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ABSTRACT 

In this study, we present a numerical solution for combined laminar fluid flow and 
heat transfer of Herschel-Bulkley non-Newtonian fluids in the entrance region of a 
rectangular duct. The governing equations are solved iteratively by using finite 
difference method to obtain temperature, bulk temperature, and Nusselt number. Two 
cases of the thermal boundary conditions are considered; (i) T thermal boundary 
condition “constant temperature at the wall” and (ii) H2 thermal boundary condition 
“constant heat flux at the wall”. The results are presented in Tables and Figures for 
different parameters for the fluid and the duct geometry. 
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NOMENCLATURE 

a                     half major side of the duct 
b                     half minor side of the duct 
c                     specific heat 
Dh                   hydraulic diameter of the duct  
GZ                  Graetz number  
h                     convective heat transfer coefficient  
K                    thermal conductivity  
k                     consistency index 
M                    number of mesh intervals in the cross- section of the duct  
N                    outer normal coordinate at a point on the duct wall inside periphery 
Nux,H2             Local Nusselt number for the (H2) boundary condition 
Nux,T               Local Nusselt number for the (T) boundary condition 
n                     flow index of the model 
Pe                   entrance axial pressure  
Pr                    Prandtl number  
q"                   heat flux per unit area of the duct  
Tw                  uniform temperature at the wall 
 (U, V, W)       dimensionless velocity component in (X, Y, Z) directions respectively 
xh                    dimensionless axial coordinate for hydrodynamic entrance region  
x*                    dimensionless axial coordinate for thermal entrance region  
θ                     dimensionless temperature   
θb                     dimensionless fluid bulk mean temperature 
θc                     dimensionless central  temperature  
θw,m                dimensionless mean temperature at the wall 
α                    aspect ratio 
μr            reference viscosity  
μ                   dimensionless apparent viscosity 
τ0                       yield  stress  
τD                      dimensionless yield  stress  

1.  INTRODUCTION 

The problem of fluid flow and heat transfer of non- Newtonian fluids in the entrance 
region of a rectangular duct is of special interest because of their wide applications in 
compact heat exchangers such as chemical and food processing. Most of the purely 
viscous non- Newtonian fluids found in industrial practice are almost highly viscous. 
They are therefore, often processed in the laminar flow regime. In the entrance 
region the hydrodynamic and thermal boundary layers develop simultaneously, this 
results in better heat transfer performance. This work makes a contribution to 
entrance heat transfer for Herschel-Bulkley fluids flowing in a rectangular duct. Fluid 
flow and heat transfer calculations in the entrance region have generally required 
approximations to overcome the nonlinearity of the differential equations.  
For Newtonian fluid, Montgomery and Wibulswas [1] obtained the combined 
hydrodynamic and thermal entry length solutions for rectangular ducts of aspect 
ratios 1, 0.5, 1/3, 1/4, and 1/6. Shah and London [2] and Shah and Bhatti [3] have 
published extensive compilations of the available information of simultaneously 
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developing steady laminar flow and heat transfer for flows through ducts of circular 
and non-circular cross-sections. Neti and Eichhorn [4] used a control volume finite 
difference method and marching technique to study the flow and heat transfer 
through the entrance region of a square duct for 6 =rP . A finite element procedure 
for the prediction of laminar forced convection in three-dimensional parabolic flow has 
been presented by Nonino et. Al. [5]. In this paper, thermally and hydrodynamically 
developing flows in flat channels and simultaneously developing flows in the square 
duct  for Newtonian fluid are studied.  
 For non-Newtonian fluids, Chandrupatla and Sastri [6] analyzed the thermal 
entrance length problem for a square duct for shear thinning power law fluids 
neglecting viscous dissipation effects. In excellent review, Hartnet and Kostic [7] have 
summarized the numerous investigations of heat transfer for Newtonian and non-
Newtonian fluids flowing through rectangular ducts and parallel plates. Lawal and 
Mujumdar [8] have published an extensive literature review for non-Newtonian fluids 
flowing through non-circular ducts. The problem of simultaneously developing flow 
and heat transfer for power law fluid flowing in rectangular ducts was considered by 
Etemad et. Al. [9]. Etemad and Mujumdar [10] presented a numerical simulation 
using the Galerkin finite element method to solve the full three dimensional governing 
equations for steady simultaneously developing laminar power-law fluid flow and heat 
transfer. They studied the problem in  the entrance region of a rectangular duct. The 
Galerkin finite element method has been used by Etemad [11] to solve governing 
equations for laminar power law fluid flow and heat transfer in the entrance region of 
cross-shaped duct. Sayed-Ahmed [12] introduced a numerical solution for laminar 
heat transfer of a Herschel-Bulkley fluid in the entrance region of a square duct 
assuming fully developed velocity profile. He solved the energy equation with 
dissipation effects using an implicit Crank-Nicolson method.  
 
2. FORMULATION OF THE PROBLEM 

The duct configuration and boundary conditions are shown in Fig.1. Both flow and 
heat transfer developed simultaneously from the entrance of the duct. Assuming 
steady laminar flow of an incompressible Herschel-Bulkley non-Newtonian fluid with 
constant physical properties in the entrance region of  a rectangular duct. The fluid 
enters the duct at uniform temperature , velocity  and pressure pe . The no-slip 
condition is applied at the duct walls and two cases of boundary conditions (uniform 
wall temperature everywhere (T) and uniform heat flux axially as well as peripherally 
(H2) as thermal boundary conditions) are assumed. The velocity components u, v, 
and w , pressure p and  the temperature T are developing simultaneously. Due to 
symmetry, the results are computed in one quadrant of the duct cross-section ( 
starting from the origin ). 

eT eu

 
The governing equations of Herschel-Bulkley fluid flow using boundary layer 
assumptions, introduced by Prandtl in 1904, are given by  
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The apparent viscosity, µ for  Herschel-Bulkley fluids is given by  
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 The initial and boundary conditions are written as  
 , ,euzyu =),,0( epp =)0( 0),,0(),,0( == zywzyv                                                            (6a) 
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The energy equation ( approximated using order of magnitude analysis) with 
negligible viscous dissipation effect may be written as 
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The thermal initial and boundary conditions of the problem for the two cases shown in 
Fig.1 are given by: 

Case (i): eT,y,z) T( =0 , wT) T(x,y,,z) T(x, == 00                                                                       (8a) 
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Define the following non-dimensional variables and parameters  
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In addition to the non-dimensional variables, which are introduced above, we may 
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Equations (1-5) in dimensionless form are written as  
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The initial and boundary conditions (6) in the dimensionless form are given by  
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 The energy equation (7) is written in the following non-dimensional form: 
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The thermal initial and boundary conditions (8-9) are written in the following non-
dimensional forms: 
 (a) Case (i):  and 010 .,Y,Z) θ( = 000 == ) θ(X,Y,,Z) θ(X,                                         (17a) 
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The local Nusselt numbers NuX,T and Nux,H2 according to the two cases of boundary 
conditions case (i) and case (ii) respectively are written  in the following: 
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3. NUMERICAL SOLUTION 

The governing equations (10-14) and the energy equation (16) are solved 
simultaneously  by the finite difference method at the nodes of the three-dimensional 
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rectangular mesh. These equations are non-linear partial differential equations with 
boundary conditions (15), (17) and (18). The indexes  indicate positions in the 
X, Y, Z directions, respectively. The origin is designated by . The axial 
mesh spacing is 

),,( kji
1=== kji

XΔ . The cross-section centerlines, αα 4/)1( +=Y  and, 
4/)1( α+=Z  are designated by Mj = +1 and Mk = +1, respectively. The difference 

schemes for governing equations (10-14) with boundary conditions (15) are 
introduced in Sayed-Ahmed and Kishk [13]. In the energy equation (16) we may use 
central differences for the first derivatives in Y and Z directions and backward 
difference in X direction and the Crank-Nicolson finite difference method for the 
second order derivatives [14]. Then, the finite difference form equation (16) is written 
as 
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where the notation ),(2 kjβ designates the variables θand,,, WVU  at a point in the 
mesh and ),,( kji ),(1 kjβ  to designate the same variables at a point in the mesh 

. ),,1( kji −
We may use finite-difference forms for the normal first derivatives in the boundary 
conditions equations (17b) and  (18) that introduced by Vemuri and Karplus [15]. To 
compute the local Nusselt numbers Nux,T  and Nux,H2, we may introduce finite 
difference forms for the integral equations (19), (21) and (22) using Simpson’s 1/3 
rules for double and  single integrals (Jain et al [16] ). 
The governing equations (10-14)   that introduced by Sayed-Ahmed and Kishk [13] 
and the energy equation (16) are solved by marching procedure. For each axial 
position, the momentum and continuity equations are first solved to obtain , , 
and [13], then equation (23) is solved to obtain 

2U 2V
2W 2θ  where, , , and  are 

considered known. The system of  linearized equations (23) are solved using 
Successive Under-Relaxation method. The criteria of convergence 
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ji UU  for velocity and the criteria of convergence 
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ji θθ  for temperature are satisfied. This process is repeated at a 

new axial position using values of the velocity and temperature components at the 
previous axial position as initial conditions, and so on, up to reach the fully developed 
flow and heat transfer. The results are obtained at M=40 and Re =500. The truncation 
error of the difference schemes of the governing equations is . 
Stability and rate of convergence are functions of the relaxation parameter, the mesh 
size (axial as well as transverse), and the axial velocity and temperature profiles ( 
Chandrupatla and Sastri [6] ).Thus the difference equations tend to the partial 
differential equations as ,  tend to zero. The basic axial mesh size 
used was ; however, axial steps as small as 10-5 were used near the duct 
entrance because of the high velocity and Nusselt numbers gradients in that region. 
The previous results indicate that the finite difference equations of the model are 
consistent and stable.  
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4. RESULTS AND DISCUSSIONS 

The results of the velocity components and friction factor and the pressure are 
discussed in [13]. 
       Fig. 2(a-c) shows the development of the axial temperature along the axial 
centerline of duct c along the centerline of the duct (θ αα 4/)1( +=Y , 4/)1( α+=Z ) 
for case (i) at the following parameters; flow index n = 0.5, 1 and 1.5,  yield stress τD 
= 0 and 0.6, aspect ratio α = 0.5 and Prandtl number Pr=0.1 and 10. It is found that 
the axial temperature θ c increases with increasing the flow index n and the Prandtl 
number Pr. This means that the thermal diffusivity of the fluid increases for the 
decreasing of the Prandtl number Pr. It is also found that the axial temperature θ c 
decreases with increasing τD  for n=0.5, (but there is no significant variation at n=1, 
1.5). 
Fig. 3(a-c) shows the development of the axial temperature along the axial centerline 
of duct θ c along the centerline of the duct ( αα 4/)1( +=Y , 4/)1( α+=Z ) for case (ii) 
for flow index n = 0.5, 1 and 1.5,  yield stress τD = 0 and 0.6, aspect ratio α = 0.5 and 
Prandtl number Pr=0.1 and 10. The centerline axia temperature c increases from 
zero (the initial dimensionless entrance temperature) to the fully developed profile at 
downstream (

θ

*/ xθ ∂∂  is constant). It is found that the axial temperature θ c 
decreases with increasing the flow index n and the Prandtl number Pr. It is also found 
that the axial temperature θ c increases with increasing  the yield stress τD at n=0.5 
(but there is no significant variation at n=1, 1.5). 
Fig. 4(a-c) shows the temperature profiles on the central plane )4/)1(*( +α,Y,xθ  for 
case (i). The results are obtained for thermal axial position x*=.05, .1 and 0.2, flow 
index n = 0.5, 1 and 1.5,  yield stress τD = 0 and 0.6, aspect ratio α = 0.5 and Prandtl 
number Pr = 0.1 and 10. It is found that the central plane temperature 

)4/)1(*( +α,Y,xθ  increases from the value of zero (at the wall) to its local maximum 
value (at the axial centerline of the duct), at a certain axial position x*. It has been 
found that  the central plane temperature )4/)1(*( +α,Y,xθ  increases with increasing 
the flow index n, the Prandtl number Pr and the aspect ratio α but it decreases with 
increasing the thermal axial position x* and the yield stress τD at n=0.5 (but there is 
no significant variation at n=1, 1.5). 
Fig. 5(a-c) shows the temperature profiles on the central plane )4/)1(*( +α,Y,xθ  for 
case (ii). The results are obtained for the following parameters: thermal axial position 
x*=.05, .1 and 0.2, flow index n = 0.5, 1 and 1.5,  yield stress τD = 0 and 0.6, aspect 
ratio α = 0.5 and Prandtl number Pr = 0.1 and 10.  It is found that the central plane 

temperature  increases ( at the wall ) with increasing the flow index n 
and the Prandtl number Pr  but this is reversed at the centerline of the duct. It is also 
found that the central plane temperature 

)4/)1(( +α,Y,xθ *

)4/)1(*( +α,Y,xθ  decreases with increasing 
thermal axial position x* and it is also decreases ( at the wall )  with increasing the 
yield stress τD, at n=0.5 (but there is no significant variation at n=1, 1.5), but this is 
reversed at the centerline of the duct.          
Figs. 6(a-c)  and 7(a-c) show the variation of the local Nusselt number Nux,T with the 
Graetz number GZ for case (i) at the following parameters: flow index n = 0.5, 1 and 
1.5,  yield stress τD = 0 and 0.6, aspect ratio α = 0.5 and 1 and Prandtl number Pr = 
0.1 and 10. It is observed that, the local Nusselt number Nux,T increases with 
increasing the Graetz number GZ, but it decreases with increasing the Prandtl 
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number Pr, the flow index n and the aspect ratio α. There is no significant variation in 
Nux,T with increasing τD from 0 to 0.6. It has been also found that the results of this 
study are in good agreement with the previous results.        
Figs. 8(a-c)  and 9(a-c) show the variation of the local Nusselt number Nux,H2 with 
the Graetz number GZ for case (ii) at the following parameters; flow index n = 0.5, 1 
and 1.5,  yield stress τD = 0 and 0.6, aspect ratio α = 0.5 and 1 and Prandtl number 
Pr = 0.1 and 10.  It is observed that, the local Nusselt number Nux,H2 increases with 
increasing the Graetz number GZ, but it decreases with increasing the Prandtl 
number Pr, the flow index n and the aspect ratio α. There is no significant variation in 
Nux,H2 with increasing τD from 0 to 0.6. It has been also found that the results of this 
study are in good agreement with the previous results.        
Fig. 10(a-c)  shows the variation of the bulk mean temperature b with the Graetz 
number GZ for case (i). The results are obtained for the following parameters; flow 
index n = 0.5, 1 and 1.5,  yield stress τD = 0 and 0.6, aspect ratio α = 0.5 and Prandtl 
number Pr = 0.1 and 10. It is observed that the bulk mean temperature b increases 
with increasing the Graetz number GZ, the flow index n and the aspect ratio α, but it 
decreases with increasing the Prandtl number Pr. There is no significant variation in 

b with increasing τD from 0 to 0.6. 

θ

θ

θ

Fig. 11(a-c)  shows the variation of the bulk mean temperature b with the Graetz 
number GZ case (ii). It is found that the bulk mean temperature θ b decreases with 
increasing the Graetz number GZ, but it is not affected by the other parameters (n, α, 
τD and Pr). This can be explained by the fact that the heat flux is the same for 
different fluid and geometry parameters, and it is also, the same, for different Prandtl 
numbers. Thus, the difference in velocity profiles for different fluid flow parameters is 
not reflected in the bulk temperature, and the difference in temperature profiles for 
different Prandtl numbers is also not affected in the bulk mean temperature.   

θ

 
5. CONCLUSIONS 

A finite difference method is used to solve three-dimensional parabolic equations of 
combined and steady laminar fluid flow and heat transfer in the entrance region of a 
rectangular duct.  Newtonian and non-Newtonian fluids (Herschel-Bulkley fluids) are 
used to characterize the fluid behavior. Two cases of thermal boundary conditions (T 
and H2) are studied. Two-dimensional storage and marching technique with a 
relaxation method line by line solution procedure for the difference equations are 
some important features of the program. The effects of the parameters (aspect ratio 
α, flow index n, yield stress τD, Prandtl number Pr, and thermal axial position x*), 
velocities  and the pressure P on the temperature U, V, W θ , the bulk mean 
temperature b and Nusselt numbers Nux,T and Nux,H2 are studied. It has been 
observed that the increasing of the thermal axial position x* decreased the axial 
temperature c along the centerline of the duct and the central plane temperature 

θ

θ
)4/)1(*( +α,Y,xθ  for case(i) but they are increases with increasing x* for case(ii) . It 

has been found that the increasing of the Graetz number GZ increased the local 
Nusselt number Nux,T and the bulk mean temperature θ b for case(i). It also, 
increased the local Nusselt number Nux,H2 but it decreased the bulk mean 
temperature b for case(ii). It has been found that the increasing of the yield stress 
τD decreases the axial temperature θ c along the centerline of the duct and the central 
plane temperature 

θ

)4/)1(*( +α,Y,xθ  for case(i)(without significant variation at n=1, 
1.5), but, they are increases with increasing τD for case(ii) along the centerline of the 
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duct (without significant variation at n=1, 1.5). There are no significant variations in 
Nux,T, Nux,H2 and θ b with increasing τD from 0 to 0.6. It has been found that the 
increasing of the flow index n increased the axial temperature c, θ )4/)1(*( +α,Y,xθ , 

b, but, it decreased Nux,T for case(i). It has been also found that the increasing of 
the flow index n decreased the axial temperature, θ c, 
θ

)4/)1(*( +α,Y,xθ  along the 
centerline of the duct and Nux,H2 for case(ii).  It has been observed that the increasing 
of the Prandtl number Pr increased the axial temperature θ c,  the central plane 
temperature )4/)1(*( +α,Y,xθ  and the bulk mean temperature θ b, but,  it decreased 
the local Nusselt number Nux,T case(i).  It has been also found that the increasing of 
the Prandtl number Pr decreased the axial temperature, θ c, the central plane 
temperature )4/)1(*( +α,Y,xθ  along the centerline of the duct and the local Nusselt 
number Nux,H2 for case(ii). It has been observed that the increasing of the aspect 
ratio α increased the axial temperature θ c,  the central plane temperature 

)4/)1(*( +α,Y,xθ  and the bulk mean temperature θ b, but,  it decreased the local 
Nusselt number Nux,T case(i). It has been also observed that the increasing of the 
aspect ratio α decreased the axial temperature θ c,  the central plane temperature 

)4/)1(*( +α,Y,xθ  and the local Nusselt number Nux,H2 for case(ii). The work has shown 
that the bulk mean temperature θ b is not affected by the flow index n, and, it is also, 
not affected by the Prandtl number Pr. The favorable comparison of the present 
results with previous experimental data as well as analytical and numerical results 
supports the accuracy of the present results. 
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Fig.2. The temperature developing along the  
centerline of the duct for case (i),α = 0.5 

Fig.3. The temperature developing along the  
centerline of the duct for case (ii),α = 0.5 
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Fig.4. The temperature profiles at 
centerline of the duct cross-section  

at different axial positions x* for 
case (i),  α = 0.5 

Fig.5. The temperature profiles at 
centerline of the duct cross-section  

at different axial positions x* for 
case (ii), α = 0.5 
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Fig.11. The variation of the bulk mean temperature θ b with the Graetz number GZ for 
case (ii)  




