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ABSTRACT 
The influence of Coriolis forces is studied in stationary and Sc = 1 (Schmidt number) 
cases on the tran sport of a passive scalar in a three-dimensional inhomogeneous 
turbulent free jet. The mean velocity field defines a small parameter U∞ (non-dimensional 
wind-speed). This parameter governs the asymptotic expansion of the analysis. 
Using a linear spectral approach, two-point velocity-concentration correlation 
equations are obtained under some realistic simplifying assumptions. The solution 
depends on the non-uniform mean concentration gradient. Taking into account swirl 
characteristics, an expansion of the solution is constructed by means of analytical 
tools, including the effects of several fundamental physical parameters. The mean 
concentration gradient field possesses a privileged direction. As application of the 
model, the spectral components of the solution are determined using further 
simplifying approximations. Graphical surfaces are drawn: these surfaces show the 
specific characteristics of mixing in turbulent jets. The results are matched with other 
results obtained by means of numerical methods and experimental results. 
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1. INTRODUCTION 
 
The prediction of the passive scalar dispersion in a turbulent flow is an interesting 
problem linked to the importance in the diffusion of heat and mass transfers and the 
environment problems. Its determination, in a space, is based on the knowledge of 
the flow around the emission source.   
Often in engineering problems, the particular objective involves obtaining 
comparatively rapid rates of mixing, and for this reason practical problems generally 
focus on scalar mixing in turbulent flows. 
In the turbulent mixing of a passive scalar, surfaces of constant mixed-fluid 
concentration, or isoscalar surfaces, are highly convoluted in turbulent-jet flows, as 
well as other high-Reynolds-number turbulent flows. Knowledge of the geometry of 
these isosurfaces is necessary for an understanding of the turbulent mixing process. 
In particular, molecular mixing occurs across such surfaces [1]. 
A key quantity in the mixing and transport process is the turbulent scalar flux cui ˆˆ , 
with and are the velocity and the scalar fluctuations, respectively. It is the iû ĉ
quantity that is accounting for the effects of turbulence on the mean scalar profile. In 
order to characterize the contributions of the different turbulent length scales to the 
scalar flux, it is important to analyze the spectral distribution of scalar flux over wave 
numbers, i.e., the scalar flux spectrum. In the literature, the spectral distribution of 
scalar flux produced by a uniform scalar gradient imposed on isotropic turbulence 
was extensively studied [2, 3, 4].  
One question that can be asked is whether theories that have been successful in 
describing the behavior of the turbulent energy can be applied to the dynamics of a 
passive scalar with a mean gradient. Many theories have been used to describe a 
variety of turbulent systems. For example, the Eddy Damped Quasi-Normal 
Markovian theory (EDQNM), including the classical studies of the energy and 
isotropic scalar spectrum [5,6,7], to more exotic problems involving mean flow 
inhomogeneities [8]. Recently, a model based on two-point closure theory of 
turbulence is proposed and applied to study the Reynolds number dependency of the 
scalar flux spectra in homogeneous shear flow with a cross-stream uniform scalar 
gradient [9]. The evolution of a passive scalar in a turbulent flow is characterized by 
scalar and velocity gradients, whose statistical correlations have clear physical 
meanings.  
We are interested, in this paper, in the diffusion and the transport of a passive scalar 
of a three-dimensional turbulent inhomogeneous free jet in the presence of a mean 
concentration gradient submitted to Coriolis forces. Because of its "pathological 
behavior", the interaction of Coriolis effects with the turbulence originated an active 
research several years ago. This question arises in various problems encountered in 
engineering science [10] and geophysical applications [11]. Recently, the statistical 
correlations between the passive scalar gradient and vorticity in homogeneous and 
isotropic turbulence submitted to a solid body rotation, is studied by Gence [12]. 
The problem is described by a linear spectral approach. Such an approach appears 
as less empirical than most usual models and allows to separately taking into 
account the various scales of turbulence. It also allows to simply eliminating a 
problem related to the pressure, and the turbulent diffusion due to triple correlations 
in velocities and velocity-velocity concentration-correlation is neglected. In this view, 
we assume that there exists a particular direction along which the jet develops. This 
circumstance occurs, for instance, if the jet is emitted from a source (for instance the 
orifice of a chimney). In this model, there exists a small parameter characterizing ∞U
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the non-dimensional wind-speed. This parameter governs the asymptotic analysis. 
The use of both combined spectral analysis and asymptotic tools then allows 
considering practical problems: for instance, a good understanding of the influence of 
Coriolis forces on a turbulent structure may improve our ability to predict the rotating 
flows. 
In what follows, for simplicity, the jet is assumed directed towards the east. In Sect.2, 
firstly, the results of the spectral tensor of a model involving a free three-dimensional 
and inhomogeneous jet are briefly exposed. Secondly, the one-point correlation 
velocity-concentration equations are first formulated under some assumptions and 
Boussinesq approximation. These equations are adimensiona1 and they are applied 
in stationary and Schmidt number Sc= 1. These equations are then rewritten in 
spectral form using a Fourier analysis, in order to define the spectral correlations of 
our model. Combining both spectral analysis and asymptotic analysis, the solutions 
of these equations are determinate. In sect 3, some examples are considered, for 
which we estimate the application ranges of this model. 
 
 
2. FORMULATION OF PROBLEM AND RESOLUTION 
 
We consider a three-dimensional inhomogeneous turbulent free jet. The jet is emitted 
from a point-source in an atmospheric medium in the presence of gravity and Coriolis 
forces. The fluid, moving in terrestrial frame, is incompressible and viscous. The flow 
is assumed stationary. The equations of motion are the Navier-Stokes equations with 
Boussinesq approximation, the energy equation and the passive scalar transport 
equation.  
At large Reynolds number, we obtain [13, 14] the adimensional equations of the 
spectral tensor Ф (obtained by three-dimensional Fourier transforms of the two point 
velocities correlations), namely:  
  

            

].)](
 ∂
 ∂2[1+                     

)2(1] 
 ∂
 ∂2

 ∂
 ∂ [[

]
 ∂
 ∂)(

 ∂
 ∂[2

 ∂
 ∂

 ] [
 ∂
 ∂2]

 ∂
 ∂

 ∂
 ∂[ 2

 ∂
∂

 ∂
∂

11111
1

32
2

2233222
1

2
3

1

3
1

31
3

1221
2

123
3

3
3

2
2

⎭
⎬
⎫

⎩
⎨
⎧

Φ−Φ+Φ−
−

Φ+Φ++Φ−=

Φ+Φ+Φ+Φ−

Φ+Φ−Φ+Φ+Φ+Φ+Φ

⊥

⊥

⊥
⊥

jkkjjk
o

klljkllj
o

jjk

jjjkkj
T

f

kmjmjk
mm

j
km

m

k
mjkj

m

kj
m

kj

kδkk
x
M

R
tgkk

k

δωεωε
R

δ
x
uδ

x
uε

k
x
M

kk
x
M

δ
k

δ
x
u

σ
R

kk
x
M

kx
u

x
uk

x
ut

        (1) 

 
where we have set:   
 
          ω1 = 0; ω2 = 1/tgϕ ; ω3 = 1    and   k=1, 2, 3; m=2,3                                         (2) 
In which kiu denotes the components of mean velocity field; k1, k2 and k3 are the 

components of the wave vector k
r

 along x1, x2 and x3 directions, respectively. 
is the transverse wave number, and )+=( 2

3
2
2

2
⊥ kkk ukM jj =  measures the interaction 

between the wave vector and mean velocity field. LuR oo Ω=  is the Rossby number 
(L is the horizontal length scale,  is a characteristic speed of the turbulent 
fluctuations) and  are the components of the Coriolis forces.  is the symmetric 
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jω ijδ
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Kronecker symbol. 2

3

32 )∂
 ∂

(N= 
x
u

GR Rf is the flux Richardson number associated with 

the shear of the mean flow (where GR is the Grashof number, and N is the Brunt-
Vàisâlà frequency of the ambient medium). σT is the turbulent Prandtl number and 
usually it is approximately chosen equal to 0.9 [15]. The small parameter Ldε =  (d is 
the thickness of the jet) characterises the relative thickness of this layer, and this 
parameter allows to construct a boundary layer approximation as well as to provide 
additional equations necessary for the analysis. 
Moreover, the Eq.(1) is valid under the asymptotic restriction: 
 

                                                        and                                             (3) 1-= eRε 1∞ ppU
 

relating the Reynolds number of the flow and the stratification of the medium. The 
relation (3) seems to be restrictive, but, from a mathematical point of view, the first 
characterizes a phenomenon where the stratification and dissipation originate 
competing influences and the second characterizes the regularity condition of these 
equations.  
For a case of analytical solution, it is assumed that kjΦ 's admits the following 
asymptotic expansions: 
 

                                                                                        (4) ⋅⋅⋅+Φ+Φ+Φ=Φ 221    kjkj
o
kjkj εε

 
The general form of this equation may be written as: 
 

                                       kjkj AεL   -)( =Φ                                                                       (5) 
 

where  denotes the linear operator and are the secular terms. )(ΦLkj kjA

By prescribing that is uniformly small before in Eq (1), and cancelling the 
secular terms (

1 kjεΦ 0
kjΦ

0=kjA ), we obtain, at order 0, these equations: 
 

                                                                                                                (6) 0)( 0 =Φ kjkjL

 
At large Reynolds number, and using scaled variables, the non-dimensional 
equations for the velocity-concentration correlations, read:  
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where c  is the mean concentration and is the pressure fluctuation.In the sequel, 
we are going to study the closure of the equation (7). 

p̂
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2.1. Linear spectral analysis 
 
We now introduce the two-point correlations of the velocity-concentration cui ′′′ˆˆ . These 
correlations are defined using two points nearby x, say x' and x", in the following 
manner: 

 
                     , )( ˆˆ xuu kk ′=′ )( ˆˆ xcc ′′=′′ , xxr ′−′′= , xxr kkk ′−′′= , 2)( xxx ′′+′=             (8) 

 
By using the procedure previously applied to the one-point correlations, we obtain, for 
the two-point correlations, and after some calculation, the equation satisfied by these 
correlations, namely:  
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The corresponding equations for the two-point pressure-concentration correlation can 
be rewritten after some computation in the form:  
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Note, that the correlation uu mi ′′′ ˆˆ  is the two-point Reynolds stress.  
In order to convert the correlation equations into spectral forms, we now introduce 
three-dimensional Fourier transforms of the variables figuring in (9) and (10) with 
respect to r in the following forms:  
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where is the complex number. So, the Fourier transforms take the 
simplified forms: 

2/1)1(−=I
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The different terms of the equation (12) express the contributions of various 
processes to the rate of change of the spectral velocity-concentration correlations.  
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2.2 Asymptotic analysis 
  
Before we solve Eqs (12), it is of interest to expand the spectral tensor  , the mean 

concentration 
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c  and the mean velocity u
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 with respect to . In this view, we assume 
that these functions admit the following asymptotic expansions:  
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Returning now to Eqs (12), the general form of this equation may be written as:  
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A solution of Eqs.(16) may now be looked for by using a generalized asymptotic 
expansion with respect to , namely:  ∞U
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2.3. Determination of the spectral correlations  
 
By prescribing that  is uniformly small before  in Eq. (l6), we obtain the no 
degenerate equations respectively at order 0 and order 1 with respect to  .  

1
icFU∞

o
icF

∞U
We remark at the differential equations level of the 's and the  's, that their left 
hand sides are the same. But, the right hand side of the 's, exhibits the terms 
which characterize the secular term. This last term depend on the functions defined 
at order 0 with respect to . Thus, knowledge of the solutions at order 0 with respect 
to , allows obtaining the solutions at the following order.  

o
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According to the similitude method, the analysis of different scales of differential 
equations of  , allows to write the solutions such: o
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This relation shows that the determination of the  is linked to the determination of 
the mean scalar gradient

o
icF

ixc   0 ∂∂ . In general, there exists a relationship between the 
turbulent scalar flux and the mean concentration gradient. Indeed, the studies of 
turbulent swirling flows [16], in order to establish a prediction procedure and to 
elucidate the effects of swirl on turbulent transport, are demonstrated that the 
characteristic features due to swirl could be predicted by this relation kind. Recently, 
it is proposed [17, 9] to introduce a tonsorial form namely: 
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in which  is quantity that corresponds to components of a tensorial spectral flux.    ijΔ
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these solutions characterizing the generation terms of swirling production.  
Because of the presence of the secular terms, the operator   acts, in general, on 
all components of the spectral correlation . Hence, the procedure for solving (16), 
we consider the case. Inserting the solutions (23) in Eqs of , we obtain the 
solutions of the problem. 

o
icH
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The spectral analysis allows taking into account the various scales of turbulence. 
Indeed, integration is made over a sphere whose radius is equal to the modulus of 
the wave number; accordingly turbulent structures are only characterized by their 
sizes. Consequently, the spectral components  and  are computed with a 

spherical average operation, namely:  
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These spectral correlations are influenced by the Coriolis force and by the various 
physical factors such as: atmospheric conditions (stability and instability), convection 
phenomenon, the geometrical characteristic of the chimney, the speed of the jet at 
the exit, etc.  
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3. APPLICATIONS 
 
In order to validate the preceding results, we now present some examples for which 
we estimate the application ranges of these models. In these examples, the 
adimensional velocity  is defined as:∞U 2.01.0 ≤≤ ∞U  and the adimensional speed at 
the exit of the chimney  (it represents the bulk of evacuated smoke) is defined as: JW

18.0 ≤≤ JW . The latitude is fixed: φ 6π= . A vortex size η measured by a correlation 
is therefore associated to a wave number k such: k η =0(1). A vortex will be then a 
perturbation the energy of which would be concentrated at vicinity of wave number k. 
But, in physical space, the vortex appears as an object with fuzzy contours. So, the 
large structure corresponds to large η (small k), while the small structure corresponds 
to small η (large k). Also, the Coriolis force is characterized by the Rossby number 
Ro. So, the weak rotation corresponds to Ro ››1 case and the large rotation 
corresponds to Ro ‹‹1. 
Figure (1) shows the influence of the Coriolis forces on the coherent structures. 
Approximate singularities in the flow appear in the plane of the density spectral 12Ψ  
since, slender cones pointing towards the location of the big structures. The intensity 
of these structures decreases when the rotation increases [18, 19, 20]. It is now 
recognized that the wavelengths (phase, amplitudes) correlated to vortical structures 
within a single realization determine many properties of the turbulence. 
Figure (2, left) illustrates that the large structures associated to the mixing are not 
influenced by the Coriolis force. Indeed, we observe that the mean concentration 
gradient has a privileged direction parallel to the development axis ( ) of the jet, 0≥x
and its intensity is uniform. Figure (2, right) illustrates the effect of the Coriolis force 
on the small structures. When the rotation rate is increased, the intensity of the mean 
concentration gradient increases along the development axis and the altitude. Also, it 
changes the sign. In particular at large Rossby number the direction of the scalar 
gradient tends to become parallel to the z axis. 
Figure (3) illustrates the influence of the geometrical characteristics of the chimney 
on the subsequent development of the initial perturbation. The intensity of 

o
cN 2 decreases along the jet axis. When the rotation increases, we observe the 

appearance of the coherent vortices "longitudinal hairpin vortex", elongated along x 
direction, reconnecting the Kelvin-Helmholtz instabilities [21]. The spectral 
correlation involving the correlation axisymmetric with respect to the axis pointing o

cN 2

in the direction of the mean gradient. When the rotation increases, we observe a 
stagnation of the  at vicinity the singularity z = 0. o

cN 2

 
4. CONCLUSION 
 
The results obtained in the present paper globally show the importance of the Coriolis 
forces in the modeling of the transport and dispersion of a passive scalar in 
inhomogeneous turbulence, and the power of the spectral approach for this 
modeling. The several characteristics usually encountered in the inhomogeneous 
turbulence are correctly predicted by our model.  
When this model is applied to the study of the appearance of coherent structures 
associated to a passive scalar field and to the influence of the Coriolis forces on their 
evolution, the matching of predictions and numerical simulations with our model 
remains quantitatively acceptable. Moreover, they allow confirming much 
experimental behavior. 
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Figure.1. Density spectral . k=1/50. U∞ =0.1, WJ =1, h=100, φ = π/6. x∈[0,1] and  12Ψ
z∈[-3, 3].  a)  Ro=20,b) Ro=8, c) Ro=2.  

 

Figure.2. Gradient scalar 0c∇
r

 .WJ =0.9, h=100, φ = π/6. x∈[1/4,1/3] and z∈[-1, 1]. Ro=0.1.  
Left: k2=1/100, k3=1/300. Right: k2=1, k3=1/3. 
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Figure.3. Scalar flux spectrum  .k=1/30.  WJ =0.9, h=100, φ = π/6. x∈[1/4,1] and zo
cN 2 ∈[-

100, 100]. a) Ro=100, b) Ro=10, c) Ro=0.1. 
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