics and Systems, Cairo,

Egypt, 2002.

3- A. Tharwat and K. Zimmermann: “Optimal Choice of Parameters in Machine

Time Scheduling Problems Case I,” Conference MMEI, Liberc, Czech

Republic, 1998.

4- H. H. BALCI and J. F. VALENZUELA,"scheduling electric power generators

using particle swarm optimization combined with the lagrangian relaxation

method", Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, 411–421, 2004

5- H. Liu, A. Abraham and C. Grosan, "A Novel Variable Neighborhood Particle

Swarm Optimization for Multi-objective Flexible Job-shop Scheduling

Problems", IEEE International Conference on Digital Information Management,

Lyon, France, IEEE Press, USA, ISBN 1-4244-1476-8, pp. 138-145, 2007

6- Jean-Philippe Rennard, "Genetic Algorithm Viewer: Demonstration of a Genetic

Algorithm", Ph.D. May 2000.

7- M. Vlach and K. Zimmermann, “Machine Time Scheduling Synchronization of

Starting Times”, the Proceeding of the MME’99 Conference, Prague, Czech

Republic, 1999.

8- S. A. Hassan*, A.A. Tharwat*, I.A. El-Khodary*, A. A. El-Sawy "Using Monte

Carlo Simulation to Solve Machine Time Scheduling Problems With Stochastic

Processing Time"

9- S. Panda and N. P. Padhy,"Comparison of Particle Swarm Optimization and

Genetic Algorithm for TCSC-based Controller Design", International Journal of

Computer Science and Engineering, Volume 1 Number 1, 2007

10- S. Zlobec: “Input Optimization I: Optimal Realizations of Mathematical

Models,” Mathematical Programming, V 31, pp.245-268, 1985.

11- S. Zlobec: “Input Optimization III: Optimal Realizations of Mathematical

Models,” Mathematical Programming, V 17, No 4, pp.429-445, 1986.

12- Y. Sok and K. Zimmermann: “Optimal Choice of Parameters in Machine Time

Scheduling Problems with Penalized Earliness in Starting Time and Lateness”,

AUC-Mathematica et Physica, V33, No 1, pp.53-61. 1992.

http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf
http://www.softcomputing.net/icdim07_2.pdf

